Miniature Basic Switch

High Reliability for Micro Load Applications, Even in Adverse Atmospheres (Dust, High Humidity, Silicon Gas, etc.)

- The reed switch offers exceptional contact reliability in micro load applications.
- Same mounting pitch as for the V Miniature Basic Switch.
- High durability with a bounce time of 1 ms max.

RoHS Compliant

Model Number Legend

1. Actuator

None : Pin plunger model
L11 : Short hinge lever
L : Hinge lever
L13 : Simulated roller lever
L22 : Short hinge roller lever
L2 : Hinge roller lever
2. Maximum Operating Force (OF)

None: $0.49 \mathrm{~N}\{50 \mathrm{gf}\}$
E : $0.25 \mathrm{~N}\{25 \mathrm{gf}\}$
(for pin plungers only)
G : $0.98 \mathrm{~N}\{100 \mathrm{gf}\}$
Note. These values are for the pin plunger models.

List of Models

Actuator	Maximum Operating Force (OF)	Model
Pin plunger	$0.25 \mathrm{~N}\{25 \mathrm{gf}\}$	D2RV-E
	0.49 N \{50 gf $\}$	D2RV
	0.98 N \{100 gf $\}$	D2RV-G
Short hinge lever	0.49 N \{50 gf $\}$	D2RV-L11
	0.98 N \{100 gf $\}$	D2RV-L11G
Hinge lever	$0.25 \mathrm{~N}\{25 \mathrm{gf}\}$	D2RV-L
	0.49 N \{50 gf $\}$	D2RV-LG
Simulated roller lever	$0.25 \mathrm{~N}\{25 \mathrm{gf}\}$	D2RV-L13
	$0.49 \mathrm{~N}\{50 \mathrm{gf}\}$	D2RV-L13G
Short hinge roller lever	$0.49 \mathrm{~N}\{50 \mathrm{gf}\}$	D2RV-L22
	0.98 N \{100 gf $\}$	D2RV-L22G
Hinge roller lever	$0.25 \mathrm{~N}\{25 \mathrm{gf}\}$	D2RV-L2
	$0.49 \mathrm{~N}\{50 \mathrm{gf}\}$	D2RV-L2G

Contact Form

OSPST-NO

Ratings

Switching voltage	100 VDC (max.)
Switching current	0.25 ADC (max.)
Contact capacity	10 WDC (max.)

Note. The above rating values apply under the following test conditions.
(1) Ambient temperature: $20 \pm 2^{\circ} \mathrm{C}$
(2) Ambient humidity: $65 \pm 5 \%$
(3) Operating frequency: 30 operations $/ \mathrm{min}$

Characteristics

Permissible operating speed		0.1 mm to $1 \mathrm{~m} / \mathrm{s}$ (for pin plunger models)
Permissible operating frequency	Mechanical	200 operations/min
	Electrical	200 operations/min
Insulation resistance		$100 \mathrm{M} \Omega$ min. (at 500 VDC with insulation tester)
Contact resistance (initial value)		$150 \mathrm{~m} \Omega$ max.
Dielectric strength * 1	Between terminals of the same polarity	200 VDC 1 min
	Between currentcarrying metal parts and ground	$500 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$ for 1 min
	Between each terminal and non-currentcarrying metal parts	$500 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$ for 1 min
Vibration resistance*2	Malfunction	10 to $55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude
Shock resistance	Destruction	$500 \mathrm{~m} / \mathrm{s}^{2}$ \{approx. 50 G$\}$ max.
	Malfunction *2	$200 \mathrm{~m} / \mathrm{s}^{2}$ \{approx. 20G\} max.
Durability * 3	Mechanical	10,000,000 operations min. (60 operations/min)
	Electrical	3,000,000 operations min. (30 operations/min)
Degree of protection		IEC IP40
Ambient operating temperature		$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ (at ambient humidity of 60% max.) (with no icing or condensation)
Ambient operating humidity		80% max. (for $+5^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$)
Weight		Approx. 7 g (for pin plunger models)

Note. The data given above are initial values.
*1. The values for dielectric strength shown are for models with a Separator (refer to "Basic Switch Common Accessories").
*2. For the pin plunger models, the above values apply for use at the free position and total travel position. For the lever models, they apply at the total travel position. Close or open circuit of the contact is 1 ms max.
*3. For testing conditions, consult your OMRON sales representative.

Terminals/Appearances (Unit:mm)

Mounting Holes (Unit: mm)

Dimensions (Unit: mm) /Operating Characteristics
-Pin Plunger

-Short Hinge Lever

D2RV-L11

D2RV-L11G

Operating characteristics	Model	D2RV-L11	D2RV-L11G
Operating Force	OF Max.	$\begin{aligned} & 0.49 \mathrm{~N} \\ & \{50 \mathrm{gf}\} \end{aligned}$	$\begin{gathered} 0.98 \mathrm{~N} \\ \{100 \mathrm{gf}\} \end{gathered}$
Pretravel	PT Max.	1.8 mm	
Overtravel	OT Min.	0.4 mm	
Movement Differential	MD Max.	1.0 mm	
Operating Position	OP	$15.0 \pm 0.6 \mathrm{~mm}$	

-Hinge Lever Models

D2RV-L
D2RV-LG

Operating characteristics	Model	D2RV-L	D2RV-LG
Operating Force	OF Max.	$\begin{aligned} & 0.25 \mathrm{~N} \\ & \{25 \mathrm{gf}\} \end{aligned}$	$\begin{aligned} & 0.49 \mathrm{~N} \\ & \{50 \mathrm{gf}\} \end{aligned}$
Pretravel Overtravel Movement Differential	PT Max. OT Min. MD Max.	4.0 mm 1.0 mm 1.6 mm	
Operating Position	OP	$14.4 \pm 1.2 \mathrm{~mm}$	

-Simulated Roller Lever Models
D2RV-L13
D2RV-L13G

Operating characteristics	Model	D2RV-L13	D2RV-L13G
Operating Force	OF Max.	$\begin{aligned} & 0.25 \mathrm{~N} \\ & \{25 \mathrm{gf}\} \end{aligned}$	$\begin{aligned} & 0.49 \mathrm{~N} \\ & \{50 \mathrm{gf}\} \end{aligned}$
Pretravel Overtravel Movement Differential	PT Max. OT Min. MD Max.	$\begin{aligned} & 4.0 \mathrm{~mm} \\ & 1.0 \mathrm{~mm} \\ & 1.6 \mathrm{~mm} \end{aligned}$	
Operating Position	OP	$18.1 \pm 1.2 \mathrm{~mm}$	

[^0]OShort Hinge Roller Lever Models

Operating characteristics	Model	D2RV-L22	D2RV-L22G
Operating Force	OF Max.	$\begin{aligned} & 0.49 \mathrm{~N} \\ & \{50 \mathrm{gf}\} \end{aligned}$	$\begin{array}{r} \hline 0.98 \mathrm{~N} \\ \{100 \mathrm{gf}\} \\ \hline \end{array}$
Pretravel Overtravel Movement Differentia	PT Max. OT Min. MD Max.	1.8 mm 0.4 mm 1.0 mm	
Operating Position	OP	$20.4 \pm 0.6 \mathrm{~mm}$	

OHinge Roller Lever Models

D2RV-L2

D2RV-L2G

Operating characteristics	Model	D2RV-L2	D2RV-L2G
Operating Force	OF Max.	0.25 N $\{25 \mathrm{gf}\}$	0.49 N $\{50 \mathrm{gf}\}$
Pretravel	PT Max.	4.0 mm	
Overtravel	OT Min.	1.0 mm	
Movement Differential	MD	Max.	1.6 mm
Operating Position	OP	$19.9 \pm 1.2 \mathrm{~mm}$	

Note 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
Note 2. The operating characteristics are for operation in the A direction (\downarrow).

Precautions

丸Please refer to "Basic Switches Common Precautions" for correct use.

Cautions

OHandling

Do not drop the Switch or apply strong shock. It may result in internal mechanism damages and may deteriorate the characteristics of the inner Reed Switch.

-Effect of the External Vibration

When a vibration of 1 kHz or higher is applied, note that false switching operations may occur due to resonant frequency, even with a low acceleration.

-Soldering

- Terminal connections

Complete the soldering at the iron tip temperature between 250 to $350^{\circ} \mathrm{C}$ (60 W) within 5 seconds, and do not apply any external force for 1 minute after soldering.
Apply minimum amount of flux required. It may result in contact failure once the flux penetrates into the internal part of the Switch.

Correct Use

-Effect of the External Magnetic Fields

- If two or more switch units are closely installed, mutual interference due to the fringing field will occur, resulting in malfunction. Be sure to keep the gap between the switch units 8 mm or more.
- If you install the switch unit on the iron plate, each operating characteristic will change. Therefore, confirm that the interval between the switch units should be 2 mm or more.
- Do not use the switch in some area where a strong external magnetic field would be applied, otherwise malfunction will be caused.
- Use nonmagnetic brass or stainless steel (SUS304 alloy) screws for installation. Do not use any iron screw.

[^0]: Note 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
 Note 2. The operating characteristics are for operation in the A direction (\downarrow).

