CATALOG

Time relays
 CT-C, CT-S, CT-D

Available in three different ranges

 to cover every application, CT range time relays are used to provide reliable timing functions worldwide. They have proven their excellent functionality in daily use under the toughest conditions.Choose ABB as the partner for all your low voltage timing control needs to leverage our wide variety of product options. From economic to high-end solutions - the range offers maximum value.

Time relays for industrial applications
 Offer overview

CT-C: the compact range

The CT-C range combines lower cost with higher value and performance by offering essential functions in a space-saving 17.5 mm housing. The range offers a choice of 11 devices, including single and multifunctional types, with timing functions that range from 0.05 seconds to 100 hours. Equipped with a wide voltage range, the CT-C range is suitable for a huge variety of applications worldwide.

CT-S: the high-performance range

The advanced CT-S range is ABB's universal range of electronic timers. It includes 22 single-function devices and 16 multifunction time relays, offering flexibility in operation with up to 13 functions. The devices feature seven or ten time ranges, adjustable from 0.05 seconds to 300 hours. Additionally, every device is available in two different connection technologies: familiar double-chamber cage connection terminals (screw terminals) and ABB's vibration-resistant Easy Connect technology (push-in terminals).

CT-C range

Benefits and advantages

The CT-C range combines lower cost with higher value and performance by offering essential functions in a 17.5 mm housing, freeing up room in any control cabinet. The range includes 11 devices, offering both single and multifunctional types, with a time range from 0.05 seconds to 100 hours. Equipped with wide voltage ranges, CT-C time relays allow for use across a huge variety of applications worldwide.

Space savings

Cost effective solution

Optimized logistics

With a width of just 17.5 mm , the CT-C range is 22% smaller than standard industrial housings for time relays. Its reduced overall footprint saves space in control cabinets. For more flexibility both $1 \mathrm{c} / \mathrm{o}$ and $2 \mathrm{c} / \mathrm{o}$ output versions are offered in the compact housing.

The CT-C range is an economical range that combines lower cost with higher value and performance. It suits basic applications where a time relay is needed, while offering improved functionality in each device.

By combining more functions into each device, the CT-C range makes it possible to reduce stock by up to 75% compared to other ranges. All devices in the CT-C range offer a wide supply voltage range as well as a wide time setting range from 0.05 seconds to 100 hours. This significantly reduces order code variance, making the range more compact with just 11 order codes covering every requirement.

CT-C range

Selection table

					\circ 0 n n n					0 0 0 0 0 0 1 0 0 0 n n n	1SVR508130R0000	O		0 0 0 0 0 0 0 0 0 0 n n n n		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \\ & \\ & \sim \\ & 0 \\ & 0 \\ & 0 \\ & n \\ & n \\ & n \end{aligned}$
$\stackrel{0}{\circ}$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{ن}{u} \\ & \sum_{i}^{\prime} \\ & \stackrel{U}{U} \end{aligned}$	$\begin{aligned} & \underset{\sim}{u} \\ & \underset{\sim}{u} \\ & \stackrel{1}{U} \end{aligned}$		$\begin{aligned} & \underset{\sim}{3} \\ & \underset{\sim}{u} \\ & \sum_{i}^{\prime} \\ & \stackrel{1}{U} \end{aligned}$	$\begin{aligned} & \underset{\sim}{u} \\ & \underset{\sim}{x} \\ & \underset{\sim}{1} \\ & \dot{U} \end{aligned}$			$\underset{x}{u}$		$\begin{aligned} & \underset{\sim}{\tilde{u}} \\ & \underset{\sim}{1} \\ & \underset{\sim}{U} \end{aligned}$			$\begin{aligned} & \underset{\sim}{u} \\ & \underset{U}{\mathrm{O}} \\ & \vdots \\ & \stackrel{1}{U} \end{aligned}$			N
Timing function																
ON-delay \boxtimes	\square	\square	1	\square			-									
OFF-delay with aux. voltage	\square	\square	-	\square					\square	\square						
OFF-delay w/o aux. voltage					\square											
Impulse-ON $1 \Omega \boxtimes$	\square	\square	-	\square							\square					
Impulse-OFF with aux. voltage	\square	\square	-	\square												
Impulse-OFF w/o aux. voltage					\square											
Flasher starting with ON \quad 回	\square	\square	1	\square								\square				
Flasher starting with OFF	\square	\square	-	\square								-				
Pulse generator starting with ON or OFF 즘几													\square	\square		
Pulse former (100	\square	\square	-	\square												
Star-delta change-over \triangle															\square	\square
Features																
Control input, voltage-related triggering	\square	\square	1	\square					\square	\square			\square	■		
Time range																
$0.05 \mathrm{~s}-100 \mathrm{~h}$	\square	■	-	\square		\square	-	-	\square	■	■	-	2	2		
$0.05 \mathrm{~s}-10 \mathrm{~min}$					\square										\square	-
Supply voltage																
$12-240$ V AC/DC	\square			\square												
24-48 V DC		\square			\square	\square	-	-	\square	■	\square	-	-	\square	\square	-
24-240 V AC		\square			\square	\square	-	-	\square	-						
Output																
Solid state	\square															
c/o contact		1	1	2	1	1	2	2	1	2	1	1	1	2		
n/o contact															2	2

CT-C range

Technical data

Data at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and rated values, unless otherwise indicated

	CT-C with $1 \mathrm{c} / \mathrm{o}$ contact	CT-C with $2 \mathrm{c} / \mathrm{o}$ contacts	CT-MFC. 21 CT-MKC. 31
Input circuit - Supply circuit			
Rated control supply voltage $U_{\text {s }}$	24-240 V AC / 24-48 V DC		12-240 V AC/DC
Rated control supply voltage U_{s} tolerance	-15... +10 \%		
Rated frequency	DC or $50 / 60 \mathrm{~Hz}$		
Frequency range AC	$47-63 \mathrm{~Hz}$		
Typical power consumption	max. 3.5 VA		
Power failure buffering time	min .20 ms		
Release voltage	> 10% of the minimum rated control supply voltage $U_{\text {s }}$		
Minimum energizing time	100 ms (CT-ARC)		
Formatting time ${ }^{1)}$	5 min (CT-ARC)		
Input circuit - Control circuit			
Control input, control function A1-Y1/B1	start timing external		
Kind of triggering	voltage-related triggering		
Resistance to reverse polarity	yes		
Parallel load / polarized	yes / yes		
Maximum cable length to the control inputs	$50 \mathrm{~m}-100 \mathrm{pF} / \mathrm{m}$		
Minimum control pulse length	20 ms		
Control voltage potential	see rated control supply voltage		
Timing circuit			
Time ranges 7 time ranges $0.05 \mathrm{~s}-100 \mathrm{~h}$	$\begin{array}{llll}\text { 1.) } 0.05-1 \mathrm{~s} & \text { 2.) } 0.5-10 \mathrm{~s} & 3 .) \\ 5-100 \mathrm{~s} & 4 .) \\ 0.5-10 \mathrm{~min}\end{array}$ 5.) $5-100 \mathrm{~min}$ 6.) $0.5-10 \mathrm{~h}$ 7.) $5-100 \mathrm{~h}$		
4 time ranges $0.05 \mathrm{~s}-10 \mathrm{~min}$ (CT-SDC, CT-SAC, CT-ARC)	$\begin{array}{llll}\text { 1.) } 0.05-1 \mathrm{~s} & 2 .) \\ 0.5-10 \mathrm{~s} & 3 .) \\ 5-100 \mathrm{~s} & 4 .) \\ 0.5-10 \mathrm{~min}\end{array}$		
Recovery time	$<50 \mathrm{~ms}$		
Accuracy within the rated control supply voltage tolerance	$\Delta \mathrm{t}<0.005 \% / \mathrm{V}$		
Accuracy within the temperature range	$\Delta \mathrm{t}<0.06 \% /{ }^{\circ} \mathrm{C}$		
Repeat accuracy (constant parameters)	$\Delta \mathrm{t}< \pm 0.5$ \%		
Setting accuracy of time delay	$\pm 10 \%$ of full-scale value		
Star-delta transition time CT-SDC / CT-SAC	fixed $50 \mathrm{~ms} /$ adjustable: $20 \mathrm{~ms}, 30 \mathrm{~ms}, 40 \mathrm{~ms}, 50 \mathrm{~ms}, 60 \mathrm{~ms}, 80 \mathrm{~ms}$ or 100 ms		
Star-delta transition time tolerance \quad CT-SDC / CT-SAC	$\pm 3 \mathrm{~ms}$		
Indication of operational states			
Control supply voltage / timing U: green LED			
Relay energized R, R1, R2: yellow LED	$\sqrt{\text { : output relay energized }}$		
Operating elements and controls			
Adjustment of the time range	front-face rotary switch, direct reading scales		
Fine adjustment of the time value	front-face potentiometer		
Preselection of the timing function at multifunction devices	front-face rotary switch, direct reading scales		
Adjustment of the transition time CT-SAC	front-face potentiometer		

CT-C range

Technical data

		CT-C with $1 \mathrm{c} / \mathrm{o}$ contact	CT-C with $2 \mathrm{c} / \mathrm{o}$ contacts	CT-MFC. 21 CT-MKC. 31
Environmental data				
Ambient temperature range	operation / storage	$-20 \ldots+60^{\circ} \mathrm{C} /-40 \ldots+85^{\circ} \mathrm{C}$		
Climatic class	EC/EN 60068-2-30	3K3		
Relative humidity range		25-85\%		
Vibration, sinusoidal	IEC/EN 60068-2-6	$20 \mathrm{~m} / \mathrm{s}^{2} ; 10$ cycles, $10 \ldots 150 \ldots 10 \mathrm{~Hz}$		
Shock (half-sine)	IEC/EN 60068-2-27	$150 \mathrm{~m} / \mathrm{s}^{2}, 11 \mathrm{~ms}$		
Isolation data				
Rated insulation voltage $U_{i} \quad$ outp	input circuit / output circuit	300 V		
	output circuit 1 / output circuit 2	not available	300 V	300 V
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	between all isolated circuits	4 kV ; 1.2/50 $\mu \mathrm{s}$		
Power-frequency withstand voltage test (test voltage)	between all isolated circuits	2.5 kV ; $50 \mathrm{~Hz} ; 60 \mathrm{~s}$		
Basic insulation (IEC/EN 61140)	input circuit / output circuit	300 V		
Protective separation (pollution degree 2 / overvoltage category II)	input circuit / output circuit	250 V		
Pollution degree		3		
Overvoltage category		III		
Standards / Directives				
Standards		IEC/EN 61812-1		
Low Voltage Directive		2014/35/EU		
EMC Directive		2014/30/EU		
RoHS Directive		2011/65/EU incl. 2015/863/EU		
Electromagnetic compatibility				
Interference immunity to		IEC/EN 61000-6-2		
electrostatic discharge	IEC/EN 61000-4-2	level 3 ($6 \mathrm{kV} / 8 \mathrm{kV}$)		
radiated, radio-frequency, electromagnetic field	etic IEC/EN 61000-4-3	level $3(10 \mathrm{~V} / \mathrm{m})$		
electrical fast transient / burst	IEC/EN 61000-4-4	level 3 ($2 \mathrm{kV} / 5 \mathrm{kHz}$)		
surge	IEC/EN 61000-4-5	level 4 (2 kV L-L)		
conducted disturbances, induced by radio-frequency fields	IEC/EN 61000-4-6	level 3 (10 V)		
Interference emission				
high-frequency radiated	IEC/CISPR 22, EN 55022	class B		
high-frequency conducted	IEC/CISPR 22, EN 55022	class B		

CT-C range

Technical diagrams

Connection diagrams

CT-AHC. 22

A1	15	25
18	16	Y1/B
28	26	A2

A1-A2	Supply: $24-48 ~ V ~ D C ~ o r ~ 24-~$ $240 ~ V ~ A C ~$
A1-Y1/B1	Control input
$15-16 / 18$	1 st c/o contact
$25-26 / 28$	2 nd c/o contact

띰 CT-TGC. 22

A1	15	25
18	16	Y1/B1
28	26	A2

A1-A2	Supply: $24-48 ~ V ~ D C ~ o r ~$ $24-240 ~ V ~ A C ~$
A1-Y1/B1	Control input
$15-16 / 18$	1st c/o contact
$25-26 / 28$	2 nd c/o contact

CT-ARC. 12

A1	15	
18	16	A2

A1-A2	Supply:
	$12-240$ V AC/DC
$15-16 / 18$	1 st c/o contact

\square CT-AHC. 12

A1	15	Y1/B1
18	16	A2

A1-A2	Supply: $24-48 ~ V ~ D C ~ o r ~ 24-~$ 240 V AC
A1-Y1/B1	Control input
$15-16 / 18$	1 st c/o contact

ССТ-TGC. 12

A1	15	Y1/B1
18	16	A2

A1-A2	Supply: $24-48 ~ V ~ D C ~ o r ~ 24-~$ $240 ~ V ~ A C ~$
A1-Y1/B1	Control input
$15-16 / 18$	1 st c/o contact

$1 \Omega \boxtimes$ CT-VWC. 12

A1-A2	Supply:
	$24-48 \mathrm{~V}$ DC or $24-$
	240 V AC
$15-16 / 18$	1 st c/o contact

\triangle CT-SDC. 22

A1	17	
28	18	A2

A1-A2	Supply: $24-48 ~ V ~ D C ~ o r ~$
	$24-240$ V AC
$17-18$	1st $n /$ o contact (star contactor)
$17-28$	2nd n / o contact (delta contactor)

Ω CT-EBC. 12

A1-A2	Supply: $24-48 ~ V ~ D C ~ o r ~$ $24-240 ~ V ~ A C ~$
$15-16 / 18$	1 st c/o contact

\triangle CT-SAC. 22

A1-A2	Supply: $24-48 ~ V ~ D C ~ o r ~$ $24-240 ~ V ~ A C ~$
	1st n/o contact (star contactor)
$17-18$	2nd n/o contact (delta contactor)
$17-28$	

CT-MKC. 31

A1-A2	Supply: $12-240 ~ V ~ A C / D C ~$
$15-16 / 18$	1 st c/o contact

CT-S range

Benefits and advantages

The advanced CT-S range includes 22 single-function devices and 16 multifunction timers with up to 13 functions. The devices feature seven or ten time ranges, which are adjustable from 0.05 seconds to 300 hours. Every device is available in two different connection technologies: double-chamber cage connection terminals or ABB's vibration-resistant Push-in Technology.

Improve installation efficiency

The CT-S range allows simple tool free mounting and demounting on the DIN rail. Thanks to the easy connect and the double-chamber cage connection technology simplified wiring with or without wire end ferrules is no problem. Both allow simple and easy installation, even in case of different cable diameters.

The CT-S range's extended features make it especially suited for harsh environments. The housing material has the highest UL fire protection classification. All functions are available with Push-in terminals, making operations in environments with high vibrations possible without retightening. Additionally, the CT-S range offers devices with an extended temperature range, running operations in temperatures as low as $-40^{\circ} \mathrm{C}$ effortlessly. Specific types are tested according to the latest rail industry standards, making them a perfect solution for rolling stock and other rail applications

Every device in the CT-S range is designed to provide a wide supply voltage range, making global differences irrelevant. Additionally, the CT-S range meets a broad range of standards and requirements. Together with ABB's global support and sales network, using CT-S gives customers the confidence of worldwide sourcing - no matter where they build, install or operate their equipment.

CT-S range

Benefits and advantages

01 Tool-free mounting
of wires

02 Wiring of double-cage
chamber connection
terminals with screw driver

Easy Connect Technology

Tool-free wiring and excellent vibration resistance. Easy Connect (Push-in terminals) provide connection of wires up to $2 \times 0.5-1.5 \mathrm{~mm}^{2}(2 \times 20-16$ AWG), rigid or fine-strand with or without wire end ferrules. The extended type designators for products with push-in terminals are indicated by a \mathbf{P} following the extended type designator e.g. CT-xxS.xxP.

Double-chamber cage connection terminals

According to IEC/EN 60947-1 double-chamber cage connection terminals provide connection of wires up to $2 \times 0.5-2.5 \mathrm{~mm}^{2}(2 \times 20-14 \mathrm{AWG})$ rigid or fine-strand, with or without wire end ferrules. Thanks to the technology, using different cable diameters in one terminal is easy and simple to install. Potential distribution does not require additional terminals. The extended type designators for products with double-chamber cage connection terminals (screw terminals) are indicated by an \mathbf{S} following the extended type designator, e.g. CT-xxS.xxS.

CT-S range

Selection table

Order number and type All devices are available either with push-in terminals (P-type) or doublechamber cage connection terminals (S-type).

Terminal	Type	Order number
Push-in	$\bullet=\mathrm{P}$	$\square=4$
Screw	$\bullet=\mathrm{S}$	$\square=3$

$\begin{aligned} & * \\ & \frac{*}{む} \\ & \frac{0}{E} \\ & \frac{1}{3} \\ & \frac{1}{2} \\ & \frac{\vdots}{0} \\ & \text { O} \end{aligned}$	1SVR7■0020R0200	1SVR7■0020R3300	1SVR7■0021R2300	1SVR7■0020R3100	1SVR7■0030R3300	1SVR7■0010R0200	1SVR7■0010R3200		\circ 	1SVR7■0100R3300		1SVR7■0180R0300	1SVR7■0180R3300	1SVR7■0180R3100		1SVR7■0120R3100		1SVR7■0210R3300	
$\begin{aligned} & { }^{*} \\ & \underset{\sim}{2} \\ & \underset{\lambda}{2} \end{aligned}$		CT-MVS.22•	$\stackrel{\bullet}{\stackrel{e}{n}}$		$\bullet ટ ट S X W-\perp ว$	$\begin{aligned} & \bullet \\ & \stackrel{\rightharpoonup}{u} \\ & \dot{N} \\ & \dot{u} \\ & \underset{\vdots}{\prime} \\ & \stackrel{1}{u} \end{aligned}$	$\stackrel{\rightharpoonup}{\sim}$ \vdots			$\begin{aligned} & \stackrel{\sim}{N} \\ & \underset{\sim}{u} \\ & \underset{\sim}{\sim} \\ & \stackrel{1}{u} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \dot{u} \\ & \dot{a} \\ & \underset{i}{1} \\ & \stackrel{1}{u} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \underset{\sim}{u} \\ & \underset{\sim}{u} \\ & \underset{i}{1} \end{aligned}$		$\begin{aligned} & \stackrel{\bullet}{N} \\ & \underset{N}{n} \\ & \dot{N} \\ & \underset{i}{1} \\ & \stackrel{1}{U} \end{aligned}$	$\begin{aligned} & \bullet \\ & \underset{-}{-1} \\ & \dot{\sim} \\ & \stackrel{\alpha}{4} \\ & \stackrel{1}{u} \end{aligned}$	$\begin{aligned} & \bullet \\ & \underset{\sim}{n} \\ & \dot{\sim} \\ & \underset{\sim}{x} \\ & \stackrel{1}{U} \end{aligned}$	$\text { CT-SDS. } 22 \bullet$	$\begin{aligned} & \stackrel{\bullet}{n} \\ & \underset{\sim}{n} \\ & \underset{\sim}{u} \\ & \stackrel{1}{u} \end{aligned}$
Timing function																			
ON-delay $\quad \boxtimes$	\square	\square	\square	\square		\square	\square	\square	\square	\square	\square								
ON-delay, accumulative \quad (+)	■	\square	■	\square		\square													
OFF-delay w. aux. voltage	\square	\square	\square	\square		\square	\square					\square	\square	\square	\square				
OFF-delay w. aux. voltage, accumulative						\square													
OFF-delay w/o aux. voltage																\square	\square		
ON- and OFF-delay, symmetrical	\square	\square	-	\square		\square	\square												
ON- and OFF-delay, symmetrical, accumulative						■													
ON- and OFF-delay, asymmetrical					\square														
ON/OFF function $\quad \square$	\square																		
Impulse-ON $1 \Omega \triangle$	\square	\square	\square	\square		\square	\square	\square											
Impulse-ON, accumulative $1 \Omega \boxtimes$						\square													
Impulse-OFF w. aux. voltage	\square	\square	\square	\square		\square	\square												
Impulse-OFF w. aux. voltage, accumulative						\square													
Impulse-ON and OFF					\square														
Fixed impulse with adjustable time delay \quad ه1ת								\square											
Adjustable impulse with fixed time delay $\triangle 1 \Omega$								\square											
Flasher starting with ON $\quad \Omega \boxtimes$						\square	\square	\square											
Flasher with reset, starting with ON $\quad \checkmark$						\square	\square												
Flasher starting with OFF						\square	\square	\square											
Flasher with reset, starting with OFF						\square	\square												
Flasher starting with ON or OFF \quad 図	\square	\square	-	\square															
Pulse generator starting with ON or OFF					\square														
Single pulse generator					\square														
Pulse former $\quad \square$	\square	\square	\square	\square		■	\square												
Star-delta change-over \triangle																		\square	\square
Star-delta change-over with impulse $\quad \Delta 1 \Omega$	\square	\square	\square			\square	\square												
Features																			
Control input, voltage-related triggering	\square	\square	-	\square	\square							\square	\square	\square					
Control input, volt-free triggering						2	1								\square				
Remote potentiometer connection	\square				2	\square	\square												
2nd c/o contact selectable as instantaneous contact	\square					\square	\square												
Extended temperature range ($-40 \ldots+60^{\circ} \mathrm{C}$)	\square					\square			\square			\square							
Time range																			
$0.05 \mathrm{~s}-10 \mathrm{~min}$																\square	\square	■	\square
$0.05 \mathrm{~s}-300 \mathrm{~h}$	\square	\square	\square	\square	2	\square													
Supply voltage																			
24-48 V DC		\square		\square	\square	\square			\square										
24-240 V AC		\square		\square	\square	\square			\square										
24-240 V AC/DC	\square					\square			\square			\square				\square	\square		
$380-440$ V AC			\square																\square
Output																			
c/o contact	2	2	2	1	2	2	2	2	2	2	1	2	2	1	2	1	2		
n/o contact																		2	2

CT-S range

Ordering details - singlefunctional devices

CT-ERS.21P

CT-AHS.22P

CT-SDS.23P

- Control input with voltage-related triggering
$\square \quad$ Control input with volt-free triggering
\square / \square Two control inputs with volt-free triggering

No triggering

Ordering details

Timing function	Rated control supply voltage	Time ranges	Control input	Output	Type	Order code	Weight (1 pc) kg (lb)
ON-delay	$\begin{aligned} & 24-240 \mathrm{VAC} / \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & 10(0.05 \mathrm{~s} \\ & -300 \mathrm{~h}) \end{aligned}$	-	$2 \mathrm{c} / \mathrm{o}$	CT-ERS.21S ${ }^{1)}$	1SVR730100R0300	$\begin{aligned} & \hline 0.13 \\ & (0.287) \end{aligned}$
					CT-ERS.21P ${ }^{\text {1) }}$	1SVR740100R0300	$\begin{aligned} & 0.121 \\ & (0.267) \end{aligned}$
	$\begin{aligned} & 24-48 \text { V DC, } \\ & 24-240 \text { V AC } \end{aligned}$				CT-ERS.22S	1SVR730100R3300	$\begin{aligned} & 0.121 \\ & (0.267) \end{aligned}$
					CT-ERS.22P	1SVR740100R3300	$\begin{aligned} & 0.113 \\ & (0.249) \end{aligned}$
	$\begin{aligned} & 24-48 \text { V DC, } \\ & 24-240 \text { V AC } \end{aligned}$		-	$1 \mathrm{c} / \mathrm{o}$	CT-ERS.12S	1SVR730100R3100	$\begin{aligned} & 0.106 \\ & (0.234) \end{aligned}$
					CT-ERS.12P	1SVR740100R3100	$\begin{aligned} & 0.101 \\ & (0.222) \end{aligned}$
OFF- delay	$\begin{aligned} & 24-240 \mathrm{~V} \mathrm{AC/} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & 10(0.05 \mathrm{~s} \\ & -300 \mathrm{~h}) \end{aligned}$	\square	$2 \mathrm{c} / 0$	CT-APS. $21 \mathrm{~S}^{1)}$	1SVR730180R0300	$\begin{aligned} & 0.146 \\ & (0.322) \end{aligned}$
					CT-APS.21P ${ }^{\text {1) }}$	1SVR740180R0300	$\begin{aligned} & 0.125 \\ & (0.276) \end{aligned}$
	$\begin{aligned} & 24-48 \mathrm{~V} \mathrm{DC,} \\ & 24-240 \mathrm{~V} \mathrm{AC} \end{aligned}$				CT-APS. 22 S	1SVR730180R3300	$\begin{aligned} & 0.138 \\ & (0.304) \end{aligned}$
					CT-APS.22P	1SVR740180R3300	$\begin{aligned} & 0.127 \\ & (0.28) \end{aligned}$
			\square	$1 \mathrm{c} / \mathrm{o}$	CT-APS.12S	1SVR730180R3100	$\begin{aligned} & 0.109 \\ & (0.24) \end{aligned}$
					CT-APS.12P	1SVR740180R3100	$\begin{aligned} & 0.103 \\ & (0.227) \end{aligned}$
	$\begin{aligned} & 24-48 \text { V DC, } \\ & 24-240 \text { V AC } \end{aligned}$	$\begin{aligned} & 10(0.05 \mathrm{~s} \\ & -300 \mathrm{~h}) \end{aligned}$	\square	$2 \mathrm{c} / \mathrm{o}$	CT-AHS. 22 S	1SVR730110R3300	$\begin{aligned} & 0.136 \\ & (0.30) \end{aligned}$
					CT-AHS.22P	1SVR740110R3300	$\begin{aligned} & 0.125 \\ & (0.276) \end{aligned}$
OFFdelay ${ }^{2)}$	$\begin{aligned} & 24-240 \\ & \text { V AC/DC } \end{aligned}$	$\begin{aligned} & 7(0.05 \mathrm{~s}- \\ & 10 \mathrm{~min}) \end{aligned}$	-	$1 \mathrm{c} / \mathrm{o}$	CT-ARS.11S	1SVR730120R3100	$\begin{aligned} & 0.106 \\ & (0.234) \end{aligned}$
					CT-ARS.11P	1SVR740120R3100	$\begin{aligned} & 0.10 \\ & (0.22) \end{aligned}$
			-	$2 \mathrm{c} / 0$	CT-ARS.21S	1SVR730120R3300	$\begin{aligned} & 0.124 \\ & (0.273) \end{aligned}$
					CT-ARS.21P	1SVR740120R3300	$\begin{aligned} & 0.115 \\ & (0.254) \end{aligned}$
Star- delta changeover ${ }^{3}$	$\begin{aligned} & 24-48 \text { V DC, } \\ & 24-240 \text { V AC } \end{aligned}$	$\begin{aligned} & 7(0.05 \mathrm{~s}- \\ & 10 \mathrm{~min}) \end{aligned}$	-	$2 \mathrm{n} / \mathrm{o}$	CT-SDS. 22 S	1SVR730210R3300	$\begin{aligned} & 0.114 \\ & (0.251) \end{aligned}$
					CT-SDS.22P	1SVR740210R3300	$\begin{aligned} & 0.108 \\ & (0.238) \end{aligned}$
	$380-440$ V AC				CT-SDS.23S	1SVR730211R2300	$\begin{aligned} & 0.118 \\ & (0.26) \end{aligned}$
					CT-SDS.23P	1SVR740211R2300	$\begin{aligned} & 0.112 \\ & (0.247) \end{aligned}$

[^0]
CT-S range

Technical data

Data at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and rated values, unless otherwise indicated

[^1]
CT-S range

Technical data

Environmental data		
Ambient temperature ranges	operation / storage	$\begin{aligned} & -25 \ldots+60^{\circ} \mathrm{C} /-40 \ldots+85^{\circ} \mathrm{C} \text {, } \\ & -40 \ldots+60^{\circ} \mathrm{C} /-40 \ldots+85^{\circ} \mathrm{C} \text { for CT-MVS.21, CT-MFS.21, CT-ERS.21, } \\ & \text { CT-APS. } 21 \end{aligned}$
Relative humidity range		25 \% to 85 \%
Vibration, sinusoidal (IEC/EN 60068-2-6)	functioning	$40 \mathrm{~m} / \mathrm{s}^{2}, 10-58 / 60-150 \mathrm{~Hz}$
	resistance	$60 \mathrm{~m} / \mathrm{s}^{2}, 10-58 / 60-150 \mathrm{~Hz}, 20$ cycles
Vibration, seismic (IEC/EN 60068-3-3)	functioning	$20 \mathrm{~m} / \mathrm{s}^{2}$
Shock, half-sine (IEC/EN 60068-2-27)	functioning	$150 \mathrm{~m} / \mathrm{s}^{2}, 11 \mathrm{~ms}, 3$ shocks/direction
	resistance	$300 \mathrm{~m} / \mathrm{s}^{2}, 11 \mathrm{~ms}, 3$ shocks/direction
Isolation data		
Rated insulation voltage U_{i}	input circuit / output circuit	500 V
	output circuit 1 / output circuit 2	not available $\quad 300 \mathrm{~V}$
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	between all isolated circuits	```4 kV; 1.2/50 \mus except devices CT-xxx.23: input / output: 6 kV; 1.2/50 \mus output 1 / output 2: 4 kV; 1.2/50 \mus```
Power-frequency withstand voltage (test voltage)	between all isolated circuits	2.0 kV; $50 \mathrm{~Hz} ; 60 \mathrm{~s}$
Basic insulation (IEC/EN 61140)	input circuit / output circuit	500 V
Protective separation (IEC/EN 61140; EN 50178)	input circuit / output circuit	250 V
Pollution degree		3
Overvoltage category		III
Standards / Directives		
Standards		IEC/EN 61812-1
Low Voltage Directive		2014/35/EU
EMC Directive		2014/30/EU
RoHS Directive		2011/65/EU
Electromagnetic compatibility		
Interference immunity to		IEC/EN 61000-6-2
electrostatic discharge	IEC/EN 61000-4-2	Level $3,6 \mathrm{kV} / 8 \mathrm{kV}$
radiated, radio-frequency electromagnetic field	IEC/EN 61000-4-3	Level $3,10 \mathrm{~V} / \mathrm{m}(1 \mathrm{GHz}) 3 \mathrm{~V} / \mathrm{m}(2 \mathrm{GHz}) 1 \mathrm{~V} / \mathrm{m}(2.7 \mathrm{GHz})$
electrical fast transient / burst	IEC/EN 61000-4-4	Level $3,2 \mathrm{kV} / 5 \mathrm{kHz}$
surge	IEC/EN 61000-4-5	Level 4, 2 kV A1-A2
conducted disturbances, induced by radio-frequency fields	IEC/EN 61000-4-6	Level 3, 10 V
harmonics and interharmonics	IEC/EN 61000-4-13	Class 3
Interference emission		IEC/EN 61000-6-3
high-frequency radiated	IEC/CISPR 22, EN 55022	Class B
high-frequency conducted	IEC/CISPR 22, EN 55022	Class B

CT-S range

Technical diagrams

Connection diagrams

CT-MVS. 21

\(\left.$$
\begin{array}{ll}\hline \text { A1-A2 } & \begin{array}{l}\text { Supply: } \\
24-240 ~ V ~ A C / D C ~\end{array}
$$

\hline A1-Y1/B1 Control input\end{array}\right]\)| $15-16 / 18$ | 1st c/o contact |
| :--- | :--- |
| $25-26 / 28$ | 2nd c/o contact |
| $21-22 / 24$ | 2nd c/o contact as
 instantaneous contact |
| Z1-Z2 | Remote potentiometer
 connection |

CT-MVS. 22

A1-A2	Supply:
	$224-48$ V DC or
	$24-240$ V AC

A1-Y1/B1 Control input
15-16/18 1st c/o contact
25-26/28 2nd c/o contact

CT-MXS. 22

A1	15	25
Z3	Z2	Z1
28	26	Y1/B1
18	16	A2

A1-A2	Supply: 24-48 V DC or $24-240 ~ V ~ A C ~$
A1-Y1/B1 Control input	
$15-16 / 18$	1st c/o contact
$25-26 / 28$	2nd c/o contact
Z1-Z2	Remote potentiometer connection
Z3-Z2	Remote potentiometer connection

CT-MVS. 23

A1	15	25
Y1/B1		
28	26	
18	16	A2

A1-A2	Supply:
	$380-440 \mathrm{~V}$

A1-Y1/B1 Control input
15-16/18 1st c/o contact
25-26/28 2nd c/o contact

CT-MVS. 12

A1	15	Y1/B1
18	16	A2

A1-A2 Supply: 24-48 V DC or 24-240 V AC

A1-Y1/B1 Control input 15-16/18 1 st c/o contact

CT-MBS. 22

A1-A2	Supply: 24-48 V DC or 24-240 V AC
$15-16 / 18$	1st c/o contact
$25-26 / 28$	2nd c/o contact
$21-22 / 24$	2nd c/o contact as instantaneous contact
Y1-Z2	Control input
Z1-Z2	Remote potentiometer connection

CT-WBS. 22

A1-A2 Supply: 24-48 V DC or 24-240 V AC

15-16/18 1st c/o contact
25-26/28 2nd c/o contact

CT-S range

Technical diagrams
-
Load limit curves

AC load (resistive)

-
Derating factor F for inductive AC load

-
Wiring notes

Control inputs
(volt-free triggering)

DC load (resistive)

Contact lifetime

Triggering of the control inputs (volt-free) with a proximity switch (3 wire)

CT-D range

Benefits and advantages

The CT-D range is ideal for building applications and installation panels, due to its compact modular housing. For maximum flexibility in operation, nine single-function as well as two multifunction devices with seven timing functions are available. The devices offer four or seven time ranges from 0.05 seconds up to 100 hours. Their wide supply voltage range allows their use in applications worldwide.

Space savings

Easy to install

The CT-D range is ideal for installation panels thanks to its compact modular housing. The housing's design helps make the status and configuration more clearly visible. The CT-D range also offers a higher output current than standard industrial types. As well as the $1 \mathrm{c} / \mathrm{o}$ contacts, $A B B$ offers devices with 2 c/o contacts for maximum flexibility.

Global availabilty

Direct reading scales help make time setting quick and easy. A pre-selection for the time range together with an additional scale for fine adjustments help improve installation efficiency. For more flexibility, the delay time can even be changed when processes are running, making optimization to fit the application even simpler. All devices can be mounted and demounted tool-free.

The CT-D range fulfills various global standards and approvals, supporting business worldwide. Additionally, all devices from the CT-D range have a wide supply voltage from 24-48 V DC and 24-240 V AC, making it ideal for the use in installation panels around the world.

CT-D range

Selection table

						$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \\ & n \\ & n \end{aligned}$			0 0 0 0 0 0 -1 0 0 10 M	0 n n n n n			\circ 0 n n n	0 0 0 0 0 0 0 0 0 0 n n n n			
	$\stackrel{0}{\circ}$	$\begin{aligned} & \sim \\ & \underset{\sim}{n} \\ & \underset{\sim}{u} \\ & \underset{\sim}{1} \end{aligned}$							$\begin{gathered} \underset{\sim}{\sim} \\ \stackrel{1}{4} \\ \stackrel{1}{4} \end{gathered}$	$\xrightarrow{\sim}$			$\begin{aligned} & \text { N } \\ & 0 \\ & \vdots \\ & \stackrel{1}{U} \end{aligned}$				\sim \sim 0 0 \sim \sim
Timing function																	
ON-delay	\boxtimes	■	\square	-		-											
OFF-delay with aux. voltage	■	■	\square				\square	-	\square								
Impulse-ON	$1 \Omega \triangle$	\square	\square							\square							
Impulse-OFF with aux. voltage	1ת国	\square	\square														
Flasher starting with ON	$\checkmark \boxtimes$	\square	\square									\square					
Flasher starting with OFF	\checkmark	\square	\square														
Pulse generator starting with ON or OFF	삼几												\square	\square			
Pulse former	[10]	\square	\square														
Star-delta change-over	\triangle														-		\square
Features																	
Control input, voltage-related triggering		\square	\square					I	\square				\square	\square			
Time range																	
$0.05 \mathrm{~s}-100 \mathrm{~h}$		■	\square	-		■	\square	I	\square	\square	I	-	2	2			
$0.05 \mathrm{~s}-10 \mathrm{~min}$															-		\square
Supply voltage																	
12-240 V AC/DC			\square														
24-48 V DC		\square		\square		\square	\square	-	\square	\square	I	\square	\square	\square	-		\square
24-240 V AC		\square		\square		\square	\square	-	\square	\square	I	\square	\square	\square			\square
Output																	
c/o contact		1	2	1		2	1		2	1	1	1	1	2			
n/o contact															2		2

CT-D range

Technical data

Data at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and rated values, unless otherwise indicated

	CT-D with $1 \mathrm{c} / \mathrm{o}$ contact	CT-D with $2 \mathrm{c} / \mathrm{o}$ contacts	CT-MFD. 21
Input circuit - Supply circuit			
Rated control supply voltage $U_{\text {s }}$	24-240 V AC / 24-48 V DC		12-240 V AC/DC
Rated control supply voltage U_{s} tolerance	-15...+10 \%		
Rated frequency	DC or $50 / 60 \mathrm{~Hz}$		
Frequency range AC	$47-63 \mathrm{~Hz}$		
Typical power consumption	max. 3.5 VA		
Power failure buffering time	min .20 ms		
Release voltage	$>10 \%$ of the minimum rated control supply voltage U_{5}		
Input circuit - Control circuit			
Control input, control function A1-Y1/B1	start timing external		
Kind of triggering	voltage-related triggering		
Resistance to reverse polarity	yes		
Parallel load / polarized	yes / yes		
Maximum cable length to the control inputs	$50 \mathrm{~m}-100 \mathrm{pF} / \mathrm{m}$		
Minimum control pulse length	20 ms		
Control voltage potential	see rated control supply voltage		
Current consumption of the control input	see data sheet		
Timing circuit			
Time ranges 7 time ranges $0.05 \mathrm{~s}-100 \mathrm{~h}$	1.) $0.05-1 \mathrm{~s} \quad$ 2.) $0.5-10 \mathrm{~s} \quad 3.) 5-100 \mathrm{~s} \quad 4.) 0.5-10 \mathrm{~min}$ 5.) $5-100 \mathrm{~min}$ 6.) $0.5-10 \mathrm{~h}$ 7.) $5-100 \mathrm{~h}$		
4 time ranges $0.05 \mathrm{~s}-10 \mathrm{~min}$ (CT-SDD, CT-SAD)	$\begin{array}{llll}\text { 1.) } 0.05-1 \mathrm{~s} & \text { 2.) } 0.5-10 \mathrm{~s} & 3 .) \\ 5-100 \mathrm{~s} & 4 .) \\ 0.5-10 \mathrm{~min}\end{array}$		
Recovery time	< 50 ms		
Accuracy within the rated control supply voltage tolerance	$\Delta \mathrm{t}<0.005 \% / \mathrm{V}$		
Accuracy within the temperature range	$\Delta \mathrm{t}<0.06 \% /{ }^{\circ} \mathrm{C}$		
Repeat accuracy (constant parameters)	$\Delta \mathrm{t}< \pm 0.5$ \%		
Setting accuracy of time delay	$\pm 10 \%$ of full-scale value		
Star-delta transition time CT-SDD/ CT-SAD	fixed $50 \mathrm{~ms} /$ adjustable: $20 \mathrm{~ms}, 30 \mathrm{~ms}, 40 \mathrm{~ms}, 50 \mathrm{~ms}, 60 \mathrm{~ms}, 80 \mathrm{~ms}$ or 100 ms		
Star-delta transition time tolerance CT-SDD / CT-SAD	$\pm 3 \mathrm{~ms}$		
Indication of operational states			
Control supply voltage / timing U: green LED	\square : control supply voltage applied\square _: timing		
Relay energized R, R1, R2: yellow LED	\checkmark : output relay energized		
Operating elements and controls			
Adjustment of the time range	front-face rotary switch, direct reading scales		
Fine adjustment of the time value	front-face potentiometer		
Preselection of the timing function at multifunction devices	front-face rotary switch, direct reading scales		
Adjustment of the transition time CT-SAC	front-face potentiometer		

CT-D range

Technical data

CT-D range

Technical diagrams

Connection diagrams

CT-MFD. 21

A1-A2	Supply: $12-240 ~ V ~ A C / D C ~$
A1-Y1/B1	Control input
$15-16 / 18$	1st c/o contact
$25-26 / 28$	2nd c/o contact

\square CT-AHD. 22

A1	15	25
18	6	Y1/B
28	26	A2

A1-A2	Supply: $24-48 ~ V ~ D C ~ o r ~ 24-~$ 240 V AC
A1-Y1/B1	Control input
$15-16 / 18$	1st c/o contact
$25-26 / 28$	2nd c/o contact

A1-A2	Supply:
	$24-48 \mathrm{~V} \mathrm{DC} \mathrm{or} \mathrm{24-}$
	240 VAC
A1-Y1/B1	Control input
$15-16 / 18$	1 st C/o contact

A1-A2	Supply: $24-48 ~ V ~ D C ~ o r ~ 24-~$ 240 V AC
$15-16 / 18$	1 st c/o contact

\triangle CT-SDD. 22

A1-A2	Supply: $24-48 ~ V ~ D C ~ o r ~$ $24-240 ~ V ~ A C ~$
$17-18$	1st n/o contact (star contactor)
$17-28$	2nd n/o contact (delta contactor)

$\boxtimes C T-E R D .12$

A1	15	
18	16	A2

A1-A2	Supply: $24-48 ~ V ~ D C ~ o r ~$ $24-240 ~ V ~ A C$
$15-16 / 18$	1 st c/o contact

$\curvearrowleft \boxtimes C T-E B D .12$

A1-A2	Supply:
	$24-48$ V DC or
	$24-240$ V AC
$15-16 / 18$	1 st c/o contact

\triangle CT-SAD. 22

A1-A2	Supply: $24-48 ~ V ~ D C ~ o r ~$ $24-240 ~ V ~ A C ~$
$17-18$	1 st n/o contact (star contactor)
$17-28$	2nd n/o contact (delta contactor)

Timing functions
 CT-C, CT-S, CT-D

On delay functions (Delay on make) \boxtimes

ON-delay accumulative

OFF delay functions (Delay on break)

OFF-delay with auxiliary voltage

OFF-delay without auxiliary voltage

This function requires a continuous control supply voltage for timing. Timing begins when a control supply voltage is applied. When the selected time delay is complete, the output relay energizes. If the control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

This function requires a continuous control supply voltage for timing. Timing begins when a control supply voltage is applied. When the selected time delay is complete, the output relay energizes. Timing can be paused by closing the control input.
The elapsed time t 1 is stored and continues from this time value when the control input is re-opened. If the control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

This function requires a continuous control supply voltage for timing. If the control input is closed, the output relay energizes immediately. If the control input is opened, the time delay starts. When the selected time delay is complete, the output relay de-energizes.
If control input re-closes before the time delay is complete, the time delay is reset and the output relay does not change state. Timing starts again when the control input re-opens. If the control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

The OFF-delay function without auxiliary voltage does not require a continuous control supply voltage for timing. Applying a control supply voltage energizes the output relay. If the control supply voltage is interrupted, the OFF-delay starts. When timing is complete, the output relay de-energizes.
If a control supply voltage is re-applied before the time delay is complete, the time delay is reset and the output relay remains energized. A control supply voltage must be applied for the minimum energizing time (200 ms), for correct operation.

Timing functions

CT-C, CT-S, CT-D

Impulse-OFF functions 1Ω

Impulse-OFF with auxiliary voltage

Impulse-OFF without auxiliary voltage

Impulse-OFF with auxiliary voltage
(Trailing edge interval) accumulative

Impulse-ON and Impulse-OFF functions 1Ω

Impulse-ON and impulse-OFF

This function requires a continuous control supply voltage for timing. The output relay energizes immediately when the control input is de-energized and the output de-energizes after the set pulse time is complete. If the control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

This function does not require a continuous control supply voltage for timing.
If the control supply voltage is interrupted, the output relay energizes and the OFF time starts. When timing is complete, the output relay de-energizes. If a control supply voltage is re-applied before the time delay is complete, the time delay is reset and the output relay de-energizes. A control supply voltage must be applied for the minimum energizing time (200 ms), for proper operation.

This function requires a continuous control supply voltage for timing. If a control supply voltage is applied, opening control input 1 energizes the output relay immediately and starts timing. When the selected pulse time is complete, the output relay de-energizes. Closing control input 1, before the pulse time is complete, de-energizes the output relay and resets the pulse time.
Pause timing / Accumulative impulse-OFF:
Timing can be paused by closing control input 2. The elapsed time t1 is stored and continues from this time value when control input 2 is re-opened. This can be repeated as often as required. If the control supply voltage is interrupted, the output relay de- energizes and the time delay is reset.

This function requires a continuous control supply voltage for timing. If a control supply voltage is applied, closing the control input energizes the output relay immediately and starts the pulse time t1. When t 1 is complete, the output relay de-energizes. Re-opening the control input energizes the output relay immediately and starts the pulse time t2. When t2 is complete, the output relay de-energizes. t 1 and t 2 are independently adjustable. If the control input changes state before the pulse time is complete, the output relay de-energizes and the pulse time is reset. If the control input changes state again, the interrupted pulse time restarts. If the control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

Timing functions

CT-C, CT-S, CT-D

Pulse former 1π

Puls former (single shot)

Single-pulse generator잠ㄱ

Single-pulse generator, starting with OFF

Pulse generator \boxtimes ㄴ

Starting with the ON or OFF time
(Recycling unequal times, ON or OFF first)

Impulse with delay $\boxtimes 1 \Omega$

Fixed impulse with adjustable time delay

Adjustable impulse with fixed time delay

This function requires a continuous control supply voltage for timing. Closing the control input energizes the output relay immediately and starts timing. Operating the control input during the time delay has no effect. When the selected ON time is complete, the output relay de-energizes. After the ON time is complete, it can be restarted by closing the control input. If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

This function requires a continuous control supply voltage for timing. Applying a control supply voltage while the control input is open energizes the output relay after the OFF time t1 is complete. When the following ON time t2 is complete, the output relay de-energizes. Alternatively, when a control supply voltage is already applied, the timing process can be started by opening control input. Closing the control input with a control supply voltage applied, de-energizes the output relay and re- sets the time delay. The ON \& OFF times are independently adjustable.

This function requires a continuous control supply voltage for timing. Applying a control supply voltage, with closed control input, starts timing with an OFF time first. Applying a control supply voltage, with open control input, starts timing with an ON time first. If the control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

This function requires a continuous control supply voltage for timing. The time delay $\mathrm{t1}$ starts when a control supply voltage is applied. When t 1 is complete, the output relay energizes for the fixed impulse time t2 of 500 ms .
If the control supply voltage is interrupted, the time delay is re- set. The output relay does not change state.

This function requires a continuous control supply voltage for timing. As soon as the control supply voltage is applied the output relay will close after 500 ms . When t2 is complete, the output relay energizes and the selected pulse time t1 starts. When t1 is complete, the output relay de-energizes. If the control supply voltage is interrupted, the pulse time is reset and the output relay de-energizes.

Index

Product type

Type	Order code	Page
ADP. 01	1SVR430029R0100	31
COV. 11	1SVR730005R0100	31
CT-MXS.22S	1SVR730030R3300	29
CT-AHC. 12	1SVR508110R0000	15
CT-AHC. 22	1SVR508110R0100	15
CT-AHD. 12	1SVR500110R0000	47
CT-AHD. 22	1SVR500110R0100	47
CT-AHS.22P	1SVR740110R3300	30
CT-AHS. 22 S	1SVR730110R3300	30
CT-APS.12P	1SVR740180R3100	30
CT-APS. 12 S	1SVR730180R3100	30
CT-APS.21P	1SVR740180R0300	30
CT-APS.21S	1SVR730180R0300	30
CT-APS.22P	1SVR740180R3300	30
CT-APS. 22 S	1SVR730180R3300	30
CT-ARC. 12	1SVR508120R0000	15
CT-ARS.11P	1SVR740120R3100	30
CT-ARS.11S	1SVR730120R3100	30
CT-ARS.21P	1SVR740120R3300	30
CT-ARS. 21 S	1SVR730120R3300	30
CT-EBC. 12	1SVR508150R0000	15
CT-EBD. 12	1SVR500150R0000	47
CT-ERC. 12	1SVR508100R0000	15
CT-ERC. 22	1SVR508100R0100	15
CT-ERD. 12	1SVR500100R0000	47
CT-ERD. 22	1SVR500100R0100	47
CT-ERS.12P	1SVR740100R3100	30
CT-ERS. 12 S	1SVR730100R3100	30
CT-ERS.21P	1SVR740100R0300	30
CT-ERS.21S	1SVR730100R0300	30
CT-ERS.22P	1SVR740100R3300	30
CT-ERS. 22 S	1SVR730100R3300	30
CT-MBS.22P	1SVR740010R3200	29
CT-MBS. 22 S	1SVR730010R3200	29
CT-MFC. 12	1SVR508020R0000	15
CT-MFC. 21	1SVR508020R1100	15
CT-MFD. 12	1SVR500020R0000	47
CT-MFD. 21	1SVR500020R1100	47
CT-MFS.21P	1SVR740010R0200	29
CT-MFS.21S	1SVR730010R0200	29
CT-MKC. 31	1SVR508010R1300	15
CT-MVS.12P	1SVR740020R3100	29
CT-MVS. 12 S	1SVR730020R3100	29
CT-MVS.21P	1SVR740020R0200	29
CT-MVS.21S	1SVR730020R0200	29
CT-MVS.22P	1SVR740020R3300	29
CT-MVS.22S	1SVR730020R3300	29
CT-MVS.23P	1SVR740021R2300	29
CT-MVS. 23 S	1SVR730021R2300	29
CT-MXS.22P	1SVR740030R3300	29
CT-SAC. 22	1SVR508210R0100	15

Type	Order code	Page
CT-SAD.22	1SVR500210R0100	47
CT-SDC.22	1SVR508211R0100	15
CT-SDD.22	1SVR500211R0100	47
CT-SDS.22P	1SVR740210R3300	30
CT-SDS.22S	1SVR730210R3300	30
CT-SDS.23P	1SVR740211R2300	30
CT-SDS.23S	1SVR730211R2300	30
CT-TGC.12	1SVR508160R0000	15
CT-TGC.22	1SVR508160R0100	15
CT-TGD.12	1SVR500160R0000	47
CT-TGD.22	1SVR500160R0100	47
CT-VWC.12	1SVR508130R0000	15
CT-VWD.12	1SVR500130R0000	47
CT-WBS.22P	1SVR740040R3300	29
CT-WBS.22S	1SVR730040R3300	29
KA1-8029	1SFA616920R8029	31
KA1-8030	1SFA616920R8030	31
MA16-1060	1SFA611940R1060	31
MAR.01	1 SVR366017R0100	31
MAR.12	1 SVR730006R0000	31
MT-150B	1 SFA611410R1506	31
MT-250B	1 SFA611410R2506	31
MT-350B	1 SFA611410R3506	31
SK 615562-87	GJD6155620R0087	31
SK 615562-88	GJD6155620R0088	
		3

ABB STOTZ-KONTAKT GmbH
Eppelheimer Strasse 82
69123 Heidelberg
Germany
You can find the address of your local sales organization on the ABB homepage
abb.com/lowvoltage

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents - in whole or in parts - is forbidden without prior written consent of
ABB AG Copyright© 2021 ABB AG
All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Timers category:
Click to view products by ABB manufacturer:
Other Similar products are found below :
79237785 H5AN-4DM DC12-24 H5CN-YAN AC100-240 H5CX-L8S-N AC100-240 H5S-WFB2D H5AN-4D DC12-24 THR2U-110A $\underline{81506944} 88225029$ H5S-YB4-X H7AN-2D DC12-24 H5CN-XANS DC12-48 H7AN-W4DM DC12-24 H7AN-4DM DC12-24 H7AN-4D DC12-24 H7AN-RT6M AC100-240 LT4H-AC24VS 1SVR508020R1100 1SVR508100R0000 1SVR550127R4100 1SVR730010R3200 1SVR730020R3300 1SVR730211R2300 1SVR740100R3300 PCU-511UNI 732-0030 H3C-R H3CR-A8-301 24-48AC/12-48DC H3CRA8E 24-48AC/DC H3CR-F8 100-240AC/100-125DC H3CR-FN 100-240AC/100-125DC H3DK-G 24-230AC/DC H3DK-HBL AC/DC24-48 H3DK-M1A DC12 H3DT-A1 24-240AC/DC LT4H-AC24V LT4HW8-AC240V LT4HW-AC240V LT4HW-AC240VS LT4HW-AC24VS LT4HW-DC24V LT4HW-DC24VS 31L48AP 31L48TPM240 RC302 RC312 RE48ACV12MW REV-201M RG AT78041

[^0]: 1) Extended temperature range $-40^{\circ} \mathrm{C}$
 2) Without auxiliary voltage
 $\left.{ }^{3}\right) 50 \mathrm{~ms}$ transition time

 S: Screw connection
 P: Push-in / easy connect

[^1]: ${ }^{11}$ Prior to first commisioning and after a six-month stop in operation

