FEATURES

mm inch

1. Reinforced insulation of I/O isolation voltage 5,000V (Reinforced insulation type)

2. Controls low-level analog signals PhotoMOS feature extremely low closedcircuit offset voltage to enable control of low-level analog signals without distortion.
3. Stable on-resistance
4. Low-level off state leakage current of max. $1 \mu \mathrm{~A}$

TYPICAL APPLICATIONS

- High-speed inspection machines
- Telephone equipment
- Data communication equipment
- Computers

RoHS compliant

TYPES

	I/O isolation	Output rating*		Package	Part No.				Packing quantity		
				Through hole terminal	Surface-mount terminal						
		Load voltage	Load current		Tube packing style		Tape and reel packing style		Tube		
							Picked from the 1/2/3-pin side	Picked from the 4/5/6-pin side		Tape and reel	
$\begin{aligned} & \text { AC/DC } \\ & \text { dual use } \end{aligned}$	Standard	350 V	130 mA		DIP6-pin	AQV210E	AQV210EA	AQV210EAX	AQV210EAZ	1 tube contain	
	1,500 V AC	400 V	120 mA	AQV214E		AQV214EA	AQV214EAX	AQV214EAZ	50 pcs.	1,000 pc	
	Reinforced	350 V	130 mA	AQV210EH		AQV210EHA	AQV210EHAX	AQV210EHAZ	1 batch contains:	1,000 pcs.	
	5,000 V	400 V	120 mA	AQV214EH		AQV214EHA	AQV214EHAX	AQV214EHAZ	500 pcs.		

*Indicate the peak AC and DC values.
Note: The surface mount terminal shape indicator "A" and the packing style indicator " X " or " Z " are not marked on the device.

RATING

1. Absolute maximum ratings (Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)

Item			$\begin{array}{\|l} \text { Sym- } \\ \text { bol } \end{array}$	Type of connection	AQV210E(A)	AQV214E(A)	AQV210EH(A)	AQV214EH(A)	Remarks	
Input	LED forward current		If		50 mA					
	LED reverse voltage		V_{R}		5 V					
	Peak forward current		Ifp		1 A				$\mathrm{f}=100 \mathrm{~Hz}$, Duty factor $=0.1 \%$	
	Power dissipation		Pin		75 mW					
Output	Load voltage (peak AC)		V_{L}		350 V	400 V	350 V	400 V		
	Continuous load current		IL	A	0.13 A	0.12 A	0.13 A	0.12 A	A connection: Peak AC, DC B, C connection: DC	
			B	0.15 A	0.13 A	0.15 A	0.13 A			
			C	0.17 A	0.15 A	0.17 A	0.15 A			
	Peak load current			Ipeak		0.4 A	0.3 A	0.4 A	0.3 A	A connection: 100 ms (1 shot), V L=DC
	Power dissipation			Pout		500 mW				
Total power dissipation			PT	550 mW						
I/O isolation voltage			$\mathrm{V}_{\text {iso }}$	$1,500 \mathrm{~V} \mathrm{AC}$		$5,000 \mathrm{~V} \mathrm{AC}$				
Temperature limits		Operating	Topr	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$				Non-condensing at low temp.		
		Storage	T $\mathrm{stg}^{\text {to }}$	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+212^{\circ} \mathrm{F}$						

2. Electrical characteristics (Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)

Item			Symbol	Type of connection	AQV210E(A)	AQV214E(A)	AQV210EH(A)	AQV214EH(A)	Condition
Input	LED operate current	Typical	Ifon	-	1.1 mA		1.6 mA		$\mathrm{L}=$ Max.
		Maximum			3 mA				
	LED turn off current	Minimum	IFoff	-	0.3 mA		0.4 mA		$\mathrm{L}=$ Max.
		Typical			1.0 mA		1.5 mA		
	LED dropout voltage	Typical	V_{F}	-	$1.25 \mathrm{~V}\left(1.14 \mathrm{~V}\right.$ at $\left.\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}\right)$				$\mathrm{IF}=50 \mathrm{~mA}$
		Maximum			1.5 V				
Output	On resistance	Typical	Ron	A	23Ω	30Ω	23Ω	30Ω	$\begin{aligned} & \mathrm{IF}=5 \mathrm{~mA} \\ & \mathrm{l}=\mathrm{Max} . \\ & \text { Within } 1 \text { s on time } \end{aligned}$
		Maximum			35Ω	50Ω	35Ω	50Ω	
		Typical	Ron	B	11.5Ω	22.5Ω	11.5Ω	22.5Ω	$\begin{aligned} & \mathrm{IF}=5 \mathrm{~mA} \\ & \mathrm{lL}=\mathrm{Max} . \\ & \text { Within } 1 \text { s on time } \end{aligned}$
		Maximum			17.5Ω	25Ω	17.5Ω	25Ω	
		Typical	Ron	C	6.0Ω	11.3Ω	6.0Ω	11.3Ω	$\begin{aligned} & \mathrm{IF}=5 \mathrm{~mA} \\ & \mathrm{l}=\mathrm{Max} . \\ & \text { Within } 1 \text { s on time } \end{aligned}$
		Maximum			8.8Ω	12.5Ω	8.8Ω	12.5Ω	
	Off state leakage current	Maximum	ILeak	-	$1 \mu \mathrm{~A}$				$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{L}}=\mathrm{Max} . \end{aligned}$
Transfer characteristics	Turn on time*	Typical	Ton	-	0.5 ms		0.7 ms		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA} \\ & \mathrm{~L}=\text { Max. } . \end{aligned}$
		Maximum			2.0 ms				
	Turn off time*	Typical	Toff	-	$1.0 \mathrm{~ms}$				$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA} \\ & \mathrm{I}=\mathrm{Max} . \end{aligned}$
		Maximum							
	I/O capacitance	Typical	Ciso	-	0.8 pF				$\begin{aligned} & f=1 \mathrm{MHz} \\ & V_{B}=0 \mathrm{~V} \end{aligned}$
		Maximum			1.5 pF				
	Initial I/O isolation resistance	Minimum	Riso	-	1,000 M Ω				500 V DC

*Turn on/Turn off time

RECOMMENDED OPERATING CONDITIONS

Please obey the following conditions to ensure proper device operation and resetting.

Item	Symbol	Recommended value	Unit
Input LED current	IF	Standard type: 5 Reinforced type: 5 to 10	mA

- These products are not designed for automotive use.

If you are considering to use these products for automotive applications, please contact your local Panasonic Corporation technical representative.

REFERENCE DATA

1. Load current vs. ambient temperature characteristics
Allowable ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$
Type of connection:A

2. Turn off time vs. ambient temperature characteristics
LED current: 5 mA ; Load voltage: Max. (DC); Continuous load current: Max. (DC)

3. LED dropout voltage vs. ambient temperature characteristics
Sample: All types
LED current: 5 to 50 mA

4. On-resistance vs. ambient temperature characteristics
Measured portion: between terminals 4 and 6; LED current: 5 mA ; Load voltage: Max. (DC); Continuous load current: Max. (DC)

5. LED operate current vs. ambient temperature characteristics
Load voltage: Max. (DC);
Continuous load current: Max. (DC)

6. Current vs. voltage characteristics of output at MOS portion
Measured portion: between terminals 4 and 6;
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

7. Turn on time vs. ambient temperature characteristics
LED current: 5 mA
Load voltage: Max. (DC);
Continuous load current: Max. (DC)

8. LED turn off current vs. ambient temperature characteristics
Load voltage: Max. (DC);
Continuous load current: Max. (DC)

9. Off state leakage current vs. load voltage characteristics
Measured portion: between terminals 4 and 6;
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

10-(1). Turn on time vs. LED forward current characteristics
Measured portion: between terminals 4 and 6;
Load voltage: Max. (DC); Continuous load current: Max. (DC); Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

11-(2). Turn off time vs. LED forward current characteristics
Measured portion: between terminals 4 and 6 ;
Load voltage: Max. (DC); Continuous load current Max. (DC); Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

10-(2). Turn on time vs. LED forward current characteristics
Measured portion: between terminals 4 and 6; Load voltage: Max. (DC); Continuous load current: Max. (DC); Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

11-(1). Turn off time vs. LED forward current characteristics
Measured portion: between terminals 4 and 6;
Load voltage: Max. (DC); Continuous load current: Max. (DC); Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

12. Output capacitance vs. applied voltage characteristics
Measured portion: between terminals 4 and 6;
Frequency: 1 MHz ;
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

