Load Switch with Level-Shift

PRODUCT SUMMARY

$\mathbf{V}_{\mathbf{D S} 2}(\mathbf{V})$	$\mathbf{r}_{\mathrm{DS} \text { (on) }}(\Omega)$	$\mathbf{I}_{\mathbf{D}}(\mathbf{A})$
1.8 to 8	0.215 at $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$	± 1.2
	0.300 at $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$	± 1.0
	0.440 at $\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$	± 0.7

DESCRIPTION

The Si1865DL includes a P - and N -Channel MOSFET in a single SC70-6 package. The low on-resistance P-Channel TrenchFET is tailored for use as a load switch. The n-channel, with an external resistor, can be used as a level-shift to

APPLICATION CIRCUITS

COMPONENTS

R1	Pull-Up Resistor	Typical $10 \mathrm{k} \Omega$ to $1 \mathrm{~m} \Omega^{\star \star}$
R2	Optional Slew-Rate Control	Typical 0 to $100 \mathrm{k} \Omega^{\star \star}$
C1	Optional Slew-Rate Control	Typical 1000 pF

[^0]
FEATURES

- $215 \mathrm{~m} \Omega$ Low $\mathrm{r}_{\mathrm{DS}(o n)}$ TrenchFET ${ }^{\circledR}$
- 1.8 to 8 V Input
- 1.5 to 8 V Logic Level Control
- Low Profile, Small Footprint SC70-6 Package
- 2000 V ESD Protection On Input Switch, V VN/OFF
- Adjustable Slew-Rate
- 1.8 V Rated
drive the P-Channel load-switch. The N-Channel MOSFET has internal ESD protection and can be driven by logic signals as low as 1.5 V . The Si1865DL operates on supply lines from 1.8 to 8 V , and can drive loads up to 1.2 A.

The Si1865DL is ideally suited for high-side load switching in portable applications. The integrated n-channel level-shift devices saves space by reducing external components. The slew rate is set externally so that rise-times can be tailored to different load types.
*Pb containing terminations are not RoHS compliant, exemptions may apply.

FUNCTIONAL BLOCK DIAGRAM

| THERMAL RESISTANCE RATINGS |
| :--- | :---: | :---: | :---: | :---: |
|
 Parameter Symbol Typical Maximum
 Maximum Junction-to-Ambient (continuous current) ${ }^{\text {a }}$ $\mathrm{R}_{\text {thJA }}$ 260 320
 Maximum Junction-to-Foot (Q2) $\mathrm{R}_{\mathrm{thJC}}$ 180 220
 ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

SPECIFICATIONS $\mathrm{T}_{\mathrm{J}}=25{ }^{\circ} \mathrm{C}$ unless otherwise noted						
Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
OFF Characteristics						
Reverse Leakage Current	$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=8 \mathrm{~V}, \mathrm{~V}_{\text {ON/OFF }}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
Diode Forward Voltage	I_{Q}	$\mathrm{I}_{\mathrm{S}}=-0.4 \mathrm{~A}$		0.85	1.1	V
ON Characteristics						
Input Volatge	$\mathrm{V}_{\text {IN }}$		1.8		8	V
On-Resistance (P-Channel) at 1 A	${ }^{\text {r }}$ (${ }^{\text {(on) }}$	$\mathrm{V}_{\text {ON/OFF }}=1.5, \mathrm{~V}_{\text {IN }}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.2 \mathrm{~A}$		0.180	0.215	Ω
		$\mathrm{V}_{\text {ON/OFF }}=1.5, \mathrm{~V}_{\text {IN }}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}$		0.250	0.300	
		$\mathrm{V}_{\text {ON/OFF }}=1.5, \mathrm{~V}_{\text {IN }}=1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.7 \mathrm{~A}$		0.367	0.440	
On-State (P-Channel) Drain-Current	$I_{\text {(on) }}$	$\mathrm{V}_{\text {IN-OUT }} \leq 0.2 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {ON/OFF }}=1.5 \mathrm{~A}$	1			A
		$\mathrm{V}_{\text {IN-OUT }} \leq 0.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3 \mathrm{~V}, \mathrm{~V}_{\text {ON/OFF }}=1.5 \mathrm{~A}$	1			

Notes:

a) Surface Mounted on FR4 Board.
b) $\mathrm{V}_{\text {IN }}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON} / \mathrm{OFF}}=8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
c) Pulse test; pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

[^1]TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless noted

$\mathrm{V}_{\mathrm{DROP}}$ vs. I_{L} at $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$

$\mathrm{V}_{\mathrm{DROP}}$ Variance vs. Junction Temperature

$V_{\text {DROP }}$ vs. I_{L} at $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$

$V_{\text {DROP }}$ vs. I_{L} at $I_{L}=0.7 \mathrm{~V}$

On-Resistance vs. Input Voltage

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless noted

Switching Variation
$R 2$ at $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \mathrm{R} 1=20 \mathrm{k} \Omega$

Switching Variation
R 2 at $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{R} 1=300 \mathrm{k} \Omega$

Si1865DL

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless noted

[^2]
Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

[^0]: **Minimum R1 value should be least $10 \times \mathrm{R} 2$ to ensure Q1 turn-on.

[^1]: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^2]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?71297.

