$V_{RRM} = 4500 V$

 $I_{FAVM} = 435 A$

 $I_{FSM} = 16 \text{ kA}$

 $V_{F0} = 2.42 V$

 $r_F = 2.1 \text{ m}\Omega$

 $V_{DClink} = 2800 V$

Fast Recovery Diode

5SDF 05F4502

Doc. No. 5SYA1151-01 Sep. 01

- Patented free-floating technology
- · Industry standard housing
- · Cosmic radiation withstand rating
- Low on-state and switching losses
- Optimized to use in snubberless operation

Blocking

V_{RRM}	Repetitive peak reverse voltage	4500 V	Half sine wave, t_P = 10 ms, f = 50 Hz		
I _{RRM}	Repetitive peak reverse current	≤ 20 mA	$V_R = V_{RRM,} T_j = 115^{\circ}C$		
V_{DClink}	Permanent DC voltage for 100 FIT failure rate	2800 V	100% Duty	Ambient cosmic radiation at sea level in open air.	
V_{DClink}	Permanent DC voltage for 100 FIT failure rate	3200 V	5% Duty		

Mechanical data

Е	Mounting force	٦.	18 kN
F _m	Mounting force max	(.	22 kN
а	Acceleration: Device unclamped Device clamped		50 m/s ² 200 m/s ²
m	Weight		0.46 kg
Ds	Surface creepage distance	≥	33 mm
Da	Air strike distance	≥	20 mm

On-state (see Fig. 1, 2)

I _{FAVM}	Max. average on-state current	435 A	Half sine wave, T _c = 70°C
I _{FRMS}	Max. RMS on-state current	685 A	
I _{FSM}	Max. peak non-repetitive	16 kA	tp = 10 ms Before surge:
	surge current	32 kA	tp = 1 ms $T_c = T_j = 115^{\circ}C$
∫l ² dt	Max. surge current integral	1.28·10 ⁶ A ² s	tp = 10 ms After surge:
		0.5·10 ⁶ A ² s	tp = 1 ms $V_R \approx 0 \text{ V}$
V _F	Forward voltage drop	≤ 4.7 V	I _F = 1100 A
V _{F0}	Threshold voltage	2.42 V	Approximation for $T_j = 115^{\circ}C$
r _F	Slope resistance	2.1 mΩ	I _F = 2002000 A

Turn-on

V _{fr}	Peak forward recovery voltage	≤	370 V	di/dt = 1000 A/µs, T _j = 115°C
-----------------	-------------------------------	----------	-------	---

Turn-off (see Fig. 3, 4)

di/dt _{crit}	Max. decay rate of on-state current	≤	430 A/μs	I _F = 1100 A, V _{Dclink} = 2800 V	T _j = 115 °C
Irr	Reverse recovery current	≤	610 A	I _F = 1100 A,	V _{DClink} = 2700 V
Q _{rr}	Reverse recovery charge	≤	μC	$di/dt = 360 A/\mu s$,	$T_j = 115^{\circ}C,$
Err	Turn-off energy	≤	3.1 J		

Thermal

Tj	Operating junction temperature range	-40115°C		
T _{stg}	Storage temperature range	-40125°C		
R _{thJC}	Thermal resistance junction to case	≤ 32 K/kW	Anode side cooled	
		≤ 32 K/kW	Cathode side cooled	F _m =
		≤ 17 K/kW	Double side cooled	18 22 kN
R _{thCH}	Thermal resistance case to heatsink	≤ 10 K/kW	Single side cooled	
		≤ 5 K/kW	Double side cooled	

Analytical function for transient thermal impedance.

$$Z_{\text{thJC}}(t) = \sum_{i=1}^{n} R_{i}(1 - e^{-t/\tau_{i}})$$

i	1	2	3	4		
R _i (K/kW)	9.64	3.08	1.18	0.55		
τ _i (s) 0.381 0.428 0.0048 0.0013						
F _m = 18 22 kN Double side cooled						

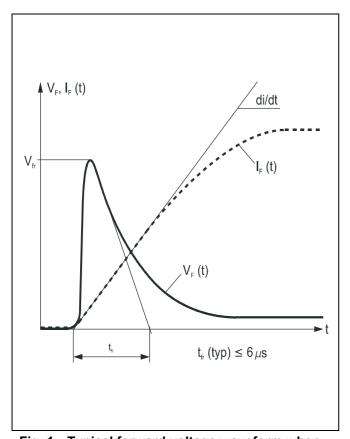


Fig. 1 Typical forward voltage waveform when the diode is turned on with high di/dt.

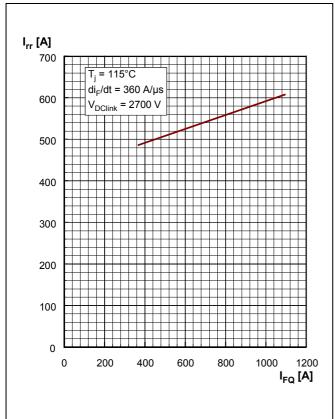


Fig. 3 Diode reverse recovery current vs. turnoff current.

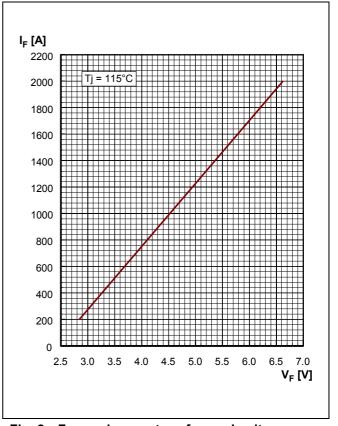


Fig. 2 Forward current vs. forward voltage.

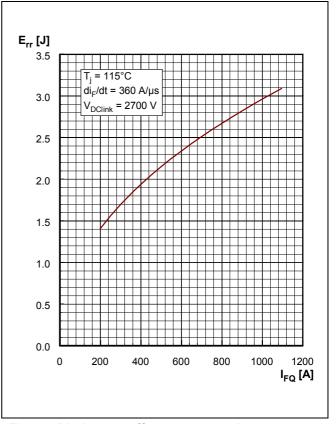


Fig. 4 Diode turn-off energy per pulse vs. turn-off current.

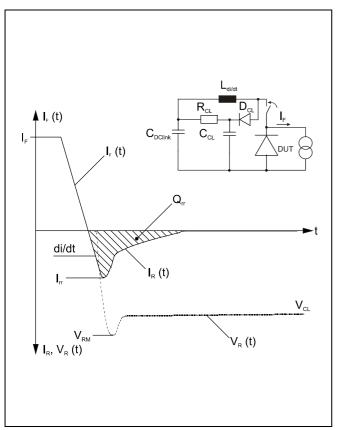


Fig. 5 Typical current and voltage waveforms at turn-off in a circuit with voltage clamp.

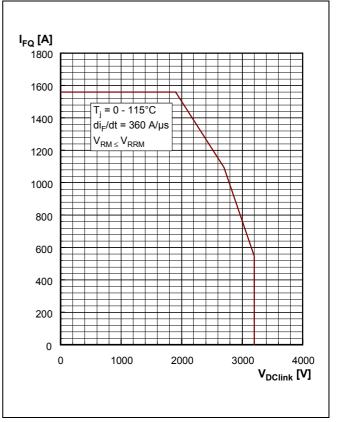


Fig. 6 Max. repetitive diode forward current.

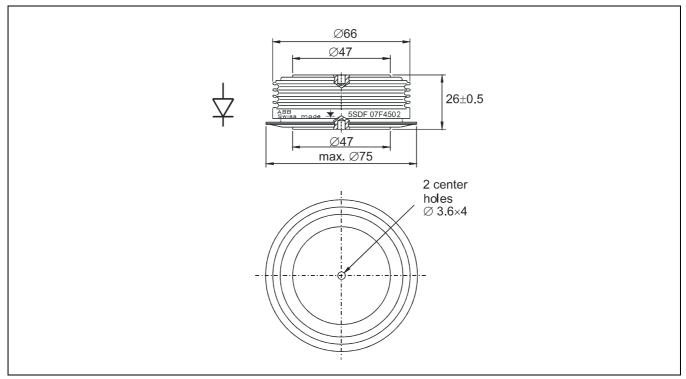


Fig. 7 Outline drawing. All dimensions are in millimeters and represent nominal values unless stated otherwise.

ABB Semiconductors AG reserves the right to change specifications without notice.

ABB Semiconductors AG

Fabrikstrasse 3 CH-5600 Lenzburg, Switzerland

Telephone +41 (0)62 888 6419 Fax +41 (0)62 888 6306 Email abbsem@ch.abb.com Internet www.abbsem.com Doc. No. 5SYA1151-01 Sep. 01

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by ABB manufacturer:

Other Similar products are found below:

70HFR40 RL252-TP 1N5397 NTE5841 NTE6038 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F RRE02VS6SGTR 067907F MS306 70HF40 US2JFL-TP A1N5404G-G CRS04(T5L,TEMQ) ACGRA4007-HF ACGRB207-HF CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6077 85HFR60 40HFR60 1N1186RA 70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SDHD5K VS-12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358 NTE6162 NTE5850 SKN20/08 SKN300/16