

1.5 A very low drop voltage regulator IC

Datasheet - production data

12 V

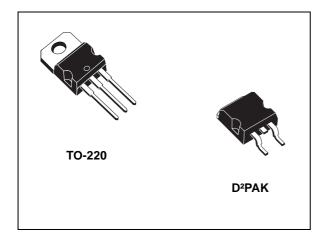


 Table 1. Ordering table

 Order codes
 Output voltages

 TO-220
 D²PAK

 L4940V5
 L4940D2T5-TR
 5 V

 L4940V85
 8.5 V

L4940D2T12-TR

Features

- Precise 5, 8.5, 12 V outputs
- Low dropout voltage (450 mV typ. at 1 A)
- · Very low quiescent current
- Thermal shutdown
- Short-circuit protection
- · Reverse polarity protection

Description

The L4940 series of three-terminal positive regulators is available in TO-220 and D²PAK packages and with several fixed output voltages, making it useful in a wide range of industrial and consumer applications. Thanks to their very low input/output voltage drop, these devices are particularly suitable for battery-powered equipment, reducing consumption and prolonging battery-life. Each type employs internal current limiting, anti-saturation circuit, thermal shutdown and safe area protection.

Contents L4940

Contents

1	Block diagram 3
2	Pin configuration4
3	Maximum ratings
4	Test circuits
5	Electrical characteristics
6	Performance characteristics 9
7	Application circuits
8	Package mechanical data
9	Packaging mechanical data
10	Revision history

L4940 Block diagram

1 Block diagram

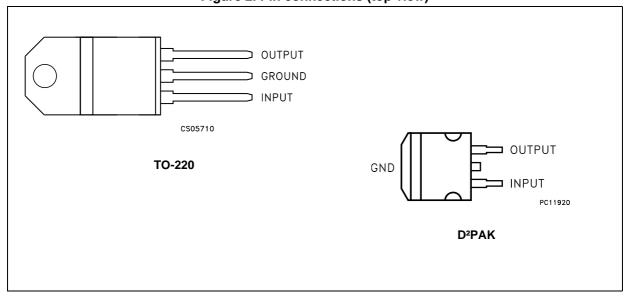

IN OUT 0 PREREGULATOR SOA PROTECT. AND & ANTISAT. PROTECTION CIRCUIT REFERENCE ERROR VOLTAGE AMPLIFIER THERMAL SHUTDOWN GND CS25740

Figure 1. Block diagram

Pin configuration L4940

2 Pin configuration

Figure 2. Pin connections (top view)

L4940 Maximum ratings

3 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parame	Value	Unit	
VI	Forward input voltage		30	V
		$V_{O} = 5 \text{ V}, R_{O} = 100 \Omega$	-15	V
V_{IR}	Reverse input voltage	$V_O = 8.5 \text{ V}, R_O = 180 \Omega$	-15	V
		$V_{O} = 12 \text{ V}, R_{O} = 240 \Omega$	-15	V
I _O	Output current		Internally limited	mA
P _D	Power dissipation		Internally limited	mW
T _{stg}	Storage temperature range		-40 to +150	°C
T _{op}	Operating junction temperature ra	nge	-40 to +150	°C

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 3. Thermal data

Symbol	Parameter	TO-220	D²PAK	Unit
R _{thJC}	Thermal resistance junction-case	3	3	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	62.5	°C/W

Test circuits L4940

4 Test circuits

Figure 3. DC parameters

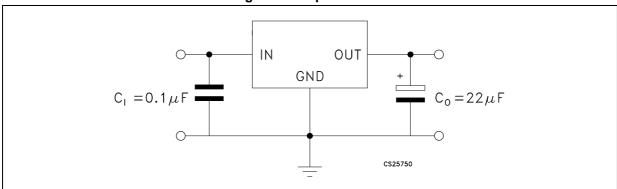


Figure 4. Load regulation

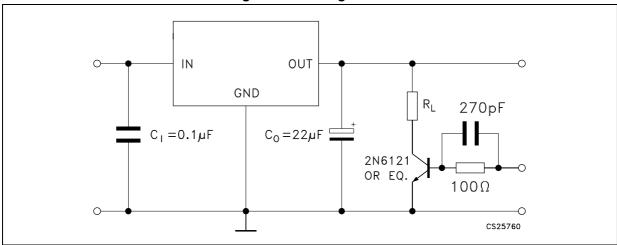
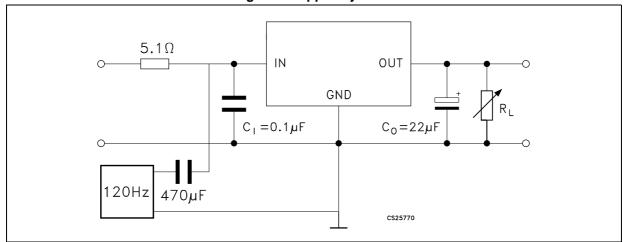



Figure 5. Ripple rejection

5 Electrical characteristics

Refer to test circuit, V_I = 7 V, C_I = 0.1 μ F, C_O = 22 μ F, T_J = 25 $^{\circ}$ C, unless otherwise specified.

Table 4. L4940#5 electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	I _O = 500 mA	4.9	5	5.1	V
Vo	Output voltage	$I_O = 5 \text{ mA to } 1.5 \text{ A}, V_I = 6.5 \text{ to } 15 \text{ V}$	4.8	5	5.2	V
VI	Maximum input voltage	I _O = 5 mA			17	V
ΔV_{O}	Line regulation	V _I = 6 to 17 V, I _O = 5 mA		4	10	mV
41/	Load regulation	I _O = 5 mA to 1.5 A		8	25	mV
ΔV_{O}	Load regulation	I _O = 0.5 A to 1 A		5	15	mV
	I _q Quiescent current	I _O = 5 mA		5	8	mA
'q		I _O = 1.5 A, V _I = 6.5 V		30	50	mA
41	0: 1	I _O = 5 mA			3	mA
Δl_q	Quiescent current change	I _O = 1.5 A, V _I = 6.5 to 16 V			15	mA
$\Delta V_{O} / \Delta T$	Output voltage drift			0.5		mV/°C
SVR	Supply voltage rejection	f = 120 Hz, I _O = 1 A	58	68		dB
V	Dronout voltage	I _O = 0.5 A		200	400	mV
V_d	Dropout voltage	I _O = 1.5 A		500	900	mV
	Short-circuit current	V _I = 14 V		2	2.7	А
I _{sc}	Short-circuit current	V _I = 6.5 V		2.2	2.9	A

Refer to test circuit, V_I = 10.5 V, C_I = 0.1 μ F, C_O = 22 μ F, T_J = 25 °C, unless otherwise specified.

Table 5. L4940#85 electrical characteristics

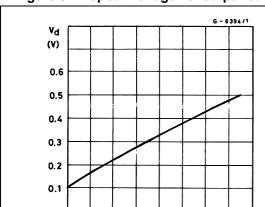
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	I _O = 500 mA	8.3	8.5	8.7	V
Vo	Output voltage	$I_O = 5 \text{ mA to } 1.5 \text{ A}, V_I = 10.2 \text{ to } 15 \text{ V}$	8.15	8.5	8.85	V
VI	Maximum input voltage	I _O = 5 mA			17	V
ΔV _O	Line regulation	$V_{I} = 9.5 \text{ to } 17 \text{ V}, I_{O} = 5 \text{ mA}$		4	9	mV
4)/	Load regulation	I _O = 5 mA to 1.5 A		12	30	mV
ΔV _O	Load regulation	I _O = 0.5 A to 1 A		8	16	mV
	Quiescent current	I _O = 5 mA		4	8	mA
I _q	Quiescent current	I _O = 1.5 A, V _I = 10.2 V		30	50	mA
Δl_q	Quiescent current change	I _O = 5 mA			2.5	mA
	Quiescent current change	I _O = 1.5 A, V _I = 10.2 to 16 V			15	mA

Electrical characteristics L4940

Table 5. L4940#85 electrical characteristics (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$\Delta V_{O} / \Delta T$	Output voltage drift			0.8		mV/°C
SVR	Supply voltage rejection	f = 120 Hz, I _O = 1 A	58	66		dB
\/	Dropout voltage	I _O = 0.5 A		200	400	mV
V _d		I _O = 1.5 A		500	900	mV
	Short-circuit current	V _I = 14 V		2	2.7	Α
I _{SC}	Short-circuit current	V _I = 10.2 V		2.2	2.9	A

Refer to test circuit, V $_I$ = 14 V, C $_I$ = 0.1 $\mu F,$ C $_O$ = 22 $\mu F,$ T $_J$ = 25 °C, unless otherwise specified.


Table 6. L4940#12 electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	I _O = 500 mA	11.75	12	12.25	V
Vo	Output voltage	$I_O = 5 \text{ mA to } 1.5 \text{ A}, V_I = 13.8 \text{ to } 15 \text{ V}$	11.5	12	12.5	V
VI	Maximum input voltage	I _O = 5 mA			17	V
ΔV_{O}	Line regulation	$V_{I} = 13 \text{ to } 17 \text{ V}, I_{O} = 5 \text{ mA}$		3	7	mV
A\/ .	Load regulation	I _O = 5 mA to 1.5 A		15	35	mV
ΔV _O	Load regulation	I _O = 0.5 A to 1 A		10	25	mV
	I _q Quiescent current	I _O = 5 mA		4	8	mA
l d		I _O = 1.5 A, V _I = 13.8 V		30	50	mA
41	Quiescent current change	I _O = 5 mA			1.5	mA
Δl_q	Quiescent current change	I _O = 1.5 A, V _I = 13.8 to 16 V			10	mA
$\Delta V_{O}/\Delta T$	Output voltage drift			1.2		mV/°C
SVR	Supply voltage rejection	f = 120 Hz, I _O = 1 A	55	61		dB
\/	Drangut valtage	I _O = 0.5 A		200	400	mV
V _d Dropout voltage	Diopout voltage	I _O = 1.5 A		500	900	mV
I _{sc}	Short-circuit current	V _I = 14 V		2	2.7	Α
Z _O	Output impedance	f = 120 Hz, I _O = 0.5 A		40		mΩ

0

6 Performance characteristics

Figure 6. Dropout voltage vs. output current

0.2 0.4 0.6 0.8 1

Figure 7. Dropout voltage vs. temperature

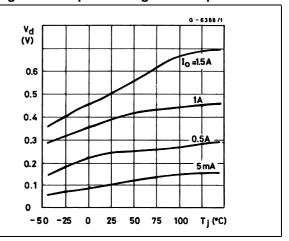


Figure 8. Output voltage vs. temperature (L4940V5)

Io (A)

Figure 9. Output voltage vs. temperature (L4940V85)

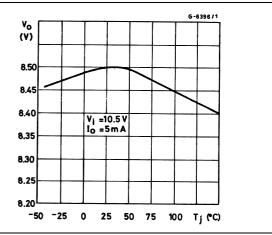
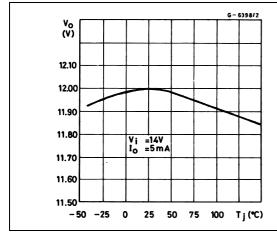
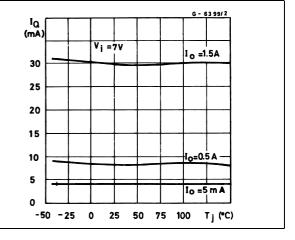




Figure 10. Output voltage vs. temperature (L4940V12)

Figure 11. Quiescent current vs. temperature (L4940V5)

47/

Figure 12. Quiescent current vs. input voltage Figure 13. Quiescent current vs. output current (L4940V5) (L4940V5)

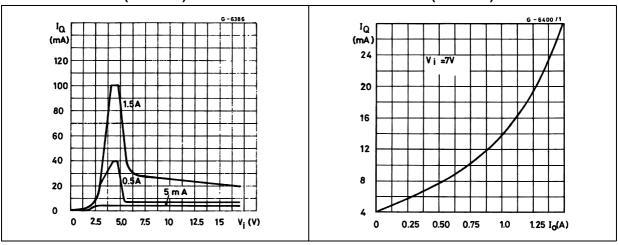


Figure 14. Short-circuit current vs. temperature Figure 15. Peak output current vs. input/output (L4940V5) differential voltage (L4940V5)

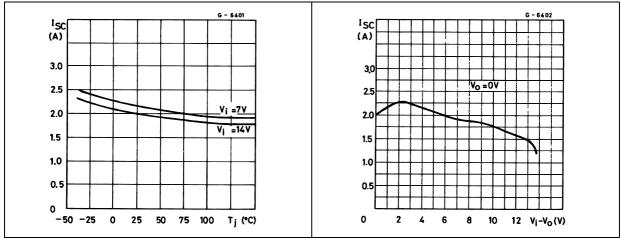
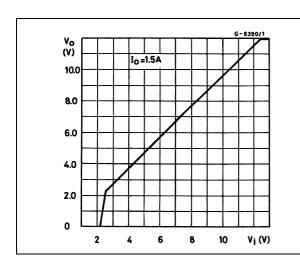



Figure 16. Low voltage behavior (L4940V5) Figure 17. Low voltage behavior (L4940V85) G - 639271 ۷₀ (۷) ν_ο (۷) I_O = 1.5 A 5 I_o =1.5 A 8 7 4 6 3 5 4 2 3 2 1 0 5 V_i(V) 0 2 3 4 5 6 7 V_i (V)

Figure 18. Low voltage behavior (L4940V12)

Figure 19. Supply voltage rejection vs. frequency (L4940V5)

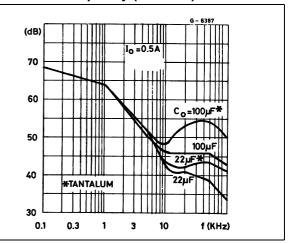
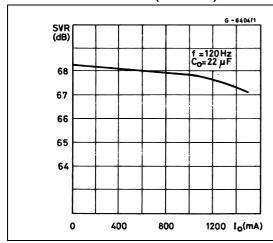



Figure 20. Supply voltage rejection vs. output Figure 21. Load dump characteristics (L4940V5) current (L4940V5)

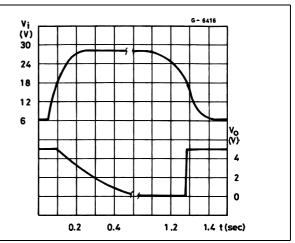
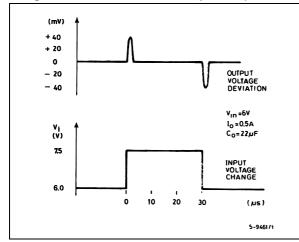



Figure 22. Line transient response (L4940V5)

Figure 23. Total power dissipation

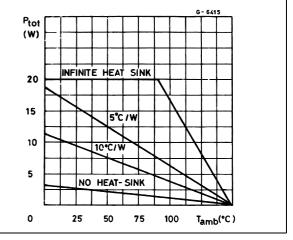
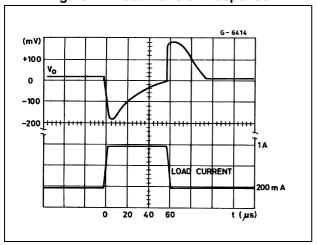



Figure 24. Load transient response

L4940 Application circuits

7 Application circuits

Figure 25. Distributed power supply with the L4960, L4940 and the L4941

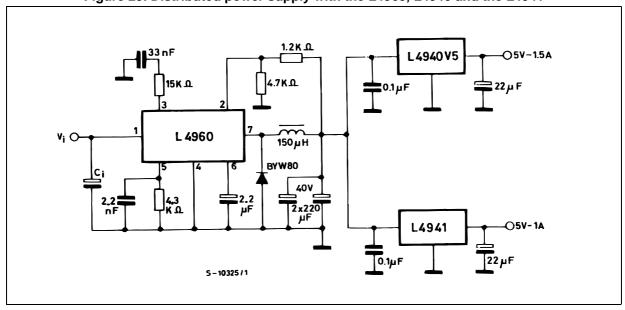
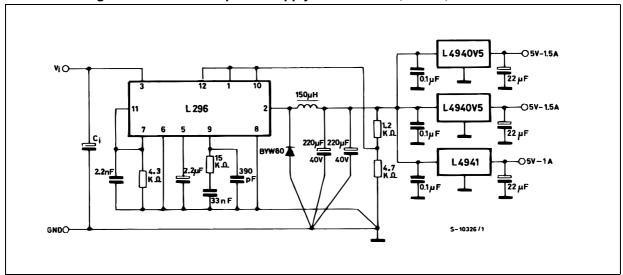



Figure 26. Distributed power supply with the L296, L4940, and the L4941

Note: Advantages of these applications are:

On-card regulation with short-circuit and thermal protection on each output. Very high total system efficiency due to the switching pre-regulation and very low drop post-regulation.

Application circuits L4940

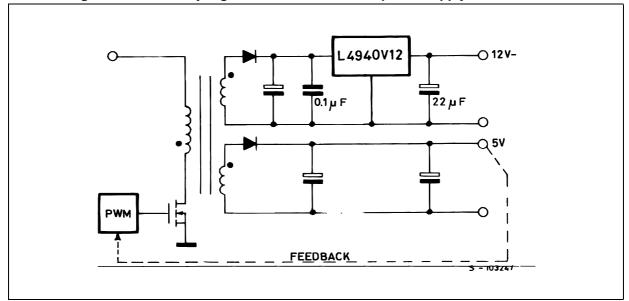


Figure 27. Secondary regulation for switch mode power supply with the L4940

Note: Advantages of this configuration are:

Very high regulation (line and load on both the output voltage. 12 V output short-circuit and thermal protection. Very high efficiency on the 12 V output due to the low drop regulator.

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 7. TO-220 mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	0.51		0.60
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

øΡ Ξ Γ 2 J1 Gate Note 9-10 b1 (x3) С b (x3) e1 8174627_revD

Figure 28. TO-220 drawings

Table 8. D²PAK mechanical data

		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50		
E	10		10.40
E1	8.50		
е		2.54	
e1	4.88		5.28
Н	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

Figure 29. D²PAK drawings

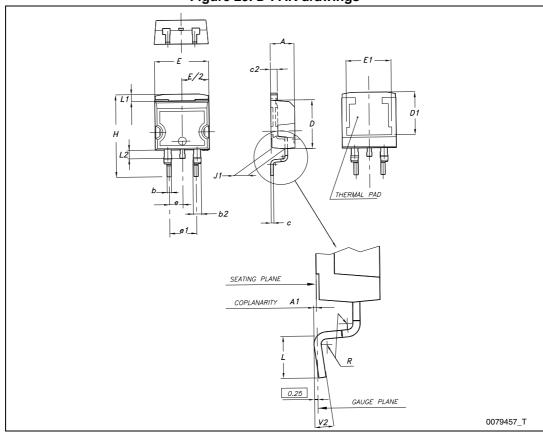
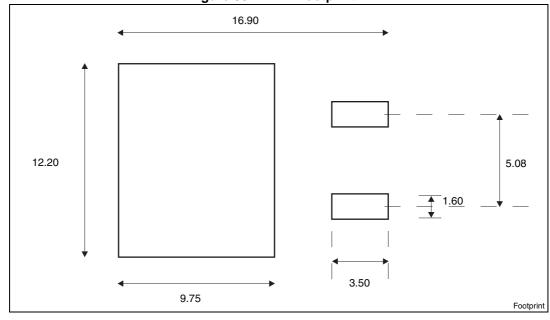



Figure 30. D²PAK footprint^(a)

a. All dimensions are in millimeters.

9 Packaging mechanical data

Table 9. D²PAK tape and reel mechanical data

	Таре			Reel		
Dim	mm		Dim	mm		
Dim.	Min.	Max.	Dim.	Min.	Max.	
Α0	10.5	10.7	А		330	
В0	15.7	15.9	В	1.5		
D	1.5	1.6	С	12.8	13.2	
D1	1.59	1.61	D	20.2		
Е	1.65	1.85	G	24.4	26.4	
F	11.4	11.6	N	100		
K0	4.8	5.0	Т		30.4	
P0	3.9	4.1				
P1	11.9	12.1		Base qty	1000	
P2	1.9	2.1		Bulk qty	1000	
R	50					
Т	0.25	0.35				
W	23.7	24.3				

Figure 31. Tape

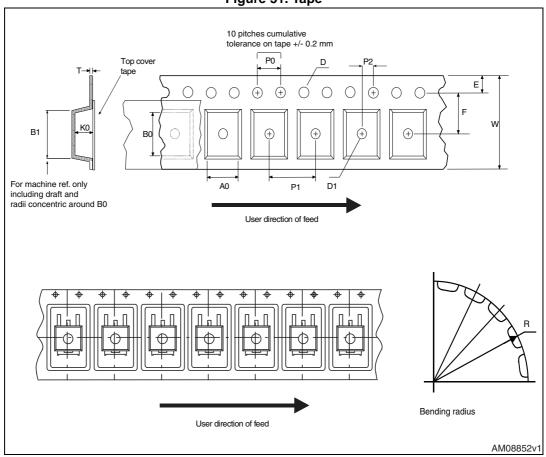
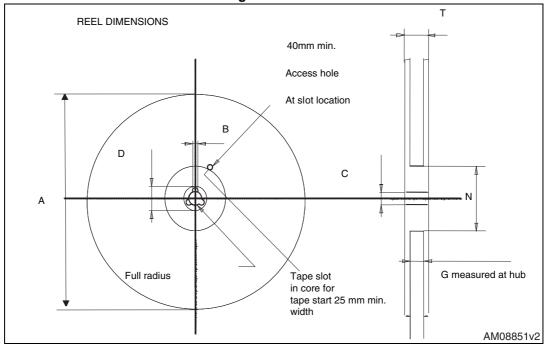



Figure 32. Reel

L4940 Revision history

10 Revision history

Table 10. Document revision history

Date	Revision	Changes	
04-Feb-2005	6	Added new package D²PAK/A.	
18-Sep-2006	7	Order codes and new template have been updated.	
31-May-2007	8	Order codes have been updated.	
19-Sep-2007	9	Added Table 1 to cover page.	
20-Feb-2008	10	Modified: Table 1 on page 1.	
29-Jul-2009	11	Modified: Table 1 on page 1.	
16-Dec-2009	12	Modified: Table 6 on page 8.	
04-Nov-2013	13	The L4940XX5, L4940XX85, L4940XX10, L4940XX12 have been changed into the L4940. Updated: the title and the description in cover page. Updated Section 4: Test circuits, Section 5: Electrical characteristics, Section 6: Performance characteristics and Section 8: Package mechanical data. Added Section 9: Packaging mechanical data. Minor text changes.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

22/22 DocID2141 Rev 13

