Miniature Basic Switch

Highly reliable Miniature Basic Switch in spite of its Ultra-low Load action

- Twin crossbar contact employed for exceptionally high contact reliability.
- Unique internal mechanism that ensures high contact reliability even in micro load operations. Applicable for detection of light objects.

RoHS Compliant

Model Number Legend

	D2MV-1 $2-3$ - 4	
1. Ratings	\square	3. Contact form
1: 125 VAC 1A		1: SPDT
01: 30 VDC 0.1A		4. Terminals
2. Actuator	-	C: Solder terminals
None: Pin plunger		5. Maximum Operating Force (OF)
L11: Short hinge lever		1: $0.10 \mathrm{~N}\{10 \mathrm{gf}\}$ (for pin plunger models only)
L : Hinge lever		2: $0.25 \mathrm{~N}\{25 \mathrm{gf}\}$ (for pin plunger models only)
L111: Long Hinge Lever		3: $0.49 \mathrm{~N}\{50 \mathrm{gf}\}$
L13 : Simulated roller lever		Note. These values are for the pin plunger models.
L22 : Short hinge roller Lever		
L2 : Hinge roller Lever		

List of Models

Actuator	Ratings Max. Operating Force (OF)	1A	0.1A
Pin plunger	$0.10 \mathrm{~N}\{10 \mathrm{gf}\}$	D2MV-1-1C1	D2MV-01-1C1
	$0.25 \mathrm{~N}\{25 \mathrm{gf}\}$	D2MV-1-1C2	D2MV-01-1C2
	$0.49 \mathrm{~N}\{50 \mathrm{gf}\}$	D2MV-1-1C3	D2MV-01-1C3
Short hinge lever	$0.49 \mathrm{~N}\{50 \mathrm{gf}\}$	D2MV-1L11-1C3	D2MV-01L11-1C3
Hinge lever	$0.29 \mathrm{~N}\{30 \mathrm{gf}\}$	D2MV-1L-1C3	D2MV-01L-1C3
Long hinge lever	$0.15 \mathrm{~N}\{15 \mathrm{gf}\}$	D2MV-1L111-1C3	D2MV-01L111-1C3
Simulated roller lever	$0.29 \mathrm{~N}\{30 \mathrm{gf}\}$	D2MV-1L13-1C3	D2MV-01L13-1C3
Short hinge roller lever	$0.49 \mathrm{~N}\{50 \mathrm{gf}\}$	D2MV-1L22-1C3	D2MV-01L22-1C3
Hinge roller lever	$0.29 \mathrm{~N}\{30 \mathrm{gf}\}$	D2MV-1L2-1C3	D2MV-01L2-1C3

Contact Form

eSPDT

Contact Specifications

Item Model		D2MV-1 models	D2MV-01 models
Contact	Specification	Needle	Twin crossbar
	Material	Silver	Gold alloy
	Gap (standard value)	0.5 mm	
Inrush current	NC	-	
	NO		
Minimum applicable load (reference value) *		5 VDC 30mA	5 VDC 1mA

* Please refer to "OUsing Micro Loads" in "Precautions" for more
information on the minimum applicable load.

Ratings

Rated voltage	Item	D2MV-1 models
	D2MV-01 models	
	1 A	0.1 A
30 VDC	1 A	0.1 A

Note. The above rating values apply under the following test conditions.
(1) Ambient temperature: $20 \pm 2^{\circ} \mathrm{C}$
(2) Ambient humidity: $65 \pm 5 \%$
(3) Operating frequency: 30 operations $/ \mathrm{min}$

Approved Safety Standard

UL (UL1054) /CSA (CSA C22.2 No.55)

| Rated
 voltage | Model | D2MV-1 |
| :---: | :---: | :---: | D2MV-01 \quad 125 VAC $\quad 1 \mathrm{~A} \quad 0.1 \mathrm{~A}$.

Characteristics

Item Model			D2MV-1 models	D2MV-01 models
Permissible operating speed			1 mm to $1 \mathrm{~m} / \mathrm{s}$ (for pin plunger models)	
Permissible operating frequency	Mechanical		300 operations/min (for pin plunger models)	
	Electrical		60 operations/min	
Insulation resistance			$100 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC with insulation tester)	
Contact resistance (initial value)			$30 \mathrm{~m} \Omega$ max.	$50 \mathrm{~m} \Omega$ max.
Dielectric strength * 1	Between terminals of the same polarity		1,000 VAC $50 / 60 \mathrm{~Hz} 1 \mathrm{~min}$	
	Between current-carrying metal parts and ground		1,500 VAC $50 / 60 \mathrm{~Hz} 1$ min	
	Between each terminal and non-current-carrying metal parts		1,500 VAC $50 / 60 \mathrm{~Hz} 1 \mathrm{~min}$	
Vibration resistance * 2	Malfunction		10 to $55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude	
Shock resistance	Durability	Models with OF of 0.10N	$150 \mathrm{~m} / \mathrm{s}^{2}$ \{approx. 15G\} max.	
		Models with OF between 0.25 to 0.49 N	$400 \mathrm{~m} / \mathrm{s}^{2}$ \{ap	ox. 40G\} max.
	Malfunctio	* 2	$100 \mathrm{~m} / \mathrm{s}^{2}$ \{app	rox. 10G\} max.
Durability * 3	Mechanical		10,000,000 operations min. (60 operations/min)	
	Electrical		500,000 operations min. (30 operations/min)	1,000,000 operations min. (30 operations/min)
Degree of protection			IEC IP40	
Ambient operating temperature			$-25^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ (at ambient humidity of 60% max.) (with no icing or condensation)	
Ambient operating humidity			85% max. (for $+5^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$)	
Weight			Approx. 6g (pin plunger models)	

Note. The data given above are initial values.
*1. The values for dielectric strength shown are for models with a Separator (refer to "Micro Switch Common Accessories").
*2. The values are at Free Position and Total Travel Position values for pin plunger, and Total Travel Position value for lever. Close or open circuit of the contact is 1 ms max.

Terminals/Appearances (Unit:mm)

Mounting Holes (Unit: mm)

Dimensions (Unit: mm)/Operating Characteristics

-Pin plunger Models
D2MV-1-1C \square
D2MV-01-1C \square

Note. The \square in the model number is for the OF code.

-Short Hinge Lever Models

D2MV-1L11-1C3
D2MV-01L11-1C3

Operating characteristics	Model	$\begin{array}{\|l} \hline \text { D2MV-1L11-1C3 } \\ \text { D2MV-01L11-1C3 } \end{array}$
Operating Force Releasing Force	OF Max. RF Min.	$0.49 \mathrm{~N}\{50 \mathrm{gf}\}$ $0.04 \mathrm{~N}\{4 \mathrm{gf}$ (reference value)
Pretravel Overtravel Movement Differentia	PT Max. OT Min. MD Max.	1.7 mm 1.0 mm 0.4 mm
Operating Position	OP	$15.2 \pm 0.5 \mathrm{~mm}$
Note. The indicated reference values of RF are for cases where the lever weight is not applied to the plunger.		

* Stainless-steel lever
cases where the lever weight is not applied to the plunger.
-Hinge Lever Models
D2MV-1L-1C3
D2MV-01L-1C3

Operating characteristics	Model	$\begin{aligned} & \text { D2MV-1L-1C3 } \\ & \text { D2MV-01L-1C3 } \end{aligned}$
Operating Force Releasing Force	OF Max. RF Min.	$0.29 \mathrm{~N}\{30 \mathrm{gf}\}$ $0.02 \mathrm{~N}\{2 \mathrm{gf}$ (reference value)
Pretravel	PT Max.	3.3 mm
Overtravel	OT Min.	2.1 mm
Movement Differential	MD Max.	0.7 mm
Operating Position	OP	$15.2 \pm 1.2 \mathrm{~mm}$

Note. The indicated reference values of RF are for cases where the lever weight is not applied to the plunger.
-Long Hinge Lever Models
D2MV-1L111-1C3
D2MV-01L111-1C3

	Operating characteristics	Model	$\begin{array}{\|l\|} \hline \text { D2MV-1L111-1C3 } \\ \text { D2MV-01L111-1C3 } \end{array}$
	Operating Force O	OF Max.	0.15 N \{15 gf $\}$
	Releasing Force R	RF Min.	$0.01 \mathrm{~N}\{1 \mathrm{gf}\}$ (reference value)
	Pretravel P	PT Max.	6.0 mm
	Overtravel OT	OT Min.	4.0 mm
	Movement Differential MD	MD Max.	1.4 mm
	Operating Position O	OP	$15.2 \pm 2.6 \mathrm{~mm}$
	Note. The indicated reference values of RF are for cases where the lever weight is not applied to the plunger.		

-Simulated Roller Lever Models

D2MV-1L13-1C3
D2MV-01L13-1C3

[^0]
-Short Hinge Roller Lever Models

D2MV-1L22-1C3
D2MV-01L22-1C3

Operating characteristics	Model	D2MV-1L22-1C3 D2MV-01L22-1C3		
Operating Force OF Max. $0.49 \mathrm{~N}\{50 \mathrm{gf}\}$ Releasing Force RF Min. $0.04 \mathrm{~N}\{4 \mathrm{gff}$ (reference value)				
Pretravel PT Max.	1.7 mm			
Overtravel	OT	Min.		
Movement Differential	MD Max.	1.0 mm		
Operating Position	OP	20.4 mm		Note. The indicated reference values of RF are for
:---				
cases where the lever weight is not applied to				
the plunger.				

-Hinge Roller Lever Models
D2MV-1L2-1C3
D2MV-01L2-1C3

Operating characteristics	Model	$\begin{aligned} & \text { D2MV-1L2-1C3 } \\ & \text { D2MV-01L2-1C3 } \end{aligned}$
Operating Force	OF Max.	0.29 N \{30 gf $\}$
Releasing Force	RF Min.	$0.02 \mathrm{~N}\{2 \mathrm{gf}$ (reference value)
Pretravel	PT Max.	3.3 mm
Overtravel	OT Min.	2.1 mm
Movement Differential	MD Max.	0.7 mm
Operating Position	OP	$20.7 \pm 1.2 \mathrm{~mm}$
Note. The indicated reference values of RF are for cases where the lever weight is not applied to the plunger.		

Note 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
Note 2. The operating characteristics are for operation in the A direction (\downarrow).

Precautions

丸Please refer to "Basic Switches Common Precautions" for correct use.

Cautions

-Handling

Do not apply excessive shock. Doing so may cause damage to the Switch's internal components because they designed for a small load.

-Soldering

- Terminal connections

Complete the soldering at the iron tip temperature between 250 to $350^{\circ} \mathrm{C}$ (60 W) within 5 seconds, and do not apply any external force for 1 minute after soldering.
Apply minimum amount of flux required. It may result in contact failure once the flux penetrates into the internal part of the Switch.

Correct Use

-Mounting

Use M3 mounting screw with plane washers or spring washers to securely mount the Switch. Tighten the screws to a torque of 0.39 to $0.59 \mathrm{~N} \cdot \mathrm{~m}$ \{4 to $6 \mathrm{kgf} \cdot \mathrm{cm}\}$.

-Mounting Direction

For a Switch with an actuator, mount the Switch in a direction where the actuator weight will not be applied to the Switch. Since the Switch is designed for a low operating force, its release force is low. Therefore, release failure may occur if unnecessary force is applied to the Switch.

-Using Micro Loads

Using a model for ordinary loads to open or close the contact of a micro load circuit may result in faulty contact. Use models that operate in the following range. However, even when using micro load models within the following operating range, if inrush current occurs when the contact is opened or closed, it may increase the contact wear and so decrease durability. Therefore, insert a contact protection circuit where necessary. The minimum applicable load is the N -level reference value. This value indicates the malfunction reference level for the reliability level of $60 \%\left(\lambda_{60}\right)$.
(JIS C5003)
The equation, $\lambda_{60}=0.5 \times 10^{-6}$ operations indicates that the estimated malfunction rate is less than $\frac{1}{2,000,000}$ operations with a reliability level of 60%.

[^0]: Note 1. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
 Note 2. The operating characteristics are for operation in the A direction (\downarrow).

