QUAD BILATERAL SWITCH FOR TRANSMISSION OR MULTIPLEXING OF ANALOG OR DIGITAL SIGNALS

- 15V DIGITAL OR $\pm 7.5 \mathrm{~V}$ PEAK TO PEAK SWITCHING
- 125Ω TYPICAL ON RESISTANCE FOR 15 V OPERATION
- SWITCH ON RESISTANCE MATCHED TO WITHIN 5Ω TYP. OVER 15 V SIGNAL INPUT RANGE
- ON RESISTANCE FLAT OVER FULL PEAK TO PEAK SIGNAL RANGE
- HIGH ON/OFF OUTPUT VOLTAGE RATIO: 65 dB TYP. at $\mathrm{f}_{\mathrm{IS}}=10 \mathrm{KHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega$
- HIGH DEGREE OF LINEARITY: $<0.5 \%$ DISTORTION TYP. at $\mathrm{f}_{\mathrm{IS}}=1 \mathrm{KHz}, \mathrm{V}_{\mathrm{IS}}=5 \mathrm{~V}_{\mathrm{pp}}$, $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}} \geq 10 \mathrm{~V}, \mathrm{RL}=10 \mathrm{~K} \Omega$
- EXTREMELY LOW OFF SWITCH LEAKAGE RESULTING IN VERY LOW OFFSET CURRENT AND HIGH EFFECTIVE OFF RESISTANCE: 10pA TYP. at $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
- EXTREMELY HIGH CONTROL INPUT IMPEDANCE (control circuit isolated from signal circuit $10^{12} \Omega$ typ.)
- LOW CROSSTALK BETWEEN SWITCHES:

50 dB Typ. at $\mathrm{f}_{I S}=0.9 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$

- MATCHED CONTROL - INPUT TO SIGNAL OUTPUT CAPACITANCE: REDUCES OUTPUT SIGNAL TRANSIENTS
- FREQUENCY RESPONSE SWITCH ON: 40MHz (Typ.)
- QUIESCENT CURRENT SPECIF. UP TO 20V
- 5V, 10V AND 15V PARAMETRIC RATINGS

ORDER CODES

PACKAGE	TUBE	T \& R
DIP	HCF4066BEY	
SOP	HCF4066BM1	HCF4066M013TR

- INPUT LEAKAGE CURRENT
$I_{1}=100 \mathrm{nA}(\mathrm{MAX}) A T \mathrm{~V}_{\mathrm{DD}}=18 \mathrm{~V}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- 100% TESTED FOR QUIESCENT CURRENT

DESCRIPTION

The HCF4066B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages. The HCF4066B is a QUAD BILATERAL SWITCH intended for the transmission or multiplexing of analog or digital signals.
It is pin for pin compatible with HCF4016B, but exhibits a much lower ON resistance. In addition, the ON resistance is relatively constant over the full input signal range. The HCF4066B consists of four independent bilateral switches. A single control signal is required per switch. Both the p

PIN CONNECTION

and n device in a given switch are biased ON or OFF simultaneously by the control signal. As shown in schematic diagram, the well of the n -channel device on each switch is either tied to the input when the switch is ON or to V_{SS} when the switch is OFF. This configuration eliminates the variation of the switch-transistor threshold voltage with input signal, and thus keeps the ON resistance low over the full operating signal range. The advantages over single channel switches

INPUT EQUIVALENT CIRCUIT

include peak input signal voltage swings equal to the full supply voltage, and more constant ON impedance over the input signal range. For sample and hold applications, however, the HCF4016B is recommended.

PIN DESCRIPTION

PIN N ${ }^{\circ}$	SYMBOL	NAME AND FUNCTION
$1,4,8,11$	A to D I/O	Independent Inputs/Out- puts
$2,3,9,10$	A to D O/I	Independent Outputs/ Inputs
$13,5,6,12$	CONTROL A to D	Enable Inputs
7	$\mathrm{~V}_{\text {SS }}$	Negative Supply Voltage
14	$\mathrm{~V}_{\mathrm{DD}}$	Positive Supply Voltage

TRUTH TABLE

CONTROL	SWITCH FUNCTION
H	ON
L	OFF

SCHEMATIC DIAGRAM (1 OF 4 IDENTICAL SWITCHES AND ITS ASSOCIATED CONTROL CIRCUITY)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
I_{I}	DC Input Current	± 10	mA
P_{D}	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
$\mathrm{~T}_{\mathrm{op}}$	Operating Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.
All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 to V_{DD}	V
T_{op}	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, Typical temperature coefficient for all V_{DD} value is $0.3 \% /{ }^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition		Value							Unit
		$\begin{aligned} & V_{1} \\ & (V) \end{aligned}$	$\begin{aligned} & V_{D D} \\ & (V) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$l_{\text {L }}$	Quiescent Device Current (all switches ON or all switches OFF)	0/5	5		0.01	0.25		7.5		7.5	$\mu \mathrm{A}$
		0/10	10		0.01	0.5		15		15	
		0/15	15		0.01	1		30		30	
		0/20	20		0.02	5		150		150	

SIGNAL INPUTS $\left(\mathrm{V}_{\text {IS }}\right)$ and OUTPUTS $\left(\mathrm{V}_{\text {OS }}\right)$

$\mathrm{R}_{\text {ON }}$	Resistance	$\begin{gathered} \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}} \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega \\ \text { Return to }\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right) / 2 \\ \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}} \\ \hline \end{gathered}$	5	470	1050	1200	1200 500 000	Ω
			10	180	400	500		
			15	125	240	300		
$\Delta_{\text {ON }}$	Resistance $\Delta_{\text {RON }}$ (between any 2 of 4 switches)	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}$	5	5				Ω
			10	10				
			15	15				
TDH	Total Harmonic Distortion	$\begin{aligned} & V_{C}=V_{D D}=5 \mathrm{~V}, V_{S S}=-5 \mathrm{~V} \\ & V_{I S}(p-p)=5 V, R_{L}=10 \mathrm{~K} \Omega \end{aligned}$ (sine wave centered in 0 V) $\mathrm{f}_{\mathrm{IS}}=1 \mathrm{KHz}$ sine wave		0.4				\%
	-3dB Cutoff Frequency (Switch on)	$\begin{gathered} \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \\ \mathrm{~V}_{\text {IS }}(\mathrm{p}-\mathrm{p})=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega \\ \text { (sine wave centered in } 0 \mathrm{~V} \text {) } \end{gathered}$		40				MHz
	-50dB Feedthrough Frequency (switch off)	$\begin{gathered} V_{C}=V_{S S}=-5 \mathrm{~V} \\ V_{I S}(p-p)=5 \mathrm{~V}, R_{L}=1 \mathrm{~K} \Omega \\ \text { (sine wave centered in } 0 \mathrm{~V} \text {) } \end{gathered}$		1				MHz

HCF4066B

Symbol	Parameter	Test Condition		Value							Unit
		$\begin{gathered} V_{1} \\ (V) \end{gathered}$	$\begin{aligned} & V_{D D} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
	-50dB Crosstalk Frequency	$\begin{gathered} V_{C(A)}=V_{D D}=+5 \mathrm{~V} \\ V_{C(B)}=V_{S S}=-5 \mathrm{~V} \\ V_{I S(A)}=5 \mathrm{~V}(p-p) \\ 50 \Omega \text { source, } R_{L}=1 \mathrm{~K} \Omega \end{gathered}$			8						MHz
t_{pd}	Propagation Delay Time (signal input to output)	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=200 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}} \\ \mathrm{~V}_{\mathrm{SS}}=\mathrm{GND}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{IS}}=10 \mathrm{~V} \end{gathered}$ square wave centered on 5 V $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$			20	40					ns
					10	20					
					7	15					
$\mathrm{C}_{\text {IS }}$	Input Capacitance	$\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\text {SS }}=-5$	+5		8						pF
$\mathrm{Cos}^{\text {}}$	Output Capacitance				8						
$\mathrm{C}_{\mathrm{IOS}}$	Feedthrough				0.5						
	Input/Output Leakage Current Switch OFF	$\begin{gathered} V_{\mathrm{C}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IS}}=18 \mathrm{~V}, \mathrm{~V}_{\text {OS }}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OS}}=18 \mathrm{~V} \end{gathered}$	18		$\pm 10^{-3}$	± 0.1		± 1		± 1	$\mu \mathrm{A}$
CONTROL (V_{C})											
$\mathrm{V}_{\text {ILC }}$	Control Input Low Voltage	$\begin{gathered} \left\|I_{\text {IS }}\right\|<10 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{~V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{DD}} \\ \text { and } \\ \mathrm{V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{SS}} \end{gathered}$	5			1		1		1	V
			10			2		2		2	
			15			2		2		2	
$\mathrm{V}_{\text {IHC }}$	Control Input High Voltage		5	3.5			3.5		3.5		V
			10	7			7		7		
			15	11			11		11		
1	Input Leakage Current	$\begin{gathered} V_{I S} \leq V_{D D} \\ V_{D D}-V_{S S}=18 V \end{gathered}$	18		$\pm 10^{-5}$	± 0.1		± 1		± 1	$\mu \mathrm{A}$
	Crosstalk (control input to signal output)	$\begin{gathered} \mathrm{V}_{\mathrm{C}}=10 \mathrm{~V} \text { (sq. wave) } \\ \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega \end{gathered}$	10		50						mV
	Turn - On Propagation Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD},}, \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega \end{aligned}$	5		35	70					ns
			10		20	40					
			15		15	30					
	Control Input Repetition Rate	$\begin{gathered} \mathrm{V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{GND} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega \text { to } \mathrm{GND} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{C}}=10 \mathrm{~V} \\ \text { sq. wave center on } 5 \mathrm{~V} \\ \mathrm{t}_{\mathrm{r}, \mathrm{t}}=20 \mathrm{~ns} \\ \mathrm{~V}_{\mathrm{OS}}=1 / 2 \mathrm{~V}_{\mathrm{OS}} \text { at } 1 \mathrm{KHz} \end{gathered}$	5		6						MHz
			10		9						
			15		9.5						
Cl_{1}	Input Capacitance	Any Input			5	7.5					pF

TYPICAL APPLICATIONS (BIDIRECTIONAL SIGNAL TRANSMISSION VIA DIGITAL CONTROL LOGIC)

TYPICAL APPLICATIONS (4-CHANNEL PAM MULTIPLEXER SYSTEM DIAGRAM)

TEST CIRCUIT

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$\mathrm{R}_{\mathrm{L}}=200 \mathrm{~K} \Omega$
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)
WAVEFORM: PROPAGATION DELAY TIMES (f=1MHz; 50\% duty cycle)

Plastic DIP-14 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
B	1.39		1.65	0.055		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20		0.335	
E		2.54			0.100	
e		15.24			0.600	
e3						
F			5.1			0.280
I		3.3			0.130	
L			2.54	0.050		0.100
Z	1.27					

P001A

SO-14 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.019	
c1	45° (typ.)					
D	8.55		8.75	0.336		0.344
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		7.62			0.300	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
M			0.68			0.026
S	8° (max.)					

Tape \& Reel SO-14 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			330			12.992
C	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60		22.4			
T			6.6	0.252		0.882
Ao	6.4		9.2	0.354		0.362
Bo	9		2.3	0.082		0.090
Ko	2.1		4.1	0.153		0.161
Po	3.9		8.1	0.311		0.319
P	7.9					

Note: Drawing not in scale

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners
© 2004 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com

