

Preliminary Technical data sheet

850nm F-Light short distance optical receiver

PAGE 1/6	REVISION 1.3	ISSUE 22/12/2015	PART NUMBER FLR-500-IL-B4-001
Features Digital op Data rate Complies 1000 Bas Controls Controls Features SMT elect Optimized Communi Vibration Low powe Complian standards vibrations	tical receiver up to 5 Gbps with IEEE Std. 802.3z (e-Sx PMD, ARINC 804 for better link reliability C] operating temperatur trical interface d for short distance and cation tolerant er consumption (~160 m t with MIL-STD 810/883 s for temperature, damp	Gigabit Ethernet and PCI express e range board to board W) and DO-160D heat, shocks and	R5B41 S2ADL11 S3ADL11 S2ADL11 S3ADL11 S2ADL11 S3ADL11

Applications

- Severe environment interconnects
- Sensors interconnects
- Numerical video transmission
- Board-to-board communications
- Data communications
- On-board communications

Product Description

F-Light FLR-500-IL-B4-001 optoelectronic module is an high performance receiver optimized for high data rate short distance Free-space optical (FSO) communications. It is protocol independent and can be applied to Gigabit Ethernet, Fibre Channel, Infiniband, PCI Express or any specific communication application. The F-Light family is designed for Free-space communication within severe environments and complies with AEEC / ARINC 804 transceiver specifications.

The FLR-500-IL-B4-001 Free-Space Optical receiver is optimized for high speed DC-coupled serial links operating from 0.1 to 5 Gbps. The module is 3.3 Volts single supplied for low power consumption.

The receiver is based on high speed GaAs photodiode and high performances BiCMOS transimpedance (TIA) and limiting (LA) amplifiers.

The device has to be coupled with a Flight transmitter module FLT-500-xx-yy to set a full free space optical link.

Preliminary Technical data sheet

850nm F-Light short distance optical receiver

PART NUMBER FLR-JUU-IL-D4-UUT	PAGE 2/6	REVISION 1.3	ISSUE 22/12/2015	PART NUMBER FLR-500-IL-B4-001
-------------------------------	-----------------	--------------	------------------	-------------------------------

Absolute maximum rating

Stress beyond these values may cause permanent damage to the device.

Table 1 - Absolute Maximum Ratings

Parameter	Symbol	Min	Мах	Unit	Notes
Storage temperature	T _{st}	-55	+125	°C	-
Soldering temperature	T _{sol}	-	260	°C	1,2
Soldering time	t _{sol}	-	30	S	1,2
Supply voltage	Vcc	-0.3	+4.0	V	3
Signal pins voltage range	V _{pin}	V _{EE} -0.3	V _{CC} +0.3	V	-
Junction temperature	ΤB _{jB}	-	130	°C	-
ESD resistance voltage	ESD	-	500	V	4

Notes:

1: MSL level 2 (J-STD-020D)

2 : compliant with ROHS solder reflow profile standard IPC/JEDEC J-STD-020D

3: V_{EE} is negative supply, V_{CC} is positive supply

4: ESD resistance based on HBM according to JESD22-A114-B

Module Optical and Electrical Specifications

Table 2 - General specifications					VCC=3.3V	, VEE=GND=0V
Parameter	Symbol	Min	Тур.	Мах	Unit	Notes
Supply voltage	V _{cc}	3.0	3.3	3.6	V	-
Supply voltage noise	N _{VCC}	-	-	100	mV	1
Supply current	I _{ccRx}	-	30	35	mA	-
Data rate	В	0.1	-	5	Gbps	-
Operating temperature	T _{op}	-40	-	+85	°C	-

Notes:

For noise frequencies < 5MHz.

Table 3 - Elect	rical Specification- High Spe	ed channels	B	= 5 Gbps, VC	C=3.3V, VEE	=GND=0V, ⁻	Temp= [-40:+85°C]
Parameter		Symbol	Min	Тур.	Max	Unit	Notes
Differential output vol	tage	V_{OUTdif}	200	400	700	mV	-
Output impedance (di	fferential)	Z _{out}	90	100	110	Ω	-
Output CML drive cur	rent	lo	-	12	-	mA	-
Total jitter receiver		T _{JRx}	-	60	150	ps	-
Rise/Fall time		τ _{R Rx} , τ _F Rx	-	80	150	ps	1
Differential peak to pe squelched	eak noise output when		-	-	10	mV	-

Notes:

1. Measured at 20% / 80% levels

Table 4 -	Electrical S	Specification- I/O CMOS			B= 5 Gbps,	VCC=3.3V, VE	E=GND=0V, ⁻	Гетр= [-40:+85°С]
Parameter			Symbol	Min	Тур.	Max	Unit	Notes
Digital inputs	voltage	High	V_{INhigh}	2	-	V _{CC} + 0.3	V	-
		Low	VINIOW	V _{EE} - 0.3	-	0.8	V	-
Digital input c	urrent		I _{IN}	-	-	+/-5	μA	-
Digital output	s voltage	High	V _{OH}	V _{CC} -0.2	-	-	V	-
		Low	V _{OL}	-	-	0.2	V	-
Digital output	currents		I _{Out}	+/- 2	-	-	mA	-

Preliminary Technical data sheet

850nm F-Light short distance optical receiver

PAGE 3/6	REVISION 1.3	ISSUE 22/12/2	015	PART N	UMBER FLI	R-500-IL-I	B4-001
Table 5 -	Ontical Specification						_
	Optical Specification			B= 5 GDp	os, VCC=3.3V, V	/EE=GND=UV,	, Temp= [-40:+85°C]
Parameter	Optical Specification	Symbol	Min	Typ.	Max	Unit	, Temp= [-40:+85°C] Notes
Parameter Center waveler	ngth	Symbol λ _c	Min 840	Typ. 850	Max 860	Unit	
Parameter Center waveler Spectral width	ngth - rms	Symbol λ _c Δλ	Min 840	E 5 Gb Typ. 850	Max 860 1	Unit nm nm	<u>, Temp= [-40:+85°C]</u> Notes - -

Remark: ambient light has no impact on FLR specifications

Data output stage:

The output stage is a differential current-mode-logic (CML) driver. The pull-up resistors are tied to the pin Vcc. The general characteristics of the output stage are the following :

 $\hfill\square$ Switched current Io of 9mA,

 \Box pull-ups RoL 2x50 Ω to Vcc.

□ For Differential DC-coupled termination with negative power supply. The outputs are then connected to 50Ω tracks, terminated by two 50Ω loads to ground, or a floating 100Ω load.

□ For single-ended AC-coupled: both outputs should see equal load impedances.

Power supply filtering

The module is 3.3 Volts single power supply and includes internal decoupling components. Supply filtering is recommended, with roll-off frequency at 10 MHz or lower.

An additional filtering can reduce the noise penalty above 10 MHz. For a supply noise $V_{PSN} = 100 \text{ mV}_{PP}$ a 0.5dB sensitivity penalty can be reached over the whole frequency range by using a first order low-pass filter with $f_c = 10$ MHz on the power supply (See the following figure for component values).

Preliminary Technical data sheet

850nm F-Light short distance optical receiver

Notes:

1. Mass of the receiver module: 0.650g

Protection and handling cap mechanical drawing

A protection cap is delivered with the FLR-500-IL-B4-001 This cap can be used to handle the module during positioning and soldering phases.

Preliminary Technical data sheet

850nm F-Light short distance optical receiver

PAGE 5/6	REVISION 1.3	ISSUE 22/12/2015	PART NUMBER FLR-500-IL-B4-001

Pin-out description

Signal	Pin number	Туре	Description
DataOut+	1	HS ¹ Output	Positive Data Output: CML positive high speed output.
DataOut-	2	HS ¹ Output	Negative Data Output: CML negative high speed output.
Squelch	3	Digital input ⁵	Squelch: This pin controls the squelch function of the receiver. If low, the differential output data are hold to the common mode output voltage if the signal detect signal is low. If this pin is high the receiver does not squelch.
CONFRx	4	Digital input ⁵	Mode selection: connect to VccRx (stand-alone mode ²)
SDA	6	Digital Input/ Output	I ² C serial data pin : left unconnected for stand-alone use
V _{CC}	7	Power	Positive supply: +3.3Volts positive power supply for the receiver.
SCL	10	Digital Input	I ² C serial Clock pin : left unconnected for stand-alone use
RSSI	11	Analog Output	Receiver Signal Strength Indicator (Average optical power) : this Analog output pin allows the user to monitor the average incident optical power. The current on this pin is proportional to the input optical power. ³
RxFault	12	Digital output⁵	Receiver Fault: this signal detect output allows the user to detect that no light or insufficient light is seen by the receiver (open link for instance). RxFault low: normal (lighted) RxFault high: abnormal (unlighted)
V _{EE}	5,8,9,13 ⁴	Power	Negative supply: negative power supply tied to 0 Volt for the transmitter and receiver

Notes:

- 1. HS pin type: High Speed inputs / output pins.
- 2. Radiall imposes the use of the stand-alone mode to operate the device. The I²C-controlled mode is currently reserved for internal use.
- 3. see following §
- 4. Pin n°13 is the central rear pad
- 5. CMOS I/O, JEDEC JESD8-C compliant

Receiver incident optical power computations

The Receiver Signal Strength Indicator (RSSI) delivers an analog current proportional to the average photo-detector current, I_{RSSI}

The user can set an external resistor to get a voltage at RSSI output. This voltage will be proportional to the input optical power of the receiver and the load resistor externally (R_{ext}) attached to the pin thought the following equation:

$$I_{RSSI} = \chi \cdot P_{opt}$$

$$V_{RSSI} = R_{ext} \cdot \chi \cdot P_{opt} \xrightarrow{\rightarrow} P_{opt} = \frac{V_{RSSI}}{R_{ext} \cdot \chi}.$$
(W)

Where R_{ext} is the resistor attached to RSSI pin, χ an internal coefficient and P_{opt} the incident receiver optical power in W. Note that linearity is maintained for $V_{RSSI} \le 2.2V$.

	Symbol	Min.	Тур.	Max.
Internal coefficient for RSSI	χ	0.52	0.6	0.63

V1.3

22-12-2015

FQ

CONFIDENTIAL

Preliminary Technical data sheet

850nm F-Light short distance optical receiver

Change of recommended power supply filtering p3

This document contains proprietary information and such information shall not be disclosed to any third party for any purpose whatsoever or used for manufacturing purposes without prior written agreement from Radiall. The data defined in this document are given as an indication, in the effort to improve our products; we reserve the right to make any changes judged necessary.

MP