

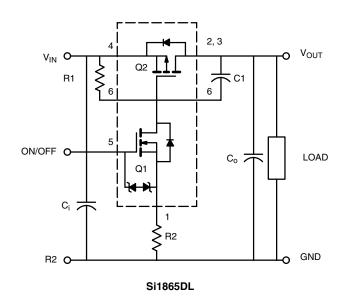
New Product

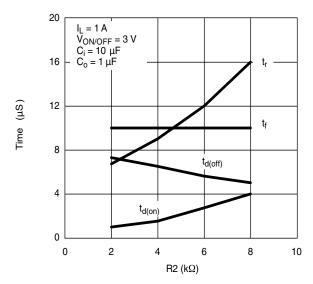
Load Switch with Level-Shift

PRODUCT SUMMARY			
V _{DS2} (V)	$r_{DS(on)}\left(\Omega\right)$	I _D (A)	
1.8 to 8	0.215 at V _{IN} = 4.5 V	± 1.2	
	0.300 at V _{IN} = 2.5 V	± 1.0	
	0.440 at V _{IN} = 1.8 V	± 0.7	

FEATURES

- 215 mΩ Low r_{DS(on)} TrenchFET[®]
- 1.8 to 8 V Input
- 1.5 to 8 V Logic Level Control
- Low Profile, Small Footprint SC70-6 Package
- 2000 V ESD Protection On Input Switch, V_{ON/OFF}
- Adjustable Slew-Rate
- 1.8 V Rated


RoHS*


DESCRIPTION

The Si1865DL includes a P- and N-Channel MOSFET in a single SC70-6 package. The low on-resistance P-Channel TrenchFET is tailored for use as a load switch. The n-channel, with an external resistor, can be used as a level-shift to

drive the P-Channel load-switch. The N-Channel MOSFET has internal ESD protection and can be driven by logic signals as low as 1.5 V. The Si1865DL operates on supply lines from 1.8 to 8 V, and can drive loads up to 1.2 A.

APPLICATION CIRCUITS

Note: For R2 switching variations with other V_{IN}/R1 combinations See Typical Characteristics

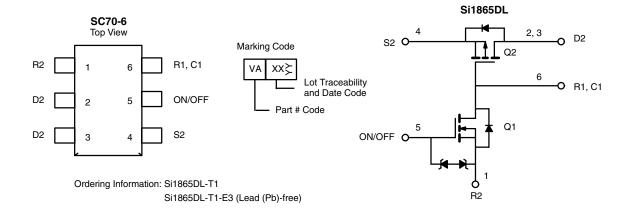
Switching Variation R2 at V_{IN} = 2.5 V, R1 = 20 k Ω

The Si1865DL is ideally suited for high-side load switching in portable applications. The integrated n-channel level-shift

COMPONENTS				
R1	Pull-Up Resistor	Typical $10k\Omega$ to $1 m\Omega^{**}$		
R2	Optional Slew-Rate Control	Typical 0 to 100 kΩ**		
C1	Optional Slew-Rate Control	Typical 1000 pF		

Optional Slew-Rate Control Typical 0 to $100 \text{ k}\Omega^{**}$ devices saves space by reducing external components. The slew rate is set externally so that rise-times can be tailored to different load types.

^{**}Minimum R1 value should be least 10 x R2 to ensure Q1 turn-on.


^{*}Pb containing terminations are not RoHS compliant, exemptions may apply.

Vishay Siliconix

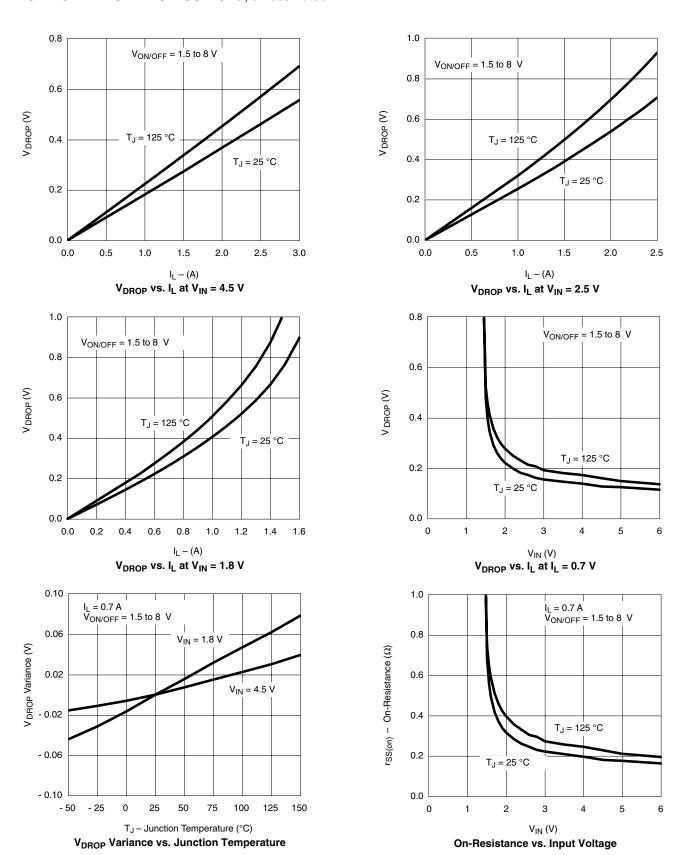
New Product

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS $T_A = 25$ °C, unless otherwise noted					
Parameter		Symbol	Limit	Unit	
Input Voltage		V _{IN}	8	V	
ON/OFF Voltage		V _{ON/OFF}	8	V	
Load Current	Cintinuous ^{a,b}	IL	± 1.2	А	
Load Guileili	Pulsed ^{b, c}		± 3		
Continuous Intrinsic Diode Conduction ^a		I _S	- 0.4		
Maximum Power Dissipation ^a		P_{D}	0.4	W	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150	°C	
ESD Rating, MIL-STD-833D Human Body Model (100 pF, 1500 Ω)		ESD	2	kV	

THERMAL RESISTANCE RATINGS					
Parameter	Symbol	Typical	Maximum	Unit	
Maximum Junction-to-Ambient (continuous current) ^a	R _{thJA}	260	320	°C/W	
Maximum Junction-to-Foot (Q2)	R _{thJC}	180	220	O/W	

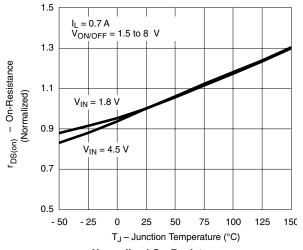
SPECIFICATIONS T _J = 25 °C unless otherwise noted						
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF Characteristics						
Reverse Leakage Current	V _{IN}	$V_{IN} = 8 \text{ V}, V_{ON/OFF} = 0 \text{ V}$			1	μΑ
Diode Forward Voltage	ΙQ	I _S = - 0.4 A		0.85	1.1	V
ON Characteristics						
Input Volatge	V _{IN}		1.8		8	٧
	r _{DS(on)}	$V_{ON/OFF} = 1.5$, $V_{IN} = 4.5$ V, $I_D = 1.2$ A		0.180	0.215	
On-Resistance (P-Channel) at 1 A		$V_{ON/OFF} = 1.5$, $V_{IN} = 2.5$ V, $I_D = 1.0$ A		0.250	0.300	Ω
		$V_{ON/OFF} = 1.5$, $V_{IN} = 1.8$ V, $I_D = 0.7$ A		0.367	0.440	
On State (B. Channel) Dunin Comment		$V_{IN-OUT} \le 0.2 \text{ V}, V_{IN} = 5 \text{ V}, V_{ON/OFF} = 1.5 \text{ A}$	1			۸
On-State (P-Channel) Drain-Current	I _{D(on)}	$V_{IN-OUT} \le 0.3 \text{ V}, V_{IN} = 3 \text{ V}, V_{ON/OFF} = 1.5 \text{ A}$	1			Α


- a) Surface Mounted on FR4 Board. b) $V_{IN}=8$ V, $V_{ON/OFF}=8$ V, $T_A=25$ °C. c) Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2 %.

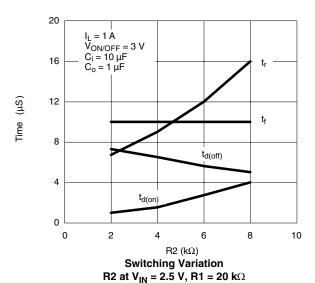
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

New Product

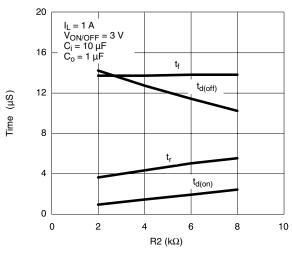
TYPICAL CHARACTERISTICS 25 °C, unless noted



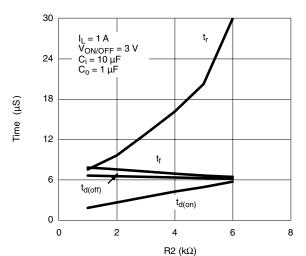
Vishay Siliconix


New Product

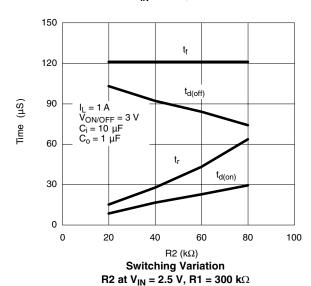
TYPICAL CHARACTERISTICS 25 °C, unless noted



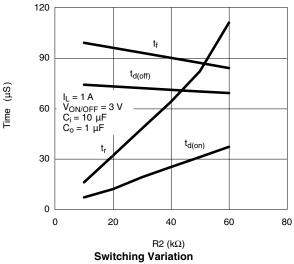
Normalized On-Resistance vs. Junction Temperature

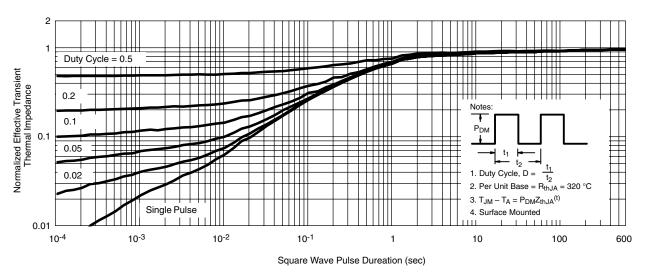


200 $t_{d(off)}$ 160 120 Time (µS) $I_L = 1 A$ $\bar{V}_{ON/OFF} = 3 \text{ V}$ 80 40 t_{d(on)} 0 0 20 40 60 80 100 $\begin{array}{c} \text{R2 } (k\Omega) \\ \text{Switching Variation} \end{array}$


R2 at V_{IN} = 4.5 V, R1 = 300 k Ω

Switching Variation R2 at V_{IN} = 1.8 V, R1 = 20 k Ω


Switching Variation R2 at $V_{IN} = 1.8 \text{ V}$, R1 = 20 k Ω



New Product

TYPICAL CHARACTERISTICS 25 °C, unless noted

R2 at V_{IN} = 1.8 V, R1 = 300 k Ω

Normalized Thermal Transient Impedance, Junction-to-Ambient

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?71297.

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

www.vishay.com Revision: 08-Apr-05