SPDC12L00010

10 A DC-DC converter module

Features

■ Complete switch mode power supply

- 10 A max output current
- Input voltage range from 1.8 V to 14 V

■ Supply voltage range from 4.5 V to 14 V

- Fixed or adjustable output voltage range from to 0.6 V to 5 V
- Fixed frequency voltage mode control
- Ultrafast transient response
- Soft-start and inhibit
- Selectable UVLO threshold (5 V or 12 V bus)
- Master/slave synchronization with 180° phase shift
- Pre-bias start-up capability
- Selectable source/sink or source only capability after soft-start
- Power Good output with progra nmübie delay
- Overvoltage protection wiii, solectable latched/not-latched m dil
- Overcurrent pro،-tion
- Thermal shit Jown
- Operat.r.y temperature range $-40^{\circ} \mathrm{C} \div 85^{\circ} \mathrm{C}$

Applications

- Blade severs
- RfID systems
d Network routers
- Cellular base stations
- Industrial equipment
- Test instrumentation
- Medical diagnostic equipment
- Distributed point of load

Table 1. Device summary

Order code	Output voItage [V]	Input voltage [V]	Output ripple [mVpp]	Peak efficiency [\%]	Notes
SPDC12L00010	$0.6 \div 5$	$1.8 \div 14$	40	93	Progr. output voltage

Contents

1 Description 4
2 Pin settings 5
2.1 Pin connection and mechanical data (dimensions in mm) 5
2.2 Pin description 5
3 Maximum ratings 7
3.1 Absolute maximum ratings 7
3.2 Thermal data 7
3.3 Thermal de-rating 8
4 Electrical characteristics 15
4.1 Typical performance characteristics 16
5 Application information 17
5.1 Input voltage 17
5.2 Auxiliary voltage 17
5.3 Inhibit functir,I 17
5.4 Soft-stat: 18
5.5 i人itip!e units synchronization 18
5.f Power Good signal and Power Good delay 19
5.? Oscillator setting 19
5.8 Current sink-mode 19
5.9 Undervoltage lock out 20
5.10 Program setting 20
5.11 Voltage sensing 20
5.12 Output voltage programming 21
5.13 Additional loop compensation 21
5.14 Output over voltage protection 22
5.15 Current limitation 22
5.16 Thermal shutdown 23
5.17 Signal ground and power ground 23
5.18 Input capacitors 23
5.19 Output capacitors 23
5.20 Phase connection 24
6 Package mechanical data 25
6.1 Soldering 26
6.2 PCB footprint 27
7 Revision history 28

1 Description

The ST SPDC12L00010 high density 10 A DC－DC converter is a complete step－down power supply．A single LGA package includes ST switching controller，power FETs，inductor and all the support components．SPDC12L00010 operates over a wide input voltage range of 1.8 V to 14 V ，supporting an output range of 0.6 V to 5 V ．High level of integration and synchronous rectification allows the SPDC12L00010 to deliver up to 10 A continuous current at up to 93\％efficiency，without external heat sink or airflow．

The device is a complete stand alone surface mount power supply，that can be handled and assembled like a standard integrated circuit．Moreover its low profile design permits the SPDC12L00010 to be soldered onto the back side of a printed circuit board，freeing up valuable board space．

Utilizing voltage－mode control，the output voltage can be precisely regulated to as low as 0.6 V with up to $\pm 1 \%$ output voltage regulation．

SPDC12L00010 is self protected against over voltage and short cirrui．ce nditions．A built in adjustable soft－start and inhibit guarantee correct functionalitv $\ldots h i t \in v \in r$ the load is．Pre－bias start up capability is in place as well Power Good output with \uparrow－ogrammable delay to avoid false signals．

The device is packaged in a thermally enhanced，corifact（ $15 \times 15 \mathrm{~mm}$ ）and low profile（3 mm ）over molded land grid array（LGA）packaq（，suitable for automated assembly by standard surface mount equipment．The Sロг，ご2L00010 is Pb－Free and RoHS compliant．

2 Pin settings

2.1 Pin connection and mechanical data (dimensions in mm)

Figure 1. Pin connection

2.2 Pin הescription

Tàble 2. Pin description

Name	Function	Description
J11	VAUX	Auxiliary voltage. Internally regulated 5 V voltage. It is used to supply the internal drivers and the voltage reference.
K11	OS	Oscillator set. Connecting a resistor from this pin to SGND or to VAUX, the switching frequency can be increased or decreased. In OVP status the pin is pulled to 4.5 V (latched mode only).
L2	VSENSE	Voltage sense. Using this pin it is possible to recover the voltage drop on Vout track.
L3	VCC	VCC. Controller voltage supply pin. The operative voltage range for the internal controller is 4.5 V to 14 V

Table 2. Pin description (continued)

Name	Function	Description
L4	PG	Power Good. This pin is an open collector output, with a $10 \mathrm{k} \Omega$ pull-up resistor connected to VAUX. It is pulled low if the output voltage is not within specified thresholds (90%-110\%).
L5	PGDLY	Power Good delay. A capacitor connected between this pin and SGND, introduce a delay between the internal PG comparator and the external signal rising edge. No delay can be introduced on the falling edge of PG signal.
L6	SYNC	Synchronization. This is the master/slave pin. Two or more devices can be synchroni $\quad \in \boldsymbol{d}$ connecting the SYNC pins together.
L7	PRG	Program. This pin allows following settings: - Enable/disable the current sink mode capabili v = itt ${ }^{r}$ soft-start; - Enable/disable the OVP latch mode; - Setting UVLO threshold for 5 V or 12 Vin:
L8	SGND	Signal ground. All references are referred to hesi pins, internally connected to PGND.
L9	FB	Feed-back. This pin is connected に ine error amplifier inverting input.
L10	COMP	Compensat:on. This p ㄱ is csinected to the error amplifier output.
L11	SS : i^{\prime}	Scfi start_inhibit low 7i:e soft-start time is programmed connecting an external capacitor from this pin to SGND; This pin can be used to inhibit the module.
$3 a n l .1$	VIN	DC input voltage. See Section 5.18 on page 23 for mandatory condition.
Bank 2	PGND	Return for input/output voltage source.
Bank 3	VOUT	Regulated power output. See Section 5.19 on page 23 for mandatory condition.
Bank 4	PH	Phase This pins area is foreseen for module power losses dissipation; see Section 5.20 on page 24 for details.

3 Maximum ratings

3.1 Absolute maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{K} 11}$	OS to SGND and PGND	-0.3 to 6	V
$\mathrm{~V}_{\mathrm{L} 2}$	VSENSE to SGND and PGND	-0.3 to 18	V
$\mathrm{~V}_{\mathrm{L} 3}$	VCC to SGND and PGND	-0.3 to 18	V
$\mathrm{~V}_{\mathrm{L} 4}$	PG to SGND and PGND	-0.3 to 18	V
$\mathrm{~V}_{\mathrm{L} 5}$	PGDLY to SGND and PGND	-0.3 .0 6	V
$\mathrm{~V}_{\mathrm{L} 6}$	SYNC to SGND and PGND	C 3 to 6	V
$\mathrm{~V}_{\mathrm{L} 7}$	PRG to SGND and PGND	-0.3 to 6	V
$\mathrm{~V}_{\mathrm{L} 9}$	FB to SGND and PGND	-0.3 to 6	V
$\mathrm{~V}_{\mathrm{L} 10}$	COMP to SGNG and PGND	-0.3 to 6	V
$\mathrm{~V}_{\mathrm{L} 11}$	SS_INL to SGND and PGND	-0.3 to 6	V
$\mathrm{~V}_{\mathrm{i}}$	VIN to SGND and PGND	-0.3 to 18	V
$\mathrm{~V}_{\mathrm{o}}$	VOUT to SGND and PGND	-0.3 to 18	V
I_{o}	Maximum outpu+ current		Int. limited

3.2 Thermal data

Table 4. Füble 3. Thermal data

Symıol	Parameter	Value	Unit
$\mathrm{T}_{\mathrm{STG}}$	Storage temperature range	$-40 \div 105$	${ }^{\circ} \mathrm{C}$
T_{OP}	Operating temperature range	$-40 \div 85$	${ }^{\circ} \mathrm{C}$

$3.3 \quad$ Thermal de-rating

The thermal de-rating is obtained reducing the maximum output current, to limit the module temperature to the maximum allowable value.

Since a lot of parameters affect the module power dissipation, the best way to get a precise thermal de-rating is to measure the module temperature in the final application condition.

For this purpose, the case top side must be monitored at the central point T1 (see Figure 2); the maximum temperature allowable value at T 1 is $120^{\circ} \mathrm{C}$.

Figure 2. Measurement points for thermal de-rating (top side)

All data reported in the following table s valid for free air condition and module placed on $25 \mathrm{~cm}^{2}, 4$ layers, 1.6 mm FR4 printec circ uit board.

Table 5. Thermal de-rating for Vout = 5.0 V

Symbol	Parameter	Test condition	Value	Unit
I_{0}	Output current	$\mathrm{V}_{\text {IN }}=6 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\text {IN }}=6 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	9.5	
		$\mathrm{V}_{\text {IN }}=6 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	9.0	
I_{0}	Output current	$\mathrm{V}_{\text {IN }}=8 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\text {IN }}=8 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	9.5	
		$\mathrm{V}_{\text {IN }}=8 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	9.0	
		$\mathrm{V}_{\text {IN }}=8 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	8.0	
I_{0}	Output current	$\mathrm{V}_{\text {IN }}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=60^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\text {IN }}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=65^{\circ} \mathrm{C}$	9.5	
		$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	9.9	
		$\mathrm{V}_{\text {IN }}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	8.5	
		$\mathrm{V}_{\text {IN }}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	8.0	
		$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{t}}-25 \mathrm{C}$	7.0	
I_{0}	Output curreni	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V} \mathrm{i}_{\mathrm{A}}=55^{\circ} \mathrm{C}$	10.0	A
		$\cdots \mathrm{V}=\underline{12} \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=60^{\circ} \mathrm{C}$	9.5	
		$\mathcal{V}^{\text {IN }}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=65^{\circ} \mathrm{C}$	9.0	
		$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	8.5	
		$\mathrm{V}_{\text {IN }}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	8.0	
		$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	7.5	
		$\mathrm{V}_{\text {IN }}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	6.5	
I_{0}	Output current	$\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\text {IN }}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$	9.5	
		$\mathrm{V}_{\text {IN }}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=60^{\circ} \mathrm{C}$	9.0	
		$\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=65^{\circ} \mathrm{C}$	8.5	
		$\mathrm{V}_{\text {IN }}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	8.0	
		$\mathrm{V}_{\text {IN }}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	7.5	
		$\mathrm{V}_{\text {IN }}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	6.5	
		$\mathrm{V}_{\text {IN }}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	5.5	

Table 6. \quad Thermal de-rating for Vout $=3.3 \mathrm{~V}$

Symbol	Parameter	Test condition	Value	Unit
Io	Output current	$\mathrm{V}_{\text {IN }}=6 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\text {IN }}=6 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	9.5	
		$\mathrm{V}_{\text {IN }}=6 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	8.5	
I_{0}	Output current	$\mathrm{V}_{\text {IN }}=8 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\text {IN }}=8 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	9.5	
		$\mathrm{V}_{\text {IN }}=8 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	9.0	
		$\mathrm{V}_{\text {IN }}=8 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	8.0	
I_{0}	Output current	$\mathrm{V}_{\text {IN }}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=65^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\text {IN }}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	9.5	
		$\mathrm{V}_{\text {IN }}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	9.9	
		$\mathrm{V}_{\text {IN }}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	8.0	
		$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	7.5	
I_{0}	Output current	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{t}}-\mathrm{cos}^{\text {C }}$	10.0	A
		$V_{\text {IN }}=12 \mathrm{~V} i_{\text {A }}=65^{\circ} \mathrm{C}$	9.5	
		$\xrightarrow{ } \mathrm{V}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	9.0	
		$\mathcal{V}_{\text {IN }}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	8.5	
		$\mathrm{V}_{\text {IN }}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	7.5	
		$\mathrm{V}_{\text {IN }}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	7.0	
	Output current	$V_{\text {IN }}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=60^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\text {IN }}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=65^{\circ} \mathrm{C}$	9.5	
		$\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	9.0	
		$\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	8.5	
		$V_{\text {IN }}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	7.0	
		$\mathrm{V}_{\text {IN }}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	6.5	

Table 7. \quad Thermal de-rating for Vout $=2.5 \mathrm{~V}$

Symbol	Parameter	Test condition	Value	Unit
I_{0}	Output current	$\mathrm{V}_{\text {IN }}=6 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\text {IN }}=6 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	9.5	
		$\mathrm{V}_{\text {IN }}=6 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	9.0	
I_{0}	Output current	$\mathrm{V}_{\text {IN }}=8 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\text {IN }}=8 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	9.5	
		$\mathrm{V}_{\text {IN }}=8 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	9.0	
		$\mathrm{V}_{\text {IN }}=8 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	8.5	
I_{0}	Output current	$\mathrm{V}_{\text {IN }}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	9.5	
		$\mathrm{V}_{\text {IN }}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	9.9	
		$\mathrm{V}_{\text {IN }}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	8.5	
I_{0}	Output current	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=65^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{H}}, 0 \mathrm{C}$	9.5	
		$V_{\text {IN }}=12 \mathrm{~V} \mathrm{i}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	9.0	
		$\xrightarrow{ } \mathrm{V}=\underline{15} \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	8.5	
		$\mathcal{V}_{\text {IN }}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	8.0	
I_{0}		$\mathrm{V}_{\text {IN }}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=60^{\circ} \mathrm{C}$	10.0	A
	\times	$\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=65^{\circ} \mathrm{C}$	9.5	
	ct current	$\mathrm{V}_{\text {IN }}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	9.0	
		$\mathrm{V}_{\text {IN }}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	8.5	
		$\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	8.0	
		$\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	7.5	

Table 8. Thermal de-rating for Vout $=1.8 \mathrm{~V}$

Symbol	Parameter	Test condition	Value	Unit
Io	Output current	$\mathrm{V}_{\text {IN }}=6 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\text {IN }}=6 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	9.5	
		$\mathrm{V}_{\text {IN }}=6 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	8.5	
Io	Output current	$\mathrm{V}_{\text {IN }}=8 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\text {IN }}=8 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	9.5	
		$\mathrm{V}_{\text {IN }}=8 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	9.0	
		$\mathrm{V}_{\text {IN }}=8 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	8.5	
I_{0}	Output current	$\mathrm{V}_{\text {IN }}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\text {IN }}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	9.5	
		$\mathrm{V}_{\text {IN }}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	9.7	
		$\mathrm{V}_{\text {IN }}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	8.5	
I_{0}	Output current	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=65^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\text {IN }}=12 \mathrm{~V} \mathrm{~T}_{\text {I }}, 0 \mathrm{C}$	9.5	
		$\mathrm{V}_{\text {IN }}=12 \mathrm{~V} \mathrm{I}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	9.0	
		$V \mathrm{~V}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	8.5	
		$\mathcal{V}_{\text {IN }}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	8.0	
I_{0}	Outc it surrent	$\mathrm{V}_{\text {IN }}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=65^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\text {IN }}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	9.5	
		$\mathrm{V}_{\text {IN }}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	9.0	
		$\mathrm{V}_{\text {IN }}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	8.5	
		$\mathrm{V}_{\text {IN }}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	7.5	

Table 9. \quad Thermal de-rating for Vout $=1.2 \mathrm{~V}$

Symbol	Parameter	Test condition	Value	Unit
I_{0}	Output current	$\mathrm{V}_{\text {IN }}=6 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\text {IN }}=6 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	9.5	
		$\mathrm{V}_{\text {IN }}=6 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	9.0	
I_{0}	Output current	$\mathrm{V}_{\text {IN }}=8 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75{ }^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\text {IN }}=8 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	9.5	
		$\mathrm{V}_{\text {IN }}=8 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85{ }^{\circ} \mathrm{C}$	9.0	
I_{0}	Output current	$\mathrm{V}_{\text {IN }}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\text {IN }}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	9.0	
		$\mathrm{V}_{\text {IN }}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	8.5	
I_{0}	Output current	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	160	A
		$\mathrm{V}_{\text {IN }}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	9.5	
		$\mathrm{V}_{\text {IN }}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	9.0	
		$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{t}}-25 \mathrm{C}$	8.5	
I_{0}	Output current	$\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V} \mathrm{i}_{\mathrm{A}}=65^{\circ} \mathrm{C}$	10.0	A
		V , $=1 / 2 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	9.5	
		$\mathrm{V}_{\text {IN }}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	9.0	
		$\mathrm{V}_{\text {IN }}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	8.5	
		$\mathrm{V}_{\text {IN }}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	8.0	

Table 10. \quad Thermal de-rating for Vout $=0.7 \mathrm{~V}$

Symbol	Parameter	Test condition	Value	Unit
I_{0}	Output current	$\mathrm{V}_{\text {IN }}=6 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75{ }^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\text {IN }}=6 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	9.5	
		$\mathrm{V}_{\text {IN }}=6 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	9.0	
I_{0}	Output current	$\mathrm{V}_{\text {IN }}=8 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\text {IN }}=8 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	9.5	
		$\mathrm{V}_{\text {IN }}=8 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	9.0	
Io	Output current	$\mathrm{V}_{\text {IN }}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	10.0	A
		$\mathrm{V}_{\text {IN }}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	9.0	
		$\mathrm{V}_{\text {IN }}=10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	8.5	
I_{0}	Output current	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	110	A
		$\mathrm{V}_{\text {IN }}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	9.5	
		$\mathrm{V}_{\text {IN }}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	9.0	
		$\mathrm{V}_{\text {IN }}=12 \mathrm{~V} \mathrm{~T}_{\mathrm{t}}-25 \mathrm{C}$	8.5	
I_{0}	Output current	$V_{\text {IN }}=14 \mathrm{~V} \mathrm{I}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	10.0	A
		$\checkmark \mathrm{V}=1 / \mathrm{V} \mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	9.0	
		$\mathrm{V}_{\text {IN }}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	8.5	
		$\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	8.0	

4 Electrical characteristics

Table 11. Electrical characteristics

Symbol	Parameter	Test condition	Min	Typ	Max	Unit
V_{r}	Ripple voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~A}, \\ & \mathrm{C}_{\mathrm{O}}=2 \times 330 \mu \mathrm{~F} \\ & \mathrm{BW}=20 \mathrm{MHz} \end{aligned}$		40		mVpp
I_{0}	Output current	$\mathrm{V}_{\text {IN }}=1.8 \div 14 \mathrm{~V}$	0		10	A
I_{0}	Current limit	$\mathrm{V}_{\text {IN }}=1.8 \div 14 \mathrm{~V}$		12		A
I_{q}	Total quiescent current	$\mathrm{V}_{C C}=12 \mathrm{~V}, \mathrm{I}_{0}=0 \mathrm{~A}$		65		mi
$\mathrm{I}_{\text {qst-by }}$	Total stand-by quiescent current	$\mathrm{V}_{\text {SS_INL }}<0.5 \mathrm{~V}$		5		mA
$\mathrm{I}_{\mathrm{CCq}}$	$\mathrm{V}_{\text {CC }}$ quiescent current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}, \\ & \mathrm{OS}=\text { open, } \mathrm{V}_{\mathrm{SS} \text { _INL }}>0.5 \mathrm{~V} \end{aligned}$		35		mA
ICCqst-by	V_{CC} stand-by quiescent current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}, \\ & \mathrm{OS}=\text { open, } \mathrm{V}_{\mathrm{SS} _\mathrm{INL}}<2.5 \mathrm{~V} \end{aligned}$		5		mA
$\mathrm{f}_{\text {s }}$	Switching frequency	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{I}=11 \mathrm{~A}, \\ & \mathrm{~T}_{\mathrm{A}}=0 \div 8, \mathrm{~J} \end{aligned}$	678	729	780	kHz
V_{FB}	Feedback voltage (Reference voltage)	$A=4 \mathrm{~J} \div 85^{\circ} \mathrm{C}$	0.593	0.6	0.605	V
$\mathrm{V}_{\text {AUX }}$	Auxiliary voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \div 14 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{AUX}}=1 \div 100 \mathrm{~mA} \end{aligned}$	4.5	5	5.5	V
$\mathrm{V}_{\text {SS_INL }}$	Inhibit threshold	Device OFF			0.5	V
$\mathrm{I}_{\text {SS_INL }}$	Soft-start curren	$\mathrm{V}_{\text {SS_INL }}=2 \mathrm{~V}$	7	10	13	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {SS_INL }}=0 \div 0.5 \mathrm{~V}$	20	30	45	
V_{PG}	Power Goo' voltage low	$\mathrm{I}_{\mathrm{PG}}=-5 \mathrm{~mA}$		0.5		V
$\mathrm{V}_{\text {PGhth }}$	Fen ?r Good high threshold ($\mathrm{V}_{\mathrm{FB}} / 0.6$)	V_{FB} rising	108	110	112	\%
$\mathrm{V}_{\mathrm{PG} \text {. }}$	Power Good low threshold ($\mathrm{V}_{\mathrm{FB}} / 0.6$)	$V_{F B}$ falling	88	90	92	\%
C'ovinth	Overvoltage high threshold ($\left.\mathrm{V}_{\mathrm{FB}} / 0.6\right)$	V_{FB} rising		120		\%
$\mathrm{V}_{\text {OVIth }}$	Overvoltage low threshold ($\left.\mathrm{V}_{\mathrm{FB}} / 0.6\right)$	V_{FB} falling		117		\%
$\mathrm{V}_{\text {cConth }}$	$\mathrm{V}_{\text {CC }}$ turn-on threshold	5 V BUS, $\mathrm{V}_{\text {IN }}>1.7 \mathrm{~V}$	4.0	4.2	4.4	V
		$12 \mathrm{~V} \mathrm{BUS}, \mathrm{~V}_{\text {IN }}>1.7 \mathrm{~V}$	8.3	8.6	8.9	
$\mathrm{V}_{\text {cCoffth }}$	V_{CC} turn-off threshold	5 V BUS, $\mathrm{V}_{\text {IN }}>1.7 \mathrm{~V}$	3.6	3.8	4.0	V
		12 V BUS, $\mathrm{V}_{\text {IN }}>1.7 \mathrm{~V}$	7.4	7.7	8.0	
$\mathrm{V}_{\text {INhth }}$	$\mathrm{V}_{\text {IN }}$ high threshold	$\mathrm{V}_{\text {IN }}$ rising	1.1	1.25	1.47	V
$\mathrm{V}_{\text {INIth }}$	$\mathrm{V}_{\text {IN }}$ low threshold	$\mathrm{V}_{\text {IN }}$ falling	0.9	1.05	1.27	V

4.1 Typical performance characteristics

Figure 3. Efficiency versus load current with $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$ ($\mathrm{V}_{\mathrm{IN}}=6 \mathrm{~V}$ for 5 Vout)

Figure 4. Efficiency versus load current with $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$

5 Application information

$5.1 \quad$ Input voltage

There are two voltage supply pins:
VCC (pin L3), for controller voltage supply;
VIN (bank 1), for power circuit voltage supply.
VCC and VIN can be connected and supplied together;
if VIN is lower than 4.5 V , VCC must be supplied separately.
The recommended maximum operating DC input voltage is 14 V .

5.2 Auxiliary voltage

VAUX (pin J11) pin must be used to supply PRG and OS setting re.is ors.
No capacitor is required.

5.3 Inhibit function

SS_INL (pin L11) allows putting the devire ir stand-by mode.
With SS_INL lower than 0.5 V , the devive is disabled and the current consumption is reduced to 5 mA , for $\mathrm{VIN}=12 \%$

With SS_INL higher tha- $C .5$ the device is enabled.
Since SS_INL has sitt-siart function, it is mandatory to implement the inhibit function using an open collect or tevice (i.e. small signal transistor), to not influence the module behavior (see Ficuure, ज).

Fiřure i. Inhibit function

5.4 Soft-start

The soft-start phase begins when both VCC and VIN raise above their turn-on thresholds, otherwise the SS_INL pin is internally shorted to SGND.

A ramp is generated at SS_INL pin during start-up, charging the external capacitor $\mathrm{C}_{\text {SS }}$ with an internal current generator.
The initial value for this current is $30 \mu \mathrm{~A}$ and it charges the capacitor up to 0.5 V , after that, it is reduced to $10 \mu \mathrm{~A}$ until the final charge value approximately 4 V .

In the meanwhile, the controller internal voltage reference raises to its final value, following the SS_INL pin voltage slope.

During soft-start, the module provides a constant current protection, limiting the output current at the maximum value, without entering in HICCUP mode.

If there is not current limitation, the output voltage slope follows the SS_INL piri sinde.
The output voltage rise time, can be set choosing proper $\mathrm{C}_{S S}$ value.
The soft-start phase ends when the SS_INL pin voltage reaches 3. j 1
A capacitor $\mathrm{C}_{S S}=33 \mathrm{nF}$ is present on the module, to perforn a minimum soft-start time, suitable for $\mathrm{Co}=10000 \mu \mathrm{~F}$ max. output capacitor;
in this condition and with 10 A output current resisin: iOad, the output voltage rise time is around 5 ms , but the complete soft-start time is iro ind 10 ms .

Using the minimum output capacitor $\mathrm{C}_{v}=665 \mu \mathrm{~F}$ and with 10 A resistor load, the output voltage rise time is around 2 ms .

5.5 Multiple units syriceronization

Using more than cne unit on the same circuit, it is possible to synchronize the switching frequency osnilat :rs, connecting all SYNC (pin L6) together.

The devise win the higher switching frequency will be the Master, while the other will be the Slaves.

The oest way to synchronize two or more devices is to set same switching frequency, in any case, the switching frequencies can differ for a maximum of 50% of the lowest one.

Using and external clock signal, to synchronize one or more devices working at a different switching frequency, it is recommended to follow the below formula:

$$
\mathrm{f}_{\mathrm{sw}} \leq \mathrm{f}_{\mathrm{ext}} \leq 1.3 \mathrm{f}_{\mathrm{sw}}
$$

The phase shift between master and slaves is approximately 180°.

5.6 Power Good signal and Power Good delay

The output voltage is monitored by FB (pin L9), if it is not within $\pm 10 \%$ (typ.) of the programmed value, the PG (pin L4) output is forced low.

The PG signal can be delayed by adding an external capacitor on PGDLY (pin L5), the delay can be calculated with the following formula:

$$
P G_{\text {delay }}=0.5 \times C_{P G D L Y}(\mathrm{pF})[\mu \mathrm{s}]
$$

5.7 Oscillator setting

The switching frequency is internally fixed to 729 kHz , this value can be slightly varied using an external resistor R_{OS} connected between OS (pin K11) and SGND (L8) or VAUX (p :n J11).

Since the OS pin is maintained at fixed voltage (typ. 1.2), the frequency is increased/decreased proportionally to the current sunk/sourced from/irii ihe pin.
 formula:

$$
\mathrm{f}_{\mathrm{SW}}=729+\left(9.88 \div 10^{\circ} \div / \mathrm{F}_{\mathrm{OS}}\right)[\mathrm{kHz}]
$$

Connecting R_{OS} to VAUX the frequer cy is, leduced according to the following formula:

$$
\mathrm{I}_{\mathrm{S} w}=729-\left(30.1 \times 10^{6} / \mathrm{R}_{\mathrm{OS}}\right)[\mathrm{kHz}]
$$

5.8 Curie:t sink-mode

(wirecting a proper resistor (see par. Section 5.10 on page 20) from PRG (pin L7) to VAUX (p in J 11), it is possible to select the sink-mode operation, that means to allow the output current to reverse its polarity into the converter output inductor.

If the sink-mode is enabled, the converter can sink current from the load after soft-start;
If the sink-mode is disabled, the converter never sinks current.
Note: \quad When output low current operation is required (lout < 2 A), sink-mode operation is recommended, this condition improves output voltage transient response and reduces output voltage ripple.

5.9 Undervoltage lock out

Connecting a proper resistor (see par. Section 5.10) from PRG (pin L7) to VAUX (pin J11), it is possible to select two different thresholds for UVLO:
4.2 V/3.8 V for 5 V input range;
8.6 V/7.7 V for 12 V input range.

5.10 Program setting

Connecting a resistor from PRG (pin L7) to VAUX (pin J11), it is possible to select different operation modes, according to the following table:

Table 12. Program setting

$\mathrm{R}_{\text {PRG }}$	UVLO.	OVP	Si.k-mode
n.c.	5 V range	Not latched	Not
$11 \mathrm{k} \Omega$		Not latched	Yes
$6.2 \mathrm{k} \Omega$		Latches	Not
$4.3 \mathrm{k} \Omega$		Latthed	Yes
$2.7 \mathrm{k} \Omega$	12 V range	\wedge or latched	Not
$1.8 \mathrm{k} \Omega$		Not latched	Yes
$1.2 \mathrm{k} \Omega$		Latched	Not
0Ω		Latched	Yes

5.11 Voltage ser.sing

Using VミENミF (pin L2) it is possible to recover the voltage drop on VOUT PCB track.
Connec: VSENSE in a point closed to the load (see Figure 6).
Lising VSENSE connection, it will not recover the voltage drop on PGND PCB track.
Leaving VSENSE floating, the output voltage will be sensed at VOUT (bank 3) but its value will be affected by an error, due to an internal resistor connected between VSENSE and VOUT.

This error can reach $+4.7 \%$, depending on output voltage value, therefore it is advisable to use VSENSE pin.

Figure 6. Voltage sensing

5.12 Output voltage programming

Adding a resistor Rx between FB (pin L9) and SGND (L8) or between FB and $\sqrt{\text { SENSE (}}$ (pin L2), it is possible to change the output voltage.

Connecting the resistor to SGND the output voltage increase (see Fivire 7 a);
Connecting the resistor to VSENSE the output voltage decre, as; (:ee Figure 7 b).
Calculate the resistor for increasing output voltage with the following formula:
$\mathrm{R}_{\mathrm{x}}=0.6 /\left(\mathrm{V}_{\text {OUT }}-1.2\right) \quad[k \Omega] \quad$ valid for $\mathrm{V}_{\text {OUT }}>1 . 亡 \mathrm{l}$ '
Calculate the resistor for decreasing output vorase with the following formula:
$\mathrm{R}_{\mathrm{x}}=\left(\mathrm{V}_{\text {OUT }}-0.6\right) /\left(1.2-\mathrm{V}_{\mathrm{OUT}}\right)[\mathrm{k} \Omega]$ valit $\mathrm{s}, 0.6<\mathrm{V}_{\text {OUT }}<1.2 \mathrm{~V}$
The module output voltage is 1.2 V with $\mathrm{R}_{\mathrm{x}}=$ n.c.
Figure 7. Output vo'tane rrogramming

5.13 Additional loop compensation

If required by particular load condition, it is possible to change the feedback loop compensation, adding a pole with an external R-C network between FB (pin L9) and COMP (pin L10) (see Figure 8 a), or adding a zero with an external R-C network between FB and VSENSE (pin L2) (see Figure 8 b).

Figure 8．Additional loop compensation

5．14 Output over voltage protection

The device provides OVP：
when the voltage sensed on FB（pin L9）reaches a value gre？．e．inar： 20% of reference，the on module low side driver is turned ON and the converter stop switching operation．

If the OVP not latched mode has been set，the on modu＇e ${ }^{\prime}$ rw side MOSFET is kept ON，as long as the over voltage condition is detected．

If OVP latched mode has been set，the low sids invSFET is turned ON and the OS（pin K 11 ）is forced high（4．5 V typ．），until ソここ s 1 oggled．
It must be taken in account that there is an electrical network between the output terminal and FB，therefore the voltage a ${ }^{+}$this pin is not a perfect replica of output voltage．

If the converter is set to sink current，the low side MOSFET could be turned ON before the output voltage exceecs the over voltage threshold（109\％typ．），because the error amplifier will change its $b={ }^{\prime} a(1) c$ in advance．
If the sink－rn $)_{1}$ ；is disabled，the low side MOSFET will be turned ON only when the OVP operaı？in this case a delay between the output voltage rising and the FB rising can appear and the OVP can operate late（126\％typ．）．

5．15 Current limitation

The device realizes the over current protection sensing the current on board high side MOSFET and on board low side MOSFET，therefore two current limits are set：
peak current limit and valley current limit．
The peak current protection is active when the high side MOSFET is turned ON，the valley current protection is enabled when the low side MOSFET is turned ON．

After soft－start is completed，if an over current occurs，the device enters in HICCUP mode： both high side and low MOSFETs are turned OFF；
the soft－start capacitor is discharged with a $10 \mu \mathrm{~A}$ constant current；
when the voltage on SS＿INL（pin L11）reaches 0.5 V the soft－start phase restart．
During the soft－start phase the OCP provides a constant current protection．

5.16 Thermal shutdown

When the controller junction temperature reaches $150 \pm 10^{\circ} \mathrm{C}$, the device shutdown.
Both MOSFET are turned OFF and the soft-start capacitor is discharged.
The device does not restart until the junction temperature goes down to $120^{\circ} \mathrm{C}$ and until the voltage on the soft-start capacitor reaches 0.5 V .

5.17 Signal ground and power ground

SGND (L8) and PGND (bank 2) are connected together on the module.
Connect to SGND the capacitor for PGDLY and SS_INL, the resistor for FB and OS.
Connect to PGND the return for SS_INL.
It is important to not create a ground loop between SGND, PGND and other $\approx N$) present on the application circuit (see Figure 9).

Figure 9. Signal ground and power ground

5.18 Input capacitors

The input capacitor present on the module is not able to sustain the input RMS current.
Connect $2 \times 2.2 \mu \mathrm{~F} 16 \mathrm{~V}$ X7R ceramic capacitor (Cin) closed to the input pins VIN and PGND (bank 1 and bank 2), to satisfy minimum functional requirement.

Connect proper low impedance capacitors to reduce the input ripple current, according to the application requirement.

5.19 Output capacitors

The output capacitors present on the module are able to sustain output RMS current.
Connect $2 \times 330 \mu \mathrm{~F}$ POSCAP SANYO capacitor (Co) or equivalent, closed to the output pins VOUT and PGND (bank 3 and bank 2), to guarantee output voltage stability and specified voltage ripple.

5.20 Phase connection

On the module bottom, there is an area relative to PH (bank 4) connection:
this area is internally connected to the high side MOSFET source and to the low side MOSFET drain;
this electrical point is used to dissipate heat generated by the two MOSFETs.
Connect PH (bank 4), to an insulated copper area on the mother board, to ensure proper heat sink.

Since the PH signal contains very fast voltage transients, it is recommended to take in account possible inducted noise on mother board, i.e.: it is advised against to lead under the module printed circuit board tracks with susceptible signals.

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

Figure 10. Package mechanical data

6.1 Soldering

Soldering phase has to be execute with care: in order to avoid undesired melting phenomenon, particular attention has to be take on the set up of the peak temperature.

Here following some suggestions for the temperature profile based on IPC/JEDEC J-STD-020C, July 2004 recommendations.

Table 13. Soldering

Profile feature	PB free assembly
Average ramp up rate ($\mathrm{T}_{\text {SMAX }}$ to TP)	$3^{\circ} \mathrm{C} / \mathrm{sec}$ max
Preheat Temperature $\min \left(\mathrm{T}_{\mathrm{S}} \mathrm{min}\right)$ Temperature max (T_{S} max) Time (t_{s} min to $\mathrm{t}_{\mathrm{s}} \max$) (t_{s})	$\begin{gathered} 150^{\circ} \mathrm{C} \\ 200^{\circ} \mathrm{C} \\ 60-100 \text { sec. } \end{gathered}$
Time maintained above: Temperature T_{L} Time t_{L}	$\begin{gathered} 2 \cdot 7 \mathrm{C} \\ 40-70 \mathrm{sec} \end{gathered}$
Peak temperature (T_{p})	$240+0^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of actual peak temperature (t_{p})	10-20 sec
Ramp down rate	$6^{\circ} \mathrm{C} / \mathrm{sec}$
Time from $25^{\circ} \mathrm{C}$ to peak temperature	8 minutes max

Figure 11. Soldering

6.2 PCB footprint

Use Figure 12 as suggested PCB footprint.
Figure 12. PCB footprint top side - through view for SPDC12L00010 (mm)

7 Revision history

Table 14. Document revision history

Date	Revision	Changes
25-Nov-2008	1	First release
19-Jan-2009	2	Updated coverpage, Chapter 3.3 on page 8
02-Sep-2009	3	Updated coverpage, Chapter 1 on page 4 and Figure 12

Please Read Carefully：

Information in this document is provided solely in connection with ST products．STMicroelectronics NV and its subsidic riss（ Si＂）reserve the right to make changes，corrections，modifications or improvements，to this document，and the products and servi，os de jcribed herein at any time，without notice．

All ST products are sold pursuant to ST＇s terms and conditions of sale．
Purchasers are solely responsible for the choice，selection and use of the ST products and services described herein，and ST assumes no liability whatsoever relating to the choice，selection or use of the ST products and services desribed herein．

No license，express or implied，by estoppel or otherwise，to any intellectual property ig it．＇s yranted under this document．If any part of this document refers to any third party products or services it shall not be deemed a ceis？grant by ST for the use of such third party products or services，or any intellectual property contained therein or considered as a war，ar，y covering the use in any manner whatsoever of such third party products or services or any intellectual property contained ther ${ }^{2}$ in．

UNLESS OTHERWISE SET FORTH IN ST＇S TERMS AND 工ONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND／nR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY，FITNFS：F Fこn A PARTICULAR PURPOSE（AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION），OR INFRINGEMENT LF ，NY PATENT，COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT．

UNLESS EXPRESSLY APPROVED IN $V_{1} \mathfrak{l}$ ING BY AN AUTHORIZED ST REPRESENTATIVE，ST PRODUCTS ARE NOT RECOMMENDED，AUTHORIZED OF w．II：ANTED FOR USE IN MILITARY，AIR CRAFT，SPACE，LIFE SAVING，OR LIFE SUSTAINING APPLICATIONS，NOR IN PROD JしTこ JR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY， DEATH，OR SEVERE PR Jr E^{\prime}＇TI CR ENVIRONMENTAL DAMAGE．ST PRODUCTS WHICH ARE NOT SPECIFIED AS＂AUTOMOTIVE GRADE＂MAY ONLY BE＂\quad sED iN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK．

Resale of $\smile \top$ ，rrsuluis with provisions different from the statements and／or technical features set forth in this document shall immediately void any war ar．${ }^{\text {ty }}$ granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever，any liabi＇ty os：${ }^{\circ}$ ．

ST and the ST logo are trademarks or registered trademarks of ST in various countries．
Information in this document supersedes and replaces all information previously supplied．
The ST logo is a registered trademark of STMicroelectronics．All other names are the property of their respective owners．
© 2009 STMicroelectronics－All rights reserved

STMicroelectronics group of companies
Australia－Belgium－Brazil－Canada－China－Czech Republic－Finland－France－Germany－Hong Kong－India－Israel－Italy－Japan－ Malaysia－Malta－Morocco－Philippines－Singapore－Spain－Sweden－Switzerland－United Kingdom－United States of America

