

FAST RECOVERY RECTIFIER DIODES

- VERY LOW REVERSE RECOVERY TIME
- VERY LOW SWITCHING LOSSES
- LOW NOISE TURN-OFF SWITCHING
- INSULATED: Capacitance 15pF

SUITABLE APPLICATIONS

- FREE WHEELING DIODE IN CONVERTERS AND MOTOR CONTROL CIRCUITS
- RECTIFIER IN S.M.P.S.

ABSOLUTE RATINGS (limiting values)

Symbol	² a neter	Value	Unit		
I _{FRM}	Repetive Peak Fo.ward Current	t _p ≤ 10μs	500	Α	
I _{F (RMS)}	RMS Forward Chire.it	50	Α		
I _{F (AV)} Average ^r or yard Current		$T_c = 60^{\circ}C$ $\delta = 0.5$	30	А	
I _{FSM}	Surge non Repetitive Forward Current	t _p = 10ms Sinusoidal	350	А	
CD.	Power Dissipation	T _c = 60°C	50	W	
T _{stg} T _j	Storage and Junction Temperature Range		- 40 to + 150 - 40 to + 150	°C	

Symbol	Parameter	Value	Unit
V_{RRM}	Repetitive Peak Reverse Voltage	400	V
V _{RSM}	Non Repetitive Peak Reverse Voltage	440	V

THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
R _{th (j - c)}	Junction-case	1.8	°C/W

October 1999 Ed: 1A 1/5

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

Synbol	Test Conditions			Тур.	Max.	Unit
I _R	T _j = 25°C	$V_R = V_{RRM}$			35	μΑ
	T _j = 100°C				6	mA
V _F	T _j = 25°C	I _F = 30A			1.5	V
	T _j = 100°C				1.4	

RECOVERY CHARACTERISTICS

Symbol	Test Conditions				Min.	Тур.	Max.	Unit
t _{rr}	T _j = 25°C	I _F = 1A	$di_F/dt = -15A/\mu s$	$V_R = 30V$			167	ns
		I _F = 0.5A	I _R = 1A	$I_{rr} = 0.25A$		All	50	

	1F = 0.071	IR = 177 III = 0.2377				
TURN-OFF	SWITCHING CHARACTE	ERISTICS (Without Series Inducta	incoj	Oo.		
Symbol	Tes	et Conditions	Mın.	Тур.	Max.	Unit
t _{IRM}	$di_F/dt = - 120A/\mu s$	V _{CC} = 200 V I _F = 30A			75	ns
	$di_F/dt = -240A/\mu s$	$L_p \le 0.05 \mu H$ $T_j = 100^{\circ}C$ See figure 11		50		
I _{RM}	$di_F/dt = -120A/\mu s$	002			9	Α
	di _F /dt = - 240A/μs	, O'		12		•

TURN-OFF OVERVOLTAGE COEFFICIFINT 'With Series Inductance)

Symbol	7es Conditions	Min.	Тур.	Max.	Unit
$C = \frac{V_{RP}}{V_{CC}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.3		

To evaluate the concuction losses use the following equations:

 $P = 1.1 \times I_{F(AV)} + 0.0095 I_{F}^{2}(RMS)$ $V_F = 1.1 + 0.0095 I_F$

Figur > 1 Low frequency power losses versus average current

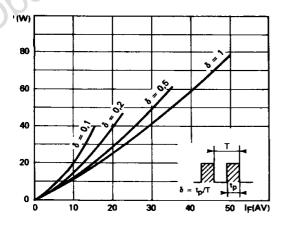


Figure 2. Peak current versus form factor

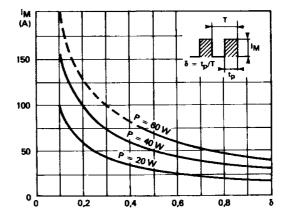


Figure 3. Non repetitive peak surge current versus overload duration

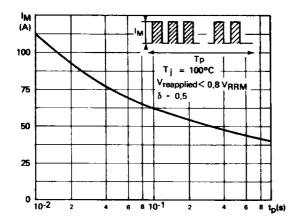


Figure 4. Thermal impedance versus pulse width

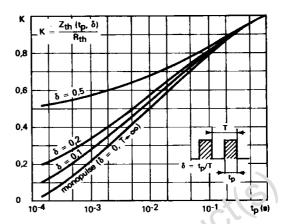


Figure 5. Voltage drop versus forward current

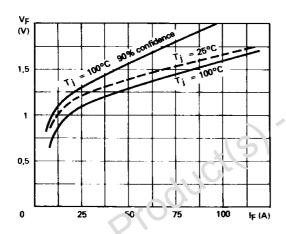


Figure 6. Recovery charge versus dif/dt-

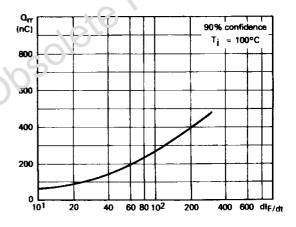


Figure 7. Necovery time versus dif/dt-

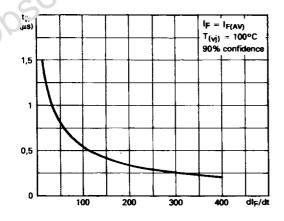
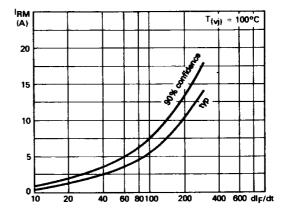



Figure 8. Peak reverse current versus di_F/d_t-

577

Figure 9. Peak forward voltage versus dir/dt-

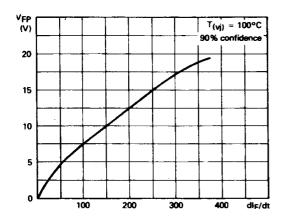


Figure 10. Dynamic parameters versus junction temperature.

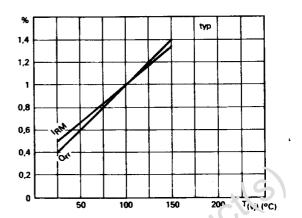
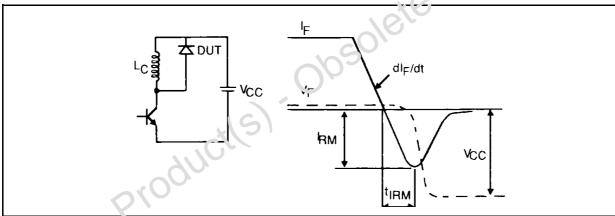
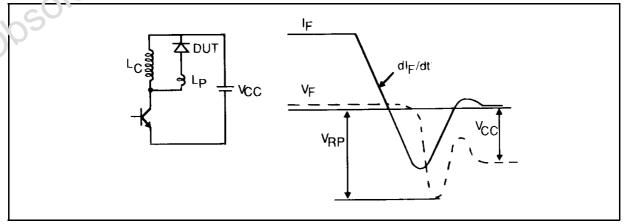
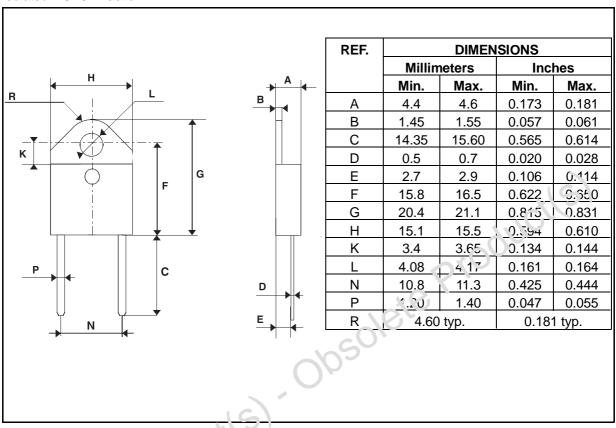


Figure 11. Turn-off switching characteristics (without series inductance).


Figure 12. Turn-off switching characteristics (with series inductance)

4/5

PACKAGE MECHANICAL DATA:

Isolated DOP3I Plastic

■ Marking: type number

■ Cooling method: by conduction (method C)

■ Weight: 4.52g

Recommended to que value: 80cm. N
Maximum forque value: 100cm. N

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1999 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com