Panasonic ideas for life

CAD Data
mm inch

FEATURES

1. Approx. $1 / 2$ the space compared with the mounting of a set of 1 Form A and 1 Form B PhotoMOS relays
2. Applicable for 1 Form A 1 Form B use as well as two independent 1 Form A and 1 Form B use
3. Controls load currents up to 0.13 A with 5 mA input current
4. Extremely low closed-circuit offset voltages to enable control of small analog signals without distortion
5. Stable on-resistance

PhotoMOS
 GU Form A \& B (AQW614)

TYPICAL APPLICATIONS

- High-speed inspection machines
- Telephone equipment
- Computers
- Sensing equipment

TYPES

	Output rating*		Package	Part No.				Packing quantity	
	Load voltage	Load current		Through hole terminal	Surface-mount terminal				
				Tube packing style		Tape and reel packing style		Tube	
						Picked from the 1/2/3-pin side	Picked from the 4/5/6-pin side		Tape and reel
AC/DC dual use	400 V	100 mA	DIP8-pin	AQW614	AQW614A	AQW614AX	AQW614AZ	```1 tube contains: 50 pcs. 1 batch contains: 500 pcs.```	1,000 pcs.

*Indicate the peak AC and DC values.
Note: The surface mount terminal shape indicator " A " and the packing style indicator " X " or " Z " are not marked on the relay.

RATING

1. Absolute maximum ratings (Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)

Item		Symbol	AQW614(A)	Remarks
Input	LED forward current	IF	50 mA	
	LED reverse voltage	V_{R}	5 V	
	Peak forward current	Ifp	1 A	$\mathrm{f}=100 \mathrm{~Hz}$, Duty factor $=0.1 \%$
	Power dissipation	Pin	75 mW	
Output	Load voltage (peak AC)	V_{L}	400 V	
	Continuous load current	IL	0.1 A (0.13 A)	Peak AC, DC (): in case of using only 1 a or 1 b , 1 channel
	Peak load current	Ipeak	0.3 A	100 ms (1 shot), $\mathrm{V}_{\mathrm{L}}=\mathrm{DC}$
	Power dissipation	Pout	800 mW	
Total power dissipation		$\mathrm{P}_{\text {T }}$	850 mW	
I/O isolation voltage		$V_{\text {iso }}$	1,500 V AC	Between input and output/between contact sets
Temperature limits	Operating	Topr	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$	Non-condensing at low temperatures
	Storage	$\mathrm{T}_{\text {stg }}$	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+212^{\circ} \mathrm{F}$	

GU Form A \& B (AQW614)

2. Electrical characteristics (Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)

Item			Symbol	AQW614(A)	Condition
Input	LED operate current	Typical	$\begin{aligned} & \text { IFon (N.O.) } \\ & \text { IFoff (N.C.) } \end{aligned}$	0.9 mA	$\mathrm{L}=100 \mathrm{~mA}$
		Maximum		3 mA	
	LED reverse current	Minimum	$\begin{aligned} & \text { IFoff (N.O.) } \\ & \text { IFon (N.C.) } \end{aligned}$	0.4 mA	$\mathrm{L}=100 \mathrm{~mA}$
		Typical		0.8 mA	
	LED dropout voltage	Typical	V_{F}	$1.25 \mathrm{~V}\left(1.14 \mathrm{~V}\right.$ at $\left.\mathrm{IF}_{\mathrm{F}}=5 \mathrm{~mA}\right)$	$\mathrm{IF}=50 \mathrm{~mA}$
		Maximum		1.5 V	
Output	On resistance	Typical	Ron	27Ω	$\begin{aligned} & \hline \mathrm{IF}_{\mathrm{F}}=5 \mathrm{~mA}(\mathrm{~N} . \mathrm{O} .) \\ & \mathrm{IF}_{\mathrm{F}}=0 \mathrm{~mA}(\mathrm{~N} . \mathrm{C} .) \\ & \mathrm{IL}=100 \mathrm{~mA} \\ & \text { within } 1 \mathrm{~s} \text { on time } \end{aligned}$
		Maximum		50Ω	
	Off state leakage current	Maximum	ILeak	$1 \mu \mathrm{~A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}(\mathrm{~N} . \mathrm{O} .) \\ & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}(\mathrm{~N} . \mathrm{C} .) \\ & \mathrm{V}_{\mathrm{L}}=400 \mathrm{~V} \end{aligned}$
Transfer characteristics	Operate time*	Typical	$\begin{aligned} & \text { Ton (N.O.) } \\ & \text { Toff (N.C.) } \end{aligned}$	0.28 ms (N.O.) 0.43 ms (N.C.)	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \rightarrow 5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA} \end{aligned}$
		Maximum		1 ms	
	Reverse time*	Typical	$\begin{aligned} & \mathrm{T}_{\text {off (}} \text { (N.O.) } \\ & \mathrm{T}_{\text {on (}} \text { N.C.) } \end{aligned}$	0.04 ms (N.O.) $0.3 \mathrm{~ms} \mathrm{(N.C)}$.	$\begin{aligned} & \mathrm{IF}_{\mathrm{F}}=5 \mathrm{~mA} \rightarrow 0 \mathrm{~mA} \\ & \mathrm{I}=100 \mathrm{~mA} \end{aligned}$
		Maximum		1 ms	
	I/O capacitance	Typical	Ciso	0.8 pF	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V} \end{aligned}$
		Maximum		1.5 pF	
	Initial I/O isolation resista	Minimum	Riso	1,000 M Ω	500 V DC

*Operate/Reverse time

RECOMMENDED OPERATING CONDITIONS

Please obey the following conditions to ensure proper relay operation and resetting.

Item	Symbol	Recommended value	Unit
Input LED current	I_{F}	5	mA

- Dimensions

- Schematic and Wiring Diagrams
- Cautions for Use
- These products are not designed for automotive use.

If you are considering to use these products for automotive applications, please contact your local Panasonic technical representative.
Please refer to our information on PhotoMOS Relays for Automotive Applications.

REFERENCE DATA

1. Load current vs. ambient temperature characteristics
Allowable ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$

2. On resistance vs. ambient temperature characteristics
Measured portion: between terminals 5 and 6, 7 and 8; LED current: 5 mA ; Load voltage: 400 V (DC); Continuous load current: 100 mA (DC)

3. Operate time vs. ambient temperature characteristics
LED current: 5 mA ;
Load voltage: 400 V (DC);
Continuous load current: 100 mA (DC)

4. Reverse time vs. ambient temperature characteristics
LED current: 5 mA ; Load voltage: 400 V (DC); Continuous load current: 100 mA (DC)

5. LED dropout voltage vs. ambient temperature characteristics LED current: 5 to 50 mA

6. LED operate current vs. ambient temperature characteristics Load voltage: 400 V (DC);
Continuous load current: 100 mA (DC)

7. LED reverse current vs. ambient temperature characteristics
Load voltage: 400 V (DC);
Continuous load current: 100 mA (DC)

8. Current vs. voltage characteristics of output at MOS portion
Measured portion: between terminals 5 and 6, 7 and 8 Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

9. Off state leakage current vs. load voltage characteristics
Measured portion: between terminals 5 and 6, 7 and 8; Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

10. Operate time vs. LED forward current characteristics
Measured portion: between terminals 5 and 6, 7 and 8; Load voltage: 400 V (DC); Continuous load current: 100 mA (DC); Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

11.Reverse time vs. LED forward current characteristics
Measured portion: between terminals 5 and 6, 7 and 8; Load voltage: 400 V (DC); Continuous load current: 100 mA (DC); Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

12.Output capacitance vs. applied voltage characteristics
Measured portion: between terminals 5 and 6, 7 and 8; Frequency: 1 MHz;
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

