$V_{RRM} = 5500 V$

 $I_{FAVM} = 380 A$

 $I_{FSM} = 10 \text{ kA}$

 $V_{F0} = 2.7 V$

 $r_F = 2.8 \text{ m}\Omega$

 $V_{DClink} = 3300 V$

Fast Recovery Diode

5SDF 04F6004

Doc. No. 5SYA1150-02 Sep. 01

- Patented free-floating technology
- · Industry standard housing
- · Cosmic radiation withstand rating
- Low on-state and switching losses
- Optimized to use in snubberless operation

Blocking

V_{RRM}	Repetitive peak reverse voltage	5500 V	Half sine wave, $t_P = 10 \text{ ms}$, $f = 50 \text{ Hz}$		
I _{RRM}	Repetitive peak reverse current	≤ 20 mA	$V_R = V_{RRM}$, $T_j = 115$ °C		
V_{DClink}	Permanent DC voltage for 100 FIT failure rate	3300 V	100% Duty	Ambient cosmic radiation at sea level in open air.	
V_{DClink}	Permanent DC voltage for 100 FIT failure rate	3900 V	5% Duty		

Mechanical data

E Mou	Mounting force		18 kN
F _m	Mounting force max.		22 kN
а	Acceleration: Device unclamped Device clamped		50 m/s ² 200 m/s ²
m	Weight		0.46 kg
Ds	Surface creepage distance	≥	33 mm
Da	Air strike distance	≥	20 mm

On-state (see Fig. 1, 2)

I _{FAVM}	Max. average on-state current	380 A	Half sine wave, T _c = 70°C	
I _{FRMS}	Max. RMS on-state current	600 A		
I _{FSM}	Max. peak non-repetitive	10 kA	tp = 10 ms Before surge:	
	surge current	22 kA	tp = 1 ms $T_c = T_j = 115^{\circ}C$	
∫l ² dt	Max. surge current integral	0.5·10 ⁶ A ² s	tp = 10 ms After surge:	
		0.24·10 ⁶ A ² s	tp = 1 ms $V_R \approx 0 \text{ V}$	
V _F	Forward voltage drop	≤ 5.2 V	I _F = 900 A	
V _{F0}	Threshold voltage	2.7 V	Approximation for $T_j = 115^{\circ}C$	
r _F	Slope resistance	2.8 mΩ	I _F = 2002000 A	

Turn-on (see Fig. 3, 4)

V_{fr}	Peak forward recovery voltage	≤	370 V	di/dt = 1000 A/ μ s, T $_{j}$ = 115°C
----------	-------------------------------	---	-------	---

Turn-off

di/dt _{crit}	Max. decay rate of on-state current	≤	340 A/μs	I _F = 900 A, V _{Dclink} = 3300 V	T _j = 115 °C
Im	Reverse recovery current	≤	600 A		
Q _{rr}	Reverse recovery charge	≤	μC		
E _{rr}	Turn-off energy	≤	3.5 J		

Thermal

Tj	Operating junction temperature range	-40115°C		
T _{stg}	Storage temperature range	-40125°C		
R _{thJC}	Thermal resistance junction to case	≤ 44 K/kW	Anode side cooled	
		≤ 44 K/kW	Cathode side cooled	F _m =
		≤ 22 K/kW	Double side cooled	18 22 kN
R _{thCH}	Thermal resistance case to heatsink	≤ 10 K/kW	Single side cooled	
		≤ 5 K/kW	Double side cooled	

Analytical function for transient thermal impedance.

$$Z_{\text{thJC}}(t) = \sum_{i=1}^{n} R_{i}(1 - e^{-t/\tau_{i}})$$

i	1	2	3	4		
R _i (K/kW)	9.74	3.12	1.18	0.52		
τ _i (s) 0.387 0.0457 0.006 0.0018						
F _m = 18 22 kN Double side cooled						

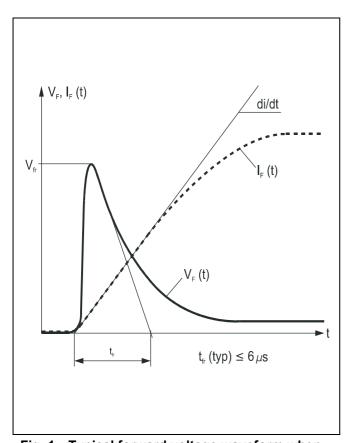


Fig. 1 Typical forward voltage waveform when the diode is turned on with high di/dt.

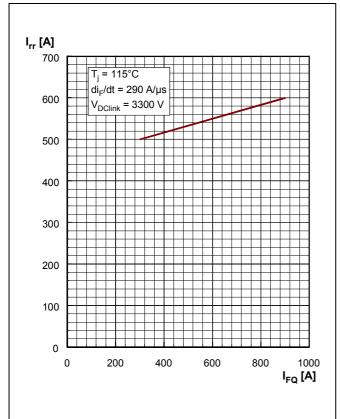


Fig. 3 Diode reverse recovery current vs. turnoff current.

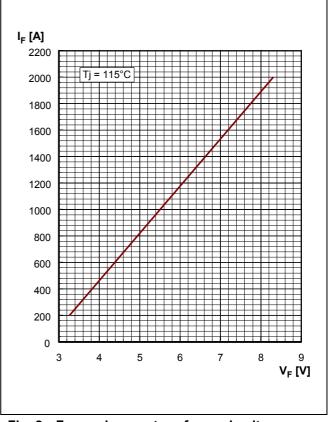


Fig. 2 Forward current vs. forward voltage.

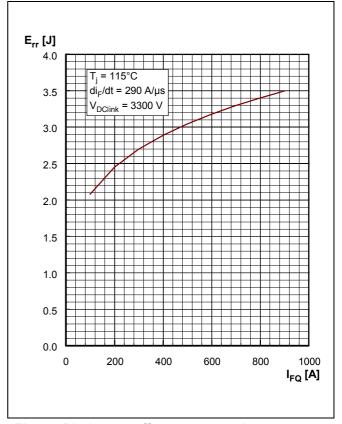


Fig. 4 Diode turn-off energy per pulse vs. turn-off current.

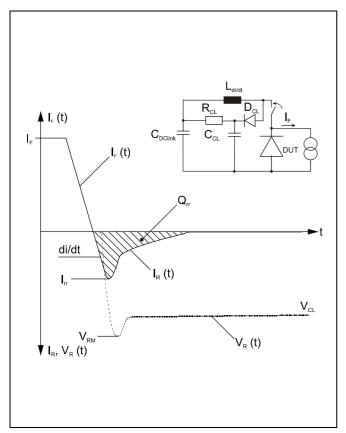


Fig. 5 Typical current and voltage waveforms at turn-off in a circuit with voltage clamp.

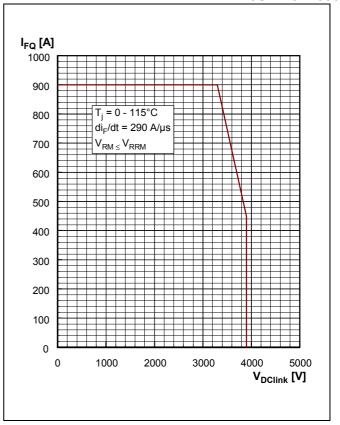


Fig. 6 Max. repetitive diode forward current.

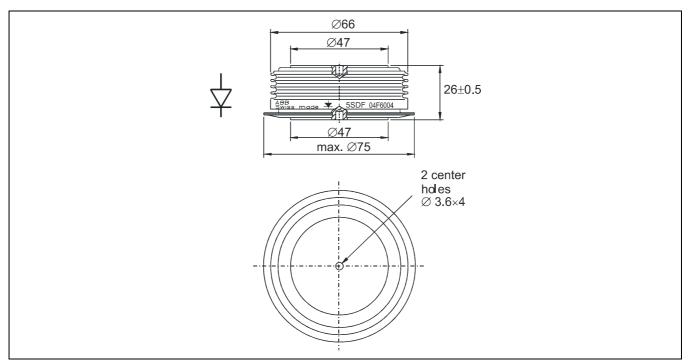


Fig. 7 Outline drawing. All dimensions are in millimeters and represent nominal values unless stated otherwise.

ABB Semiconductors AG reserves the right to change specifications without notice.

ABB Semiconductors AG

Fabrikstrasse 3 CH-5600 Lenzburg, Switzerland

Telephone +41 (0)62 888 6419 Fax +41 (0)62 888 6306 Email abbsem@ch.abb.com Internet www.abbsem.com Doc. No. 5SYA1150-02 Sep. 01

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by ABB manufacturer:

Other Similar products are found below:

70HFR40 RL252-TP 1N5397 NTE5841 NTE6038 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F RRE02VS6SGTR 067907F MS306 70HF40 US2JFL-TP A1N5404G-G CRS04(T5L,TEMQ) ACGRA4007-HF ACGRB207-HF CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6077 85HFR60 40HFR60 1N1186RA 70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SDHD5K VS-12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358 NTE6162 NTE5850 SKN20/08 SKN300/16