TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74ACT157P,TC74ACT157F,TC74ACT157FN,TC74ACT157FT

Quad 2-Channel Multiplexer

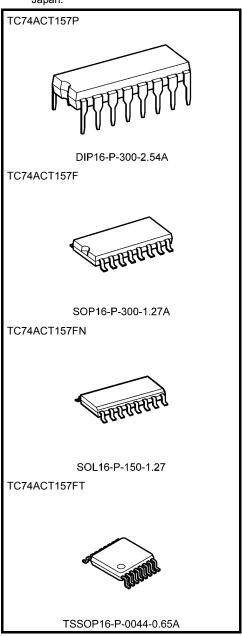
The TC74ACT157 is an advanced high speed CMOS QUAD 2-CHANNEL MULTIPLEXER fabricated with silicon gate and double-layer metal wiring C²MOS technology.

It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

This device may be used as a level converter for interfacing TTL or NMOS to High Speed CMOS. The inputs are compatible with TTL, NMOS and CMOS output voltage levles.

This device consist of four 2-input digital multiplexer with common select and strobe inputs.

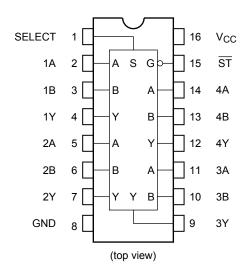
When the $\overline{\rm ST}$ input is held "H" level, selection of data is inhibited and all the outputs become "L" level.

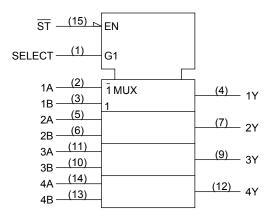

The SELECT decoding determines whether the A or B inputs get routed to their corresponding Y outputs.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.

Features

- High speed: $t_{pd} = 5.1$ ns (typ.) at $V_{CC} = 5$ V
- Low power dissipation: $I_{CC} = 8 \mu A$ (max) at $T_a = 25$ °C
- Compatible with TTL outputs: $V_{IL} = 0.8 \text{ V (max)}$ $V_{IH} = 2.0 \text{ V (min)}$
- Symmetrical output impedance: $|I_{OH}| = I_{OL} = 24$ mA (min) Capability of driving 50 Ω transmission lines.
- Balanced propagation delays: $t_{pLH} \simeq t_{pHL}$
- Pin and function compatible with 74F157


Note: xxxFN (JEDEC SOP) is not available in Japan.

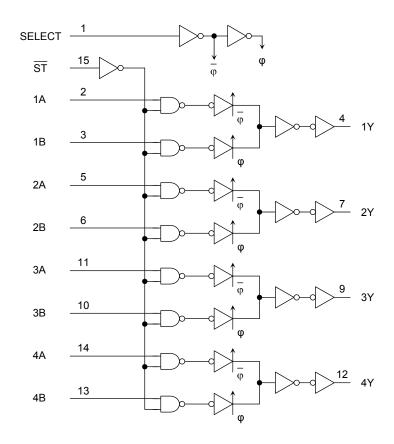

Weight

DIP16-P-300-2.54A : 1.00 g (typ.) SOP16-P-300-1.27A : 0.18 g (typ.) SOL16-P-150-1.27 : 0.13 g (typ.) TSSOP16-P-0044-0.65A : 0.06 g (typ.)

Pin Assignment

IEC Logic Symbol

Truth Table


	Inputs	Output				
ST	SELECT	Α	В	Y		
Н	Х	Х	Х	L		
L	L	L	Х	L		
L	L	Н	Х	Н		
L	Н	Х	L	L		
L	Н	Х	Н	Н		

X: Don't care

2

System Diagram

TOSHIBA

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	−0.5 to 7.0	V
DC input voltage	V _{IN}	-0.5 to V _{CC} + 0.5	V
DC output voltage	V _{OUT}	−0.5 to V _{CC} + 0.5	V
Input diode current	I _{IK}	±20	mA
Output diode current	lok	±50	mA
DC output current	lout	±50	mA
DC V _{CC} /ground current	I _{CC}	±100	mA
Power dissipation	PD	500 (DIP) (Note 2)/180 (SOP/TSSOP)	mW
Storage temperature	T _{stg}	−65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: 500 mW in the range of Ta = -40 to 65°C. From Ta = 65 to 85°C a derating factor of -10 mW/°C should be applied up to 300 mW.

Operating Ranges (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage	V_{CC}	4.5 to 5.5	V
Input voltage	V _{IN}	0 to V _{CC}	V
Output voltage	V _{OUT}	0 to V _{CC}	V
Operating temperature	T _{opr}	−40 to 85	°C
Input rise and fall time	dt/dV	0 to 10	ns/V

Note: The operating ranges must be maintained to ensure the normal operation of the device.
Unused inputs must be tied to either VCC or GND.

Electrical Characteristics

DC Characteristics

Characteristics	Symbol	Test Condition			Ta = 25°C			Ta = −40 to 85°C		- Unit	
Gharaotenous	Cymbol				V _{CC} (V)	Min	Тур.	Max	Min	Max	Omit
High-level input voltage	V _{IH}	-			4.5 to 5.5	2.0	_	_	2.0	_	٧
Low-level input voltage	V _{IL}		_		4.5 to 5.5	_	_	0.8	_	0.8	V
	V _{OH}	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -50 μA		4.5	4.4	4.5	_	4.4	_	
High-level output voltage			I _{OH} = −24 mA		4.5	3.94	_	_	3.80	_	V
			$I_{OH} = -75 \text{ mA}$	(Note)	5.5	-	_	-	3.85	_	
	V _{OL} =	V _{IN} = V _{IH} or V _{IL}	I _{OH} = 50 μA		4.5	_	0.0	0.1	_	0.1	
Low-level output voltage			I _{OH} = 24 mA		4.5	_	_	0.36	_	0.44	V
			I _{OH} = 75 mA	(Note)	5.5	_	_	_	_	1.65	
Input leakage current	I _{IN}	V _{IN} = V _{CC} or GND			5.5	1	_	±0.1	1	±1.0	μΑ
Quiescent supply current	Icc	V _{IN} = V _{CC} or GND			5.5	_	_	8.0	_	80.0	μΑ
	IC	Per input: V _{IN} = 3.4 V Other input: V _{CC} or GND			5.5	_	_	1.35	_	1.5	mA

Note: This spec indicates the capability of driving 50 Ω transmission lines.

One output should be tested at a time for a 10 ms maximum duration.

AC Characteristics (C_L = 50 pF, R_L = 500 Ω , input: t_r = t_f = 3 ns)

Characteristics	Symbol	Test Condition		Ta = 25°C			Ta = -40 to 85°C		Unit
	-,		V _{CC} (V)	Min	Тур.	Max	Min	Max	
Propagation delay time	t _{pLH}	_	5.0 ± 0.5	_	5.5	8.0	1.0	9.1	ns
(A, B-Y)	t _{pHL}								
Propagation delay time (SELECT-Y)	t _{pLH} t _{pHL}	_	5.0 ± 0.5	_	6.9	11.4	1.0	13.0	ns
Propagation delay time (ST -Y)	t _{pLH}	_	5.0 ± 0.5	_	6.8	10.8	1.0	12.3	ns
Input capacitance	C _{IN}	_		_	5	10	_	10	pF
Power dissipation capacitance	C _{PD} (Note)	_		_	51	_	_	_	pF

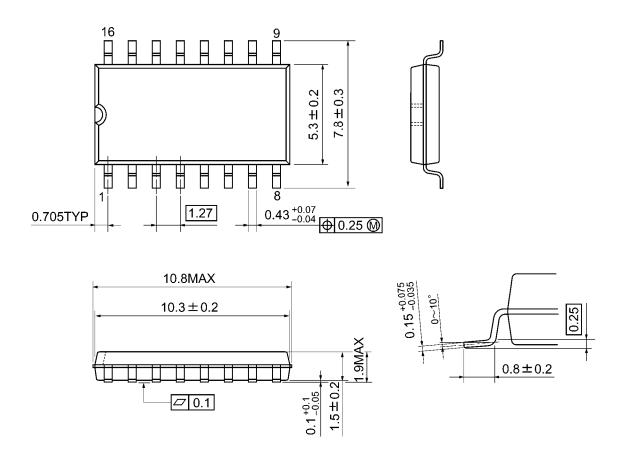
Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


5

Average operating current can be obtained by the equation:

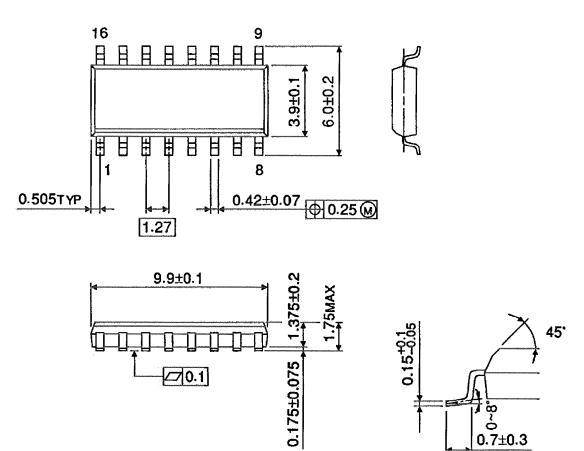
$$I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/4 (per bit)$$

Package Dimensions


DIP16-P-300-2.54A Unit: mm

Weight: 1.00 g (typ.)

Package Dimensions


SOP16-P-300-1.27A Unit: mm

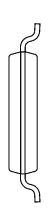
Weight: 0.18 g (typ.)

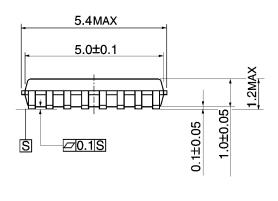
Package Dimensions (Note)

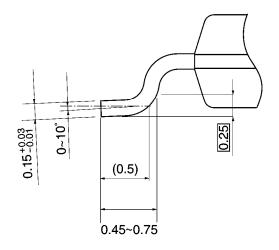
SOL16-P-150-1.27 Unit: mm

8


Note: This package is not available in Japan.


Weight: 0.13 g (typ.)


Package Dimensions


TSSOP16-P-0044-0.65A

Unit: mm

Weight: 0.06 g (typ.)

9