## APPLICATION NOTE

# Greenhouses application - lamp starting solution MS132-...L lamp starters with AF16-...L/AF26-...L lamp contactors 



Control cabinets in greenhouses are rarely ventilated, suffer from limited space and the electrical components are exposed to aggressive substances. ABB's lamp starting solution for assimilation lighting makes sure that plants in greenhouse thrive underneath artificial light without disturbances.

The lamp starting combination was developed especially for control cabinets in greenhouses. The lamp starter combination consists of a MS132-...L lamp starter and an AF16-...L/AF26-...L lamp contactor. It can be mounted on a rail adapter which can be snapped on the busbar energy distribution system typically used in the setup of a greenhouse assimilation cabinet.

Because of the high ambient temperature and aggressive substances in the greenhouses atmosphere it is not common to ventilate the control cabinet. Due to this, the temperature in the control cabinet can be high, which is demanding for the electrical components. The lamp starter combination has a very low heat dissipation, contributing to an acceptable temperature in the cabinet. The temperature compensation of the lamp starter allows suitable overload protection depending on the ambient temperature of the control cabinet in the greenhouse.

## 10 \% less heat generation

The new components guarantee a lower heat generation. The lamp starter generates 10 percent less heat and the contactor even 20 percent less. The lamp starter is able to automatically compensate the temperature up to $60^{\circ} \mathrm{C}$ without influencing the characteristics. The MS132-20L is up to 100 kA short-circuit proof at 400 V . This is useful as the control panels in a greenhouse complex are placed relatively close to the transformers, which require high short-circuit current protection.

## Compact size

The lamp starter combination has a reduced size - the width of the rail adapter was reduced by 17 percent ( 9 mm ) to 54 mm in comparison to the old solution. The lamp starter and the lamp contactor have a width of 45 mm . Because of this, there is an air cap of $4,5 \mathrm{~mm}$ on each side with the advantage of an optimized thermal distribution.

## -

Application Note | Lamp starting solution

## Contents

Component table ..... 3
Structure of greenhouses ..... 4
Panel for lamp starters ..... 4
Lamp starter combination description ..... 6
Technical data ..... 9
Lamp starters ..... 9
Lamp contactors ..... 11
OT disconnect switch ..... 13
MCCB 320 A with residual current device for assimilation panels ..... 14
Busbar adapter ..... 16
Information about the busbar system ..... 17
Useful hints ..... 19
Definitions ..... 20
References ..... 20

## Component table

For the design of the electrical system of each individual greenhouse, lamp starting solution and the approbriate control and protection, characteristical parameters are to be identified. Please refer to the questionnaire (2CDC131109D0201) supplied for this purpose. ABB will gladly support you in identifying the necesarry parameters.

## Lamp starter

| Type | Current range | Order code |
| :--- | :--- | ---: |
| MS132-16L | $10-16 \mathrm{~A}$ | 1SAM350100R1011 |
| MS132-20L | $16-20 \mathrm{~A}$ | 1SAM350100R1013 |
| MS132-25L | $20-25 \mathrm{~A}$ | 1SAM350100R1014 |

Lamp contactor

| Type | Rated control circuit voltage | Order code |
| :--- | :--- | ---: |
| AF16-40-00L-13 | $100-250 \mathrm{~V} 50 / 60 \mathrm{HZ}-\mathrm{DC}$ | 1SBL177281R1300 |
| AF16-40-00L-14 | $250-500 \mathrm{~V} 50 / 60 \mathrm{HZ}-\mathrm{DC}$ | 1SBL177281R1400 |
| AF26-30-00L-13 | $100-250 \mathrm{~V} 50 / 60 \mathrm{HZ-DC}$ | 1SBL237081R1300 |
| AF26-30-00L-14 | $250-500 \mathrm{~V} 50 / 60 \mathrm{HZ}-\mathrm{DC}$ | 1SBL237081R1400 |

## MCCB with residual current device

| Type | Order code assembled device | Order coder |
| :--- | :--- | ---: |
| T4D 320 + RC222 + spread flags 4 pole | 1SDX001755R1 |  |
| T4D 320 A switch 4 pole |  | 1SDA054598R1 |
| RC222/4 A RCD trip unit 4 pole | 1SDA054954R1 |  |
| Spread flags 3 pieces included rubber terminal separation |  | 1 1SDAO55004R1 |
| T4D 320 + RC222 4 pole | 1SDX002530R1 | 1SDA054598R1 |
| T4D 320 A switch 4 pole |  | 1SDA054954R1 |
| RC222/4 A RCD trip unit 4 pole |  |  |

OT disconnect switch

| Type | Order code |
| :--- | ---: |
| OT315EO3WP | 1SCAO22809R8650 |

## Loose parts

| Type | Order code |
| :--- | ---: |
| Auxiliary contact 1 CO + 1 TRIP cabled 400 V AC | 1SDAO54912R1 |
| Auxiliary contact 1 CO + 1 TRIP cabled 24 V DC | 1SDA066075R1 |
| Pushbutton for remote trip | 1SFA619126R1076 |
| Connection set 60 mm Wöhner rail included elevating piece | 130193 |

## Structure of greenhouses



Example of a greenhouse layout

Electrical energy is distributed from the transformer on the grid via cables to the panels. The lamps in the greenhouse are then supplied from the panel. The lamps are structured in groups within an individual panel.
By switching dedicated lighting groups, the light output in the greenhouse can be controlled to have $25,50,75$ or 100 percent of the light intensity. Alternatively, if sufficient natural light is available in the greenhouse the lighting can be switched off. The nominal voltage of the system is typically 400 V AC , 3-phase without neutral.

## Panel for lamp starters



Example for green house panel location

The typical dimensions of a standard panel are (L*W*H) 2000*380*210 mm, but they depend on the panel manufacturers and type of agricultural crop. The panels are designed and placed specifically to create as little shade over the crops in the greenhouse as possible.
The panels are min. IP44 protected due to the environmental conditions and airborne particles inside the greenhouses which could affect the electrical components. Another issue is potentially high levels of humidity. If the boards are not sealed airtight the insurance company will not provide coverage for the electrical installation. A typical arrangement of the components inside the panel is shown in figures three and four.
Actually, the European standard EN/IEC 60364-7-705 requires the use of residual current devices (RCDs) with 300 mA . This may be mandatory in certain countries and has to be implemented in a suitable design. For example, in the Netherlands the standard NEN1010:2015 art 705.411.1 requires the use of RCDs in the segment agriculture, horticulture and livestock farming.


。

A typical arrangement of the components with a disconnector


A typical arrangement of the components with SACE T4D 320 and RCD 222/4

The panel typically consists of:

- Enclosure, min. IP44
- Busbar system
- MCCB (T4D 320) with RCD (optional if required)
- Busbar adapters for protected lamp starter combinations, e.g. Wöhner
- Protected lamp starter combination, e.g. MS132-...L and AF...-L
- OT disconnect switch
- Control interface to management system to upstream assimilation lighting (management) system
- Lockable handle


## Lamp starter combination description

The lamp starter combination controls the lamp loads and provide protection for the lamps and installations against short-circuit and overload.
The main functions are:

- Overload protection
- Short-circuit protection
- Phase loss sensitivity
- Disconnect function
- Switching lamp loads
- Adjustable current setting for overload protection
- Temperature compensation: -25 to $+60^{\circ} \mathrm{C}$


Lamp starter combination


Lamp starter combination on a Wöhner busbar adapter

The typical lamp starter combination is designed with a MS132-...L protected lamp starter and an AF16-...L or AF26-...L lamp contactor for the control and protection of the lamps.
The three-pole protected starter MS132-...L has thermal tripping elements for overload protection and electromagnetic tripping elements for short-circuit protection. Furthermore, it is suitable for isolation of the installation from the supply. This is important e.g. for maintenance work. The protected starter has a setting scale in amperes, which allows the direct adjusting of the device to adapt to the individual lamp load structures.
The lamp starter with MS132-...L and the lamp contactor AF16-...L/AF26-...L are typically mounted on a Wöhner adapter and snapped on a busbar system. This combination is type-tested by ABB for use in lightening applications, especially greenhouses. Typically 16,18 or 20 of these lamp starters are placed in one panel and each starter is connected with nine lamps of $1000 \mathrm{~W} / 400 \mathrm{~V}$. The most common
number however is 18 starters. The Lamps are protected per lighting group. When a lamp error occurs in one lighting group, only this group will switch off.

The lamps are mounted in a checkerboard patterns to have an evenly light distribution even when 25, 50 or 75 percent of the lamps are switched on. By switching dedicated lighting groups, the light output in the greenhouse can be controlled to have $25,50,75$ or 100 percent of the light intensity. Alternatively, if sufficient natural light is available in the greenhouse the lighting can be switched off. Typically, nine lamps are connected between the phases per lamp starter. They are in delta connection L1-L2 L2-L3 L1L3. With actual lamp technology for nine lamps the current is 13.6 A.

## Lamp load types

- 600 W - HPS
- 1000 W -HPS


## Examples for heat dissipation for typical combinations

| Lamp starter | Connection | Lamp contactor | Busbar adapter |
| :--- | :--- | :--- | ---: |

## Example calculation of maximum quantity of lamps

Data

- Lamp 1000 W / 400 V - 2.61 A connected to phases
- Lamp starter load not above 16 A
- Lamps always equal to three

Formula
2.61 A: $\sqrt{ } 3=1.51 \mathrm{~A} \times 9$ lamps $=13.6 \mathrm{~A}$

Depending on technical parameters of lamp loads, nine lamps is the maximum amount per combination. This value is based on experience levels in proven-in-use installations and should not be exceeded.

Dimensions in mm


Lamp starter combination on a Wöhner busbar adapter

## Wiring diagram



Lamp starter combination power circuit with lamp loads

## Technical data

## Lamp starters

- For other characteristics, please consult your ABB sales representative
- Accessory fitting details : same as standard MS132 manual motor starters

| Type |  | MS132-16L | MS132-20L | MS132-25L |
| :---: | :---: | :---: | :---: | :---: |
| Standards |  | IEC/EN 60947-2, IEC/EN 60947-4-1, IEC/EN 60947-1 |  |  |
| Rated operational vo | e $\mathrm{U}_{\text {e }}$ | 690 V AC |  |  |
| Rated frequency |  | $50 / 60 \mathrm{~Hz}$ |  |  |
| Rated impulse withs | voltage $\mathrm{U}_{\text {imp }}$ | 6 kV |  |  |
| Rated insulation volt |  | 690 V |  |  |
| Setting range | lower range | 10.0 A | 16.0 A | 20.0 A |
|  | upper value | 16.0 A | 20.0 A | 25.0 A |
| Rated instantaneous short-circuit current setting $\mathrm{l}_{\mathbf{i}}$ |  | 240 A | 300 A | 375 A |
| Resistance per pole |  | $0.011 \Omega$ | $0.0057 \Omega$ | $0.0045 \Omega$ |
| Power loss per pole | at lower value | 1.1 W | 1.5 W | 1.8 W |
|  | at upper value | 1.8 W | 2.3 W | 2.8 W |
| Max. cable loop impedance |  | $1.0476 \Omega$ | $0.8411 \Omega$ | $0.6729 \Omega$ |
| Pollution category |  | 3 |  |  |
| Overvoltage category acc. to IEC/EN 60664 |  | up to III |  |  |
| Protective separation acc. to IEC/EN 61140 between the conducting paths of the main circuit |  | No |  |  |
| Ambient air temperature |  |  |  |  |
| Operation open compensatedStorage |  | $-25 . . .60^{\circ} \mathrm{C}$ |  |  |
|  |  | $-50 . . .+80^{\circ} \mathrm{C}$ |  |  |
| Ambient air temperature compensation |  | Acc. to IEC/EN 60947-4-1 |  |  |
| Maximum operating altitude permissible |  | 2000 m |  |  |
| Mounting position |  | Position 1-6 (optional for single mounting) |  |  |
| Degree of protection | housing | IP20 |  |  |
|  | main circuit terminals | IP20 |  |  |
| Connecting Capacity, min. / max. |  |  |  |  |
| - rigid |  | $\begin{aligned} & \hline 1 . . .2 .5 \mathrm{~mm}^{2} \\ & 2.5 \ldots . .6 \mathrm{~mm}^{2} \end{aligned}$ |  |  |
| $\square \square$ flexi | with ferrule 1 | $0.75 . . .6 \mathrm{~mm}^{2}$ |  |  |
| $\square \square$ flexi | with insulated ferrule 1 | $0.75 . . .6 \mathrm{~mm}^{2}$ |  |  |
| $\square$ flexi |  | $\begin{aligned} & 1.5 . . .2 .5 \mathrm{~mm}^{2} \\ & 2.5 . . .6 \mathrm{~mm}^{2} \end{aligned}$ |  |  |
| Stripping length |  | 10 mm |  |  |
| Tightening torque |  | 2.0 Nm |  |  |
| Connection screw |  | M4 |  |  |
| Recommended screw driver |  | Pozidriv 2 / 6.5 mm |  |  |
| Minimum distance to other units same type |  |  |  |  |
| horizontal |  | 0 mm |  |  |
| vertical |  | 150 mm |  |  |
| Minimum distance to electrical conductive board |  |  |  |  |
| horizontal, up to 400 V |  | 0 mm |  |  |
| horizontal, up to 690 V |  | $>1.5 \mathrm{~mm}$ |  |  |
| vertical |  | 75 mm |  |  |


| Type MS132 | 400 V AC |  |
| :--- | :--- | ---: |
|  | $\mathbf{I}_{\mathrm{cs}}[\mathrm{kA}]$ | $\mathbf{I}_{\mathrm{cu}}[\mathrm{kA}]$ |
| 16 | 100 | 100 |
| 20 | 100 | 100 |
| 25 | 50 | 50 |

Dimensions in mm, inches


MS132...-L

## Lamp contactors

For other characteristics, please consult your ABB sales representative.

| Type |  | AF16-40-00L | AF26-30-00L |
| :---: | :---: | :---: | :---: |
| Standards |  | IEC 60947-1 / 60947-4-1 and EN 60947-1 / 60947-4-1 |  |
| Rated operational voltage $\mathrm{U}_{\mathrm{e}}$ |  | 690 V AC |  |
| Rated frequency |  | $50 / 60 \mathrm{~Hz}$ |  |
| Conventional free-air thermal current $\mathrm{t}_{\text {th }}$ |  |  |  |
| acc. to IEC 60947-4-1, open contactors, $\theta \leq 40^{\circ} \mathrm{C}$ |  | 35 A | 50 A |
| with conductor cross-sectional area |  | $6 \mathrm{~mm}^{2}$ | $10 \mathrm{~mm}^{2}$ |
| Max. electrical switching frequency |  | $6 \mathrm{~mm}^{2}$ | $10 \mathrm{~mm}^{2}$ |
| Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$ acc. to IEC 60947-4-1 |  | 690 V |  |
| Rated impulse withstand voltage $U_{\text {imp }}$ |  | 6 kV |  |
| Power loss per pole |  | 0.35 W | 0.6 W |
| Electromagnetic compatibility |  | Devices complying with IEC 60947-1 / EN 60947-1 - Environment A and B |  |
| Ambient air temperature close to contactor |  |  |  |
| Operation fitted with thermal overload relay |  | $-25 . . .60^{\circ} \mathrm{C}$ |  |
| without thermal overload relay |  | $-40 . . .+70^{\circ} \mathrm{C}$ |  |
| Storage |  | $-60 . . .+80^{\circ} \mathrm{C}$ |  |
| Climatic withstand |  | Category B according to IEC 60947-1 Annex Q |  |
| Maximum operating altitude (without derating) |  | 3000 m |  |
| Coil operating limits acc. to IEC 60947-4-1 |  |  |  |
| AC supply |  | At $\theta \leq 60^{\circ} \mathrm{C} 0.85 \times \mathrm{U}_{\mathrm{c}} \min . . .1 .1 \times \mathrm{U}_{\mathrm{c}} \max$. <br> At $\theta \leq 70^{\circ} \mathrm{C} 0.85 \times \mathrm{U}_{\mathrm{c}} \min \ldots . . \mathrm{U}_{\mathrm{c}}$ max. |  |
| DC supply |  | At $\theta \leq 60^{\circ} \mathrm{C} 0.85 \times U_{c} \min . . .1 .1 \times U_{c}$ max. At $\theta \leq 70^{\circ} \mathrm{C}$ (AF) $0.85 \times U_{c}$ min... $U_{c}$ max. |  |
| AC control voltage 50/60 Hz |  |  |  |
| Rated control circuit voltage $\mathrm{U}_{\mathrm{c}}$ |  | 100... $500 \mathrm{~V} \mathrm{AC/DC}$ |  |
| Coil consumption | average pull-in value | 50 VA |  |
|  | average holding value | 2.2 VA / 2 W |  |
| Drop-out voltage |  | $\leq 60 \%$ of $\mathrm{U}_{\mathrm{c}} \mathrm{min}$. |  |
| Operating time |  |  |  |
| Between coil energization and: | N.O. contact closing | $40 . . .95 \mathrm{~ms}$ |  |
|  | N.C. contact opening | $38 . . .90 \mathrm{~ms}$ |  |
| Between coil deenergization and: | N.O. contact opening | $11 . .95 \mathrm{~ms}$ |  |
|  | N.C. contact closing | $13 . .98 \mathrm{~ms}$ |  |
| Mounting position |  |  |  |

Max. N.C. built-in and add-on N.C. auxiliary contacts: see accessory fitting details for

4-pole contactor AF16 3-pole contactor AF26

| Type |  |  | AF16-40-00L | AF26-30-00L |
| :---: | :---: | :---: | :---: | :---: |
| Connection capacity (min. ... max.) <br> Main conductors (poles) |  |  |  |  |
| $\square$ rigid | (id ( $\leq 4 \mathrm{~mm}^{2}$ ) | 1 x | $1 . . .6 \mathrm{~mm}^{2}$ | 2.5... $10 \mathrm{~mm}^{2}$ |
| $\square$ | $\left.\begin{array}{l} \text { randed } \\ \left.6 \mathrm{~mm}^{2}\right) \end{array}\right\}$ | 2 x | $1 . . .6 \mathrm{~mm}^{2}$ | $2.5 \ldots 10 \mathrm{~mm}^{2}$ |
| $\square \square$ | non-insulated ferrule | 1 x | 0.75... $6 \mathrm{~mm}^{2}$ | 1.5... $10 \mathrm{~mm}^{2}$ |
| $\square$ |  | 2 x | 0.75... $6 \mathrm{~mm}^{2}$ | $1.5 . . .10 \mathrm{~mm}^{2}$ |
| $\square \square$ flexible with | insulated ferrule | 1 x | 0.75... $4 \mathrm{~mm}^{2}$ | $1.5 . . .10 \mathrm{~mm}^{2}$ |
| $\square \square$ |  | 2 x | 0.75...2.5 mm ${ }^{2}$ | $1.5 . . .4 \mathrm{~mm}^{2}$ |
| Stripping length |  |  | 10 mm | 14 mm |
| Tightening torque | main circuit terminals |  | 1.5 Nm | 2.5 Nm |
|  | coil terminals |  | 1.2 Nm |  |
| Degree of protection | main and coil terminals |  | IP20 |  |
| Screw terminals | main circuit terminals |  | M3.5 | M4 |
|  | coil terminals |  | M3.5 |  |
| Recommended screwdriver | main circuit terminals |  | Flat Ø 5.5 / Pozidriv 2 | Flat $\varnothing 6.5$ / Pozidriv 2 |
|  | coil terminals |  | Flat Ø 5.5 / Pozidriv 2 |  |

Dimensions in mm, inches


AF16-40-00L


AF26-30-00L

## OT disconnect switch



Three-pole, front-operated, base-mounted switch-disconnector with black IP65 handle and shaft, wide phase distance and a terminal bolt kit included. Type OT315E03WP.

| Dimensions | 191 mm |
| :--- | ---: |
| Product net width | 185 mm |
| Product net height | 107 mm |
| Product net depth | 3.38 kg |
| Product net weight |  |

OT disconnect switch OT315E03WP

| Technical information |  |
| :---: | :---: |
| Rated operational current AC-21A ( $\mathrm{I}_{\mathrm{e}}$ ) | (380 ... 415 V$) 315 \mathrm{~A}$ |
|  | (500 V) 315 A |
|  | (690 V) 315 A |
|  | (1000 V) 315 A |
| Rated operational current AC-22A ( $\mathrm{I}_{\mathrm{e}}$ ) | (380 ... 415 V$) 315 \mathrm{~A}$ |
|  | ( 500 V ) 315 A |
|  | (690 V) 315 A |
| Rated operational current AC-23A ( $\mathrm{I}_{\mathrm{e}}$ ) | (500 V) 315 A |
|  | ( 380 ... 415 V ) 315 A |
|  | (690 V) 315 A |
| Rated operational power AC-23A ( $\mathrm{P}_{\mathrm{e}}$ ) | (380 ... 415 V ) 160 kW |
|  | ( 500 V ) 220 kW |
|  | $(690 \mathrm{~V}) 315 \mathrm{~kW}$ |
| Conventional free-air thermal current ( $l_{\text {th }}$ ) | $\mathrm{q}=40^{\circ} \mathrm{C} 315 \mathrm{~A}$ |
| Conventional thermal current ( $\mathrm{I}_{\text {the }}$ ) | fully enclosed 315 A |
| Rated impulse withstand voltage ( $\mathrm{U}_{\mathrm{imp}}$ ) | 12 kV |
| Rated insulation voltage ( $\mathrm{U}_{\mathrm{i}}$ ) | 1000 V |
| Rated operational voltage | 1000 V |
| Rated short-circuit making capacity ( $\mathrm{l}_{\mathrm{cm}}$ ) | $(690 \mathrm{~V} \mathrm{AC}) 65 \mathrm{kA}$ |
| Rated short-time withstand current ( $\mathrm{l}_{\mathrm{cw}}$ ) | for 1 s 15 kiloampere rms |
| Power loss | at rated operating conditions per pole 6.5 W |
| Pollution degree | 3 |
| Handle type | handle and shaft included |
| Switches operating mechanism | mechanism at the end of the switch |
| Distance between phases | wide phase distance |
| Position of line terminals | top in - bottom out |
| Operating mode | front operated |
| Standards | IEC 60947-3 |
| Special functions | wide phase distance |
| Mounting type | base mounting |
| Number of poles | 3 |
| Terminal type | lug terminals |
| Terminal width | 25 mm |
| Tightening torque | $30 . . .44 \mathrm{Nm}$ |

## MCCB 320 A with residual current device for assimilation panels



The European standard EN/IEC60364-7-705 requires the use of residual current devices (RCDs) with 300 mA . This may be mandatory in certain countries and has to be implemented in a suitable design. For example, in the Netherlands the standard NEN1010:2015 art 705.411.1 requires the use of RCDs in the segment agriculture, horticulture and livestock farming. For this, the Tmax T4D 320 with the residual current device RC222 is used. For assimilation panels it is allowed according to determination 531 that all end groups can be
 protected by a group protection device as long as the sum of the leakage currents does not exceed 30 percent of the assigned trip current. Heat dissipation 1SDX002530R1 - T4D $320+$ RC222 4 pole $=27.85 \mathrm{~W} /$ pole

| Technical information |  |  |
| :---: | :---: | :---: |
| Conventional thermal current, $\mathrm{I}_{\mathrm{th}}$ |  | 250/320 A |
| Rated service current in category AC22, $\mathrm{I}_{\mathrm{e}}$ |  | 250/320 A |
| Rated service current in category AC23, $\mathrm{I}_{\mathrm{e}}$ |  | 250 A |
| Poles | [No.] | 3/4 |
| Rated service voltage, $\mathrm{U}_{\mathrm{e}}$ | (AC) $50-60 \mathrm{~Hz}$ | 690 V |
|  | (DC) | 750 V |
| Rated impulse withstand voltage, $\mathbf{U}_{\text {imp }}$ |  | 8 kV |
| Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$ |  | 800 V |
| Test voltage at industrial frequency for 1 minute |  | 3000 V |
| Rated short-circuit making capacity, $\mathrm{I}_{\mathrm{cm}}$ | (min) switch-disconnector only | 5.3 kA |
|  | (max) with circuit-breaker on supply side | 440 kA |
| Rated short-circuit withstand current for 1s, $\mathrm{I}_{\mathrm{cw}}$ |  | 3.6 kA |
| Reference Standard |  | IEC 60947-3 |
| Versions |  | F-P-W |
| Terminals |  | F-FC CuAI-FC Cu-EF-ES-R-MC-HR-VR |
| Mechanical life |  |  |
|  |  | 120 no. hourly operations |
| Basic dimensions, fixed | 3 poles W | 105 mm |
|  | 4 poles W | 140 mm |
|  | D | 103.5 mm |
|  | H | 205 mm |
| Weight | Fixed 3/4 poles | $2.35 / 3.05 \mathrm{~kg}$ |
|  | Plug-in 3/4 poles | $3.6 / 4.65 \mathrm{~kg}$ |
|  | withdrawable 3/4 poles | $3.85 / 4.9 \mathrm{~kg}$ |

Dimensions T4D and RC222 in mm


Fixed version


Front - F, fixing on sheet

## Busbar adapter



## Wöhner busbar adapter EEC 32 A

## Basic information

Part No.: 32442
EQUES ${ }^{\circledR}$ 60Classic
2 adjustable mounting rails
$54 \times 200$, with leads AWG 10 ( $6 \mathrm{~mm}^{2}$ )
for busbars $12,15,20,25,30 \times 5,10$ and section busbars

## Standards

IEC 61439-1:2011

## Approvals

CSA, UL, DNV GL
for UL feeder circuits > 250 V
Type number: EEC6032-L
UL file: E123577, UL category (for USA): NMTR
UL file: E123577, UL category (for CAN): NMTR7
CSA file: 110285, CSA class: 3211-37
CCC approval: no certification required

## Electrical data

Rated current (IEC): 32 A
Rated voltage (IEC) AC: 690 V
Rated current (UL): 30 A
Rated voltage (UL) AC: 600 V

## Mechanical data

W $\times \mathrm{H} \times \mathrm{D}$ : $\quad 54 \times 200 \times 63 \mathrm{~mm}$
Weight: $\quad 38$ kg/100
Poles: 3-pole
for busbars: $12,15,20,25,30 \times 5,10$ and section busbars

## Power dissipation

The power dissipation at a typical load of 80 percent of the rated current results to 1.5 W . (The power dissipation for operation with rated current would be 2.4 W.)

- rated isolation voltage $\mathrm{U}_{\mathrm{i}}(\mathrm{AC}): \quad 800 \mathrm{~V}$
- rated withstand voltage $\mathrm{U}_{\mathrm{imp}}$ : 6 kV
- max. permitted voltage (IEC) AC: 800 V
- max. permitted voltage (IEC) DC: 800 V
- short-circuit withstandability: the motor starter gives the protection to the adapter


## Material properties

- Body:
temperature stability $125^{\circ} \mathrm{C}$, self-extinguishing in acc. to UL 94, creepage resistance CTI 600, halogen-free
- DIN rail: temperature stability $125^{\circ} \mathrm{C}$, self-extinguishing in acc. to UL 94, creepage resistance CTI 550, halogen-free
- Screws: screw +/- (PZ1), galvanized, chromized
- Conductor insulation: temperature-resistant up to $105^{\circ} \mathrm{C}$


## Information about the busbar system

Tin-plated copper busbars make contact position preparation much easier. Cu busbars are effectively protected against corrosive substances. The current capacities of flat busbars in the diagram below were calculated by testing at an ambient temperature of $35^{\circ} \mathrm{C}$ under optimal conditions (IEC and UL). Current carrying capacities higher than those specified in DIN 43671 were obtained under operating conditions. The busbar temperature is normally positively influenced by mounting components on the busbar and by air circulation within the installation.
A correction factor $k_{2}$ as defined in DIN 43671 can be applied for flat busbars using the diagram below. The factor is dependent on the relevant ambient temperature. This correction factor should be taken into account when conditions change and loading is continuous. Alternatively, a higher load can be applied if the components have a higher thermal endurance level.
A $30 \times 10$ galvanized busbar can, under normal operating conditions, be loaded with 630 A. A correction factor $k_{2}$ of 1.3 , for example, is required if a load of 800 A is applied. This diagram demonstrates that the busbar heats up to approx. $85^{\circ} \mathrm{C}$ if this correction factor and an air temperature of $35^{\circ} \mathrm{C}$ apply.

- Tensile strength: $\min .300 \mathrm{~N} / \mathrm{mm}^{2}$
- Permissible tolerance

Radius R 0.3...0.7
Width: +0.1 / -0.5
Thickness: +0.1 / -0.1

## Correction factor diagram according to DIN 43671

- Centre spacing:

```
+0.5 / -0.5 (60 mm system)
    +1.0 / -1.0 (100 mm system / 185 mm system)
- Deviation in the contact levels: 0.4
```



The diagram on the left is taken from DIN 43 671. It shows the correction factor $\mathrm{k}_{2}$ (used to correct the basic rated current) depending on the busbar temperature and the ambient temperature in ${ }^{\circ} \mathrm{C}$.

Continuous currents for busbars according to DIN 43671

| Width <br> x thickness in mm | Cross section in $\mathrm{mm}^{2}$ | Weight ${ }^{(1)}$ | Material ${ }^{(2)}$ | Cont. current in A |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | AC current up to 60 Hz |  |
|  |  |  |  | Bare bar | Coated bar |
| $12 \times 2$ | 23.5 | 0.209 | E-Cu F30 | 108 | 123 |
| $15 \times 2$ | 29.5 | 0.262 |  | 128 | 148 |
| $15 \times 3$ | 44.5 | 0.396 |  | 162 | 187 |
| $20 \times 2$ | 39.5 | 0.351 |  | 162 | 189 |
| $20 \times 3$ | 59.5 | 0.529 |  | 204 | 237 |
| $20 \times 5$ | 99.1 | 0.882 |  | 274 | 319 |
| $20 \times 10$ | 199.0 | 1.770 |  | 427 | 497 |
| $25 \times 3$ | 74.5 | 0.663 |  | 245 | 287 |
| $25 \times 5$ | 124.0 | 1.110 |  | 327 | 384 |
| $30 \times 3$ | 89.5 | 0.796 |  | 285 | 337 |
| $30 \times 5$ | 149.0 | 1.330 |  | 379 | 447 |
| $30 \times 10$ | 299.0 | 2.660 |  | 573 | 676 |
| $40 \times 3$ | 119.0 | 1.060 |  | 366 | 435 |
| $40 \times 5$ | 199.0 | 1.770 |  | 482 | 573 |
| $40 \times 10$ | 399.0 | 3.550 |  | 715 | 850 |
| $50 \times 5$ | 249.0 | 2.220 |  | 583 | 697 |
| $50 \times 10$ | 499.0 | 4.440 |  | 852 | 1020 |
| $60 \times 5$ | 299.0 | 2.660 |  | 688 | 826 |
| $60 \times 10$ | 599.0 | 5.330 |  | 985 | 1180 |
| $80 \times 5$ | 399.0 | 3.550 |  | 885 | 1070 |
| $80 \times 10$ | 799.0 | 7.110 |  | 1240 | 1500 |
| $100 \times 10$ | 999.0 | 8.890 |  | 1490 | 1810 |

${ }^{(1)}$ Calculated with a density of $8.9 \mathrm{~kg} / \mathrm{dm}^{3}$
${ }^{(2)}$ Reference basis for the continuous current levels (figures taken from DIN 43 671)

## Further Information

The standard DIN 43671 can be accessed at www.din.de
Current technical datasheets of busbars can be found at www.woehner.com
Please note that all information given about the busbar adapter and the busbar system are subject to change at Wöhner's behalf and ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this section.

Date of publication: June 092017

## Useful hints

Spread flags for mounting with cable lugs


1SDA055004R1 Spread flags 3 pieces included rubber terminal separation
Standard terminals fall into the cage of the switch


1SDA054984R1 1SDA054988R1

Standard terminals CuAl 2,5 .. $50 \mathrm{~mm}^{2} 3$ pieces without terminal cover Standard terminal CuAl $6 \ldots 185 \mathrm{~mm}^{2} 3$ pieces without terminal cover

## External terminals fall outside the cage of the switch



1SDA054993R1 1SDA064550R1

External terminal CuAl $2 \times 35 \ldots 150 \mathrm{~mm}^{2} 4$ pieces included terminal cover External terminal CuAl $150 \ldots 240 \mathrm{~mm}^{2}$ T4 4 pieces included terminal cover

## Separation and covers



1SDA054970R1
Separation 100 mm
1SDA054972R1
Separation 200 mm
1SDA054967R1
Terminal cover low 4 pole set of 2 pieces
1SDA054959R1 Terminal cover high 4 pole set of 2 pieces

## Definitions

- Clearance
shortest distance in air between two conductive parts
- Creepage distance
shortest distance along the surface of a solid insulating material between two conductive parts
- Electrical breakdown
failure of insulation under electric stress when the discharge completely bridges the insulation, thus reducing the voltage between the electrodes almost to zero
- Overvoltage
any voltage having a peak value exceeding the corresponding peak value of maximum steady-state voltage at normal operating conditions
- r.m.s. withstand voltage
highest r.m.s. value of a voltage which does not cause breakdown of insulation under specified conditions
- Rated impulse withstand voltage ( $\mathrm{U}_{\mathrm{imp}}$ )

The peak value of an impulse voltage of prescribed form and polarity which the equipment is capable of withstanding without failure under specified conditions of test and to which the values of the clearances are referred.

- Rated insulation voltage ( $U_{i}$ )

The rated insulation voltage of an equipment is the value of voltage to which dielectric tests and creepage distances are referred.

- Rated operational current ( $\mathrm{I}_{\mathrm{e}}$ )

A rated operational current of an equipment is stated by the manufacturer and takes into account the rated operational voltage, the rated frequency and the utilization category.

- Rated operational voltage ( $\mathrm{U}_{\mathrm{e}}$ )

A rated operational voltage of an equipment is a value of voltage which, combined with a rated operational current, determines the application of the equipment.

- Rated output voltage for constant voltage controlgear output voltage, at rated supply voltage, rated frequency and at rated output power, assigned to the controlgear
- Effective power loss of equipment installed inside the enclosure
- Effective power loss of conductors installed inside the enclosure


## References

The following standards and documents are referred to for the application of application note

- IEC 60947-1 (ed5.1)
- IEC 60947-4-1 (ed3)
- IEC 61439-1/2
- IEC 60364-7-705
- IEC 60598
- IEC 60890


## Contact us

ABB STOTZ-KONTAKT GmbH
Eppelheimer Straße 82
69123 Heidelberg

## Germany

You can find the address of your
local sales organization on the
ABB home page
http://www.abb.com/contacts
-> Low Voltage Products and Systems

## Legal note

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.
We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents - in whole or in parts - is forbidden without prior written consent of ABB AG.

## Copyright® 2017 ABB

All rights reserved.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Solid State Relays - Industrial Mount category:
Click to view products by ABB manufacturer:

Other Similar products are found below :
6225XXASRS-DC3 D2440-C H10CA4890 D4875C D53TP50DH-10 1395831-1 BR312BY A-1326 AQY210SXE01 AQY221N2SYD01 AQY414SXE01 26532764 H10CA4850 H12CA4890VL RA2410-D06 D1202F D53TP50-10 W230E-1-12 W230T-3-12 W6125ASX-1 W6225DSX-2 W6240DSX-4 W6240DTX-2 1-1617030-3 1-1617033-9 1-1617033-7 MS2-D2420 MS2-D2430 A-1440 4-1617080-0 RJ1P60V50E RN1F48I50 70.362.1028.0 7-1393030-8 Z5.509.0828.0 W230E-2-5 G3RV-SR700-D AC110 G3RV-SR500-AL AC100 G3RV-SR500-D ACDC24 G3RV-SR500-AL ACDC24 G3RV-SR700-D ACDC24 G3RV-SR700-AL ACDC24 G3RV-SR500-D DC12 G3RV-SR700-A ACDC24 G3RV-SR500-A ACDC24 $2912138 \underline{2912141} \underline{\text { SSRDAC10 }} 16133531613349$

