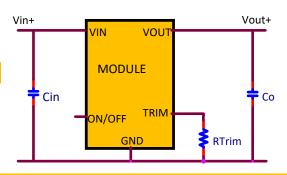


IND011SIP Hornet: Non-Isolated DC-DC Voltage Regulator Modules

12Vdc input; 0.6Vdc to 5.5Vdc output; 11W Max Power



Applications

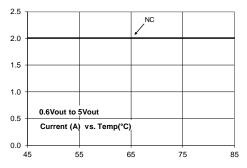
- Industrial Equipment
- ✓ Control Boards
- ✓ Test Equipment

Electrical Features

- 12V Input voltage with adequate Tolerance
- Output voltage programmable from 0.6Vdc to 5.5Vdc via external resistor
- Remote On/Off for optional external control
- Fixed switching frequency
- Output overcurrent protection (non-latching)

Mechanical Features

- Small size: 10.4 mm x 13.5 mm x 8.1 mm (0.41 in x 0.53 in x 0.32 in)
- Operating range: -40°C to 85°C ambient


Process and Safety

- ANSI/UL* 62368-1 and CAN/CSA⁺ C22.2 No. 62368-1 Recognized, DIN VDE⁺ 0868-1/A11:2017 (EN62368-1:2014/A11:2017)
- ISO** 9001 and ISO 14001 certified manufacturing facilities
- Compliant to RoHS Directive 2011/65/EU and amended Directive (EU) 2015/863
- Compliant to REACH Directive (EC) No 1907/2006
- Compatible in a Pb-free or SnPb reflow environment.
- Suitable for aqueous clean.
- Suitable for conformal coating with dip and vapor deposition. Conformal coating can provide the protection to meet Salt Fog Test per IEC 60068-2-52 (Severity 3) and Mixed Gas Flow test per Telcordia GR-3108 Outdoor Levels.
- 3 year warranty.

Device Code	Input Voltage	Output Voltage	Output Current (Max.)	On/Off Logic	Comcode
IND011SIP	9.6 – 14Vdc	0.6 – 5.5Vdc	2A	Positive	1600102909A

Thermal Performance

Full rated output with natural convection up to 85°C for all output voltages.

Electrical Specifications

Parameter	Device	Symbol	Min	Тур	Max	Unit
Operating Input Voltage	All	V _{IN}	9.6	12	14	Vdc
Input No Load Current	V _{o,set} = 0.6 Vdc	I _{IN,No load}		20		mA
(V_{IN} = 12.0Vdc, I_0 = 0, module enabled)	V _{o,set} = 5Vdc	I _{IN,No load}		48		mA
External Capacitance, Ceramic $ESR \ge 1 m\Omega$	All	C _O , max	22	—	47*	μF
Efficiency 12V _{INDC} , T _A =25°C, I=12A, Vo=0.6 to 3.3Vdc		η	69.2(0.6V), 85.5(1.8V), 93.3(5V)		%	
Switching Frequency	All	f _{sw}	_	600	—	kHz
Output Voltage (Over all line, load, and temperature conditions)	All	VO, set	-3.0	_	+3.0	% VO, set
On/Off Logic High (MODULE ON) Input High Voltage	All	VIH	3	_	14	Vdc
On/ Off Logic Low (MODULE OFF) Input Low Voltage	All	VIL	-0.3	_	0.3	Vdc

Characteristic Curves

The following figures provide typical characteristics for the 2A Hornet at 25°C.

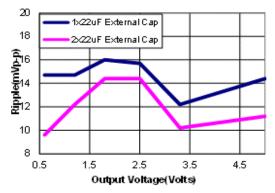
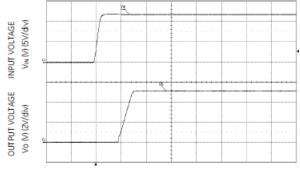



Figure 1. Output Ripple Voltage (20MHz BW) for various output voltages and external caps @12Vin. Additional Decoupling cap of 0.1uF used on input and output side

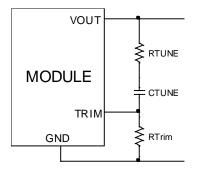
TIME, t (5ms/div)

Figure 2. Typical Start-up using Input Voltage (Vin=12V, Vout = Vout, max, lout = lout, max)

Trim

Without an external resistor between Trim and GND pins, the output of the module will be 0.6Vdc. *Rtrim* for a desired output voltage, should be as per the following table. The formula in the last column helps determine Rtrim for other voltages.

Vo (V)	0.6	0.9	1.0	1.2	1.5	1.8	2.5	3.3	5.0	$Rtrim = \begin{bmatrix} 12 \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{pmatrix} k\Omega$
Rtrim (kΩ)	Open	40	30	20	13.3	10	6.316	4.4	2.727	$\operatorname{Kurum} = \left[\frac{1}{(Vo - 0.6)} \right]^{KS2}$

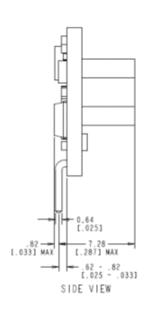

Safety Considerations

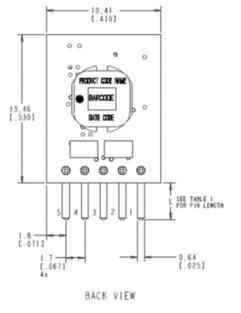
For safety agency approval, the power module must be installed in compliance with the spacing and separation requirements of the end-use safety agency standards listed on the first page of this document. For the converter output to be considered meeting the requirements of safety extra-low voltage (SELV) or ES1, the input must meet SELV/ES1 requirements. The power module has extra-low voltage (ELV) outputs when all inputs are ELV. An input fuse for the module is recommended. Due to the wide input voltage and output voltage ranges of the module, a 4A, 125Vdc fast acting fuse is recommended.

Tunable Loop

The module is designed for 200uF capacitor on its output. For applications where more than 47uF capacitors would be used on the output, an additional Resistor (Rtune) and Capacitor (Ctune) would be required in the circuit schematic to compensate for the additional capacitance. The placement is between the Sense+ pin and Trim pin as per figure below:

Figure. 3. Circuit diagram showing connection of R_{TUNE} and C_{TUNE} to tune the control loop of the module

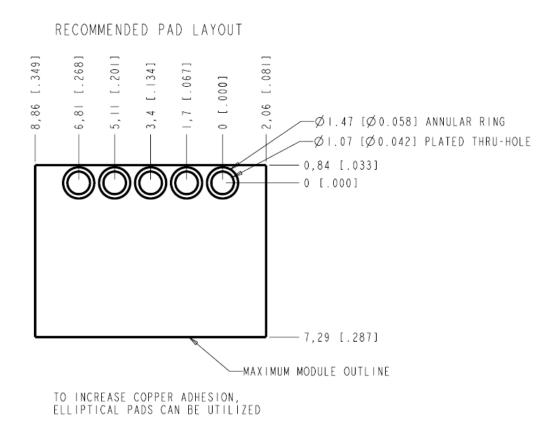

The recommended values for Rtune and Ctune for different amounts of external capacitance are as per the table below:


Со	2x47μF	3x47μF	4x47μF	10x47μF
R _{TUNE}	150	100	100	100
CTUNE	10nF	18nF	18nF	22nF

Recommended Pad Layout

Dimensions are in millimeters and (inches).

Tolerances: x.x mm \pm 0.5 mm (x.xx in. \pm 0.02 in.) [unless otherwise indicated] x.xx mm \pm 0.25 mm (x.xxx in \pm 0.010 in.)



- 10				
- 24	*	0	1.8	٠
		~	- 64	

PIN	Function						
1	On/Off						
2	Vin						
3	GND						
4	Vout						
5	Trim+						

PRODUCT OPTION	PIN LENGTH "L" MM [INCH]
STANDARD	3.29 E.1301
OPTION - 6	2.85 E.1121
OPTION - 54	5.08 [.200]

TABLE I

Through-Hole Lead-Free Soldering Information

These RoHS-compliant through-hole products use the SAC (Sn/Ag/Cu) Pb-free solder and RoHS-compliant components. They are designed to be processed through single or dual wave soldering machines. The pins have an RoHS-compliant finish that is compatible with both Pb and Pb-free wave soldering processes. A maximum preheat rate of 3°C/s is suggested. The wave preheat process should be such that the temperature of the power module board is kept below 210°C. For Pb solder, the recommended pot temperature is 260°C, while the Pb-free solder pot is 270°C max. Not all RoHS-compliant through-hole products can be processed with paste-through-hole Pb or Pbfree reflow process

Contact Us

For more information, call us at

USA/Canada:

+1 888 546 3243, or +1 972 244 9288

Asia-Pacific:

+86-21-53899666

Europe, Middle-East and Africa: +49.89.878067-280

Go.ABB/Industrial

GE Critical Power reserves the right to make changes to the product(s) or information contained herein without notice, and no liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Non-Isolated DC/DC Converters category:

Click to view products by ABB manufacturer:

Other Similar products are found below :

 PSR152.5-7IR
 APTH003A0X-SRZ
 SPM1004-3V3C
 R-785.0-05
 10E24-P15-10PPM
 1E24-P4-25PPM-SHV-5KV
 PROPOWER-3.3V

 MYGTM01210BZN
 JRCS016A0S4-HZ
 3V12-N0.8
 6AA24-P30-I5-M
 BM2P101X-Z
 ROF-78E12-0.5SMD-R
 RPMA5.0-8.0/OF
 RPX-4.0

 CT
 PTV03010WAD
 PTV05020WAH
 PTV12010LAH
 PTV12020WAD
 R-7212D
 R-785.0-1.0SMD
 30A24-N15-E
 10A12-P4

 M
 10C24-N250-I5
 10C24-P125
 10C24-P250-I5
 6A24-P20-I10-F-M-25PPM
 1A24-P30-F-M-C
 TSR 1-24150SM
 1/2AA24-N30-I10
 1C24

 N125
 12C24-N250
 V7806-1500
 PTV12020LAH
 PTV05010WAH
 PTN04050CAZT
 PTH12020LAS
 PTH05T210WAH

 PTH05030WAZ
 V7803-2000R
 AXA005A0XZ
 NSR020A0X43Z
 TPS82677SIPR
 OKR-T/30-W12-C
 NID30S24-15
 NID30S48-24

 LXDC2HL25A-053
 LXDC2HL10A-080
 P
 P
 P
 P
 NID30S48-24