16-Bit, 2-Port Bus Switch

Features

\rightarrow Near-Zero propagation delay
$\rightarrow 5$-ohm switches connect inputs to outputs
\rightarrow Direct bus connection when switches are ON
\rightarrow Ultra-low quiescent power ($0.2 \mu \mathrm{~A}$ typical) - Ideally suited for notebook applications
\rightarrow Pin compatible with 74 series 16245
\rightarrow Industrial operating temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
\rightarrow Packaging (Pb -free \& Green):

- 48-pin 240-mil wide thin plastic TSSOP (A)

Block Diagram

Truth Table ${ }^{(1)}$

Function	$\mathbf{n B E}$	nA0-7
Disconnect	H	Hi-Z
Connect	L	nB0-7
Note: \quad H	$=$ High Voltage Level	
L	$=$ Low Voltage Level	
Hi-Z	$=$ High Impedance	

Description

Pericom Semiconductor's PI5C16245 is a 16-bit, 2-port bus switch that is pin compatible with the 74 series 16245 16-bit transceiver. Two enable signals ($\mathrm{n} \overline{\mathrm{BE}}$) turn the switches on similar to the enable signals of the 16245 . The bus switch creates no additional propagation delay or additional ground bounce noise.

Pin Configuration

NC 1	48	$\square 1 \overline{B E}$
1Bo 2	47	$\square 1 A_{0}$
1B1 3	46	$\square 1 A_{1}$
GND 4	45	\square GND
1B2 5	44	$\square 1 \mathrm{~A}_{2}$
1B3 6	43	- 1A3
Vcc 7	42	$\square \mathrm{Vcc}$
1B4 8	41	$\square 1{ }^{\text {a }}$
1B5 9	40	1A5
GND 10	39	\square GND
1B6 11	38	- 1A6
1B7 12	37	$\square_{1 A 7}$
2Bo 13	36	$\square 2 A 0$
2B1 14	35	$\square 2 A_{1}$
GND 15	34	\square GND
2B2 16	33	- 2A2
2B3 17	32	$\square 2 \mathrm{~A}$
Vcc 18	31	$\square \mathrm{Vcc}$
2B4 19	30	$\square 2 \mathrm{~A} 4$
2B5 20	29	2A5
GND 21	28	\square GND
2B6 22	27	$\square 2 A 6$
2B7 23	26	$\square^{2 A 7}$
NC 24	25	2 $\overline{B E}$

Pin Description

Pin Name	I/O	Description
$\mathrm{n} \overline{\mathrm{BE}}$	I	Bus Enable Input (Active LOW)
nA0-nA7	I/O	Bus A
$\mathrm{nB} 0-\mathrm{nB} 7$	I/O	Bus B

Absolute Maximum Ratings

Parameter	Min.	Max.	Units
Storage Temperature	-55	125	${ }^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	-40	85	${ }^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5	7.0	V
DC Input Voltage	-0.5	7.0	V
DC Output Current	-	120	mA
Power Dissipation	-	0.5	W

Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
DC Electrical Characteristics (Over the Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$)

Parameters	Description	Test Conditions ${ }^{(1)}$	Min	Typ ${ }^{(2)}$	Max	Units
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0			V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	V
I_{IH}	Input HIGH Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {IN }}=$ VCC			± 1	$\mu \mathrm{A}$
IIL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$			± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OZH }}$	High Impedance Output Current	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$			± 1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$		-0.7	-1.2	V
Ios	Short Circuit Current ${ }^{(3)}$	$\mathrm{A}(\mathrm{B})=0 \mathrm{~V}, \mathrm{~B}(\mathrm{~A})=\mathrm{V}_{\mathrm{CC}}$	100			mA
V_{H}	Input Hysteresis at Control Pins			150		mV
Ron	Switch On Resistance ${ }^{(4)}$	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=48 \mathrm{~mA}$		5	7	ohm
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=15 \mathrm{~mA}$		10	5	

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameters $^{(5)}$	Description	Test Conditions	Typ	Max	Units
$C_{\text {IN }}$	Input Capacitance	$V_{\text {IN }}=0 V$	6		pF
C OFF	A/B Capacitance, Switch Off	$V_{\text {IN }}=0 \mathrm{~V}$	6		pF
$C_{\text {ON }}$	A/B Capacitance, Switch On	$V_{\text {IN }}=0 \mathrm{~V}$	9		pF

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
4. Measured by the voltage drop between A and B pin at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two
(A, B) pins.
5. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Conditions ${ }^{(1)}$		Min	Typ ${ }^{(2)}$	Max	Units
I_{CC}	Quiescent Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$.	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ or V_{CC}		0.1	3.0	$\mu \mathrm{A}$
$\Delta_{\text {ICC }}$	Supply Current per Input @ TTL HIGH	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$.	$\mathrm{V}_{\text {IN }}=3.4 \mathrm{~V}^{(3)}$			2.5	mA
ICCD	Supply Current per Input per $\mathrm{MHz}^{(4)}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} .$ A and B Pins Open $\mathrm{n} \overline{\mathrm{BE}}=\mathrm{GND}$ Control Input Toggling 50\% Duty Cycle				0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input ($\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$, control inputs only); A and B pins do not contribute to Icc.
4. This current applies to the control inputs only and represent the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is not tested, but is guaranteed by design.

PI5C16245 Switching Characteristics over Operating Range

Parameters	Description	Test Conditions ${ }^{(1)}$	PI5	245	Units
			Com.		
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{tLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay ${ }^{(2,3)}$ $x A x$ to $x B x, x B x$ to $x A x$	$\begin{aligned} & \mathrm{CL}=50 \mathrm{pF} \\ & \mathrm{RL}=500-\mathrm{ohm} \end{aligned}$		0.25	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Bus Enable Time $x \overline{B E}$ to $x A x$ or $x B x$		1.5	6.5	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Bus Disable Time $x \overline{B E}$ to $x A x$ or $x B x$		1.5	5.5	ns

Notes:

1. See test circuit and wave forms.
2. This parameter is guaranteed but not tested on Propagation Delays.
3. The bus switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 50 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Test Circuits

Enable and Disable Timing

Switch Position

Test	Switch
Disable LOW	Closed
Enable LOW	Closed
$\mathrm{t}_{\text {pD }}$	Open

Definitions:
CL = Load capacitance (includes jig and probe capacitance)
RT = Termination resistance (should be equal to ZOUT of the pulse generator)

Propagation Delay

Packaging Mechanical: 48-Pin TSSOP (A)

Ordering Information

Ordering Code	Package Code	Package Type	Operating Temperature
PI5C16245AE	A	Pb-free \& Green, 48-pin TSSOP	Commercial

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
