

S-75V00ANC

MINI LOGIC SERIES 2 INPUT NAND GATE

© ABLIC Inc., 1999-2014

Rev.4.0_01

The S-75V00ANC is a single 2-Input NAND Gate fabricated by utilizing advanced silicon-gate CMOS technology which provides the inherent benefit of CMOS low power consumption to achieve ultra high speed operation correspond to LSTTL IC's.

All gates of the internal circuitry have buffered outputs to ensure high noise immunity and output stability,

1.0 μA max. (at 5.5 V, 25°C)

 t_{PD} = 3.7 ns (at 5 V) V_{NIH} = V_{NIL} = 28% V_{CC} min.

2 V to 5.5 V

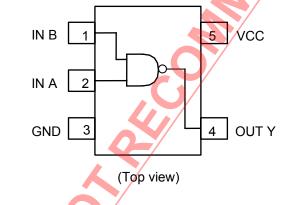
All pins

Input voltage is allowed to be applied even if power voltage is not supplied because no diode is inserted between an input pin and V_{CC} .

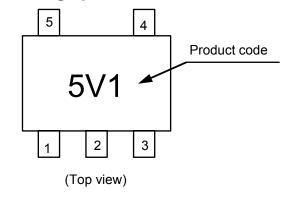
This allows for interfaces between power supplies of different voltage, output level conversion from 5 V to 3 V and battery backup applications.

Features

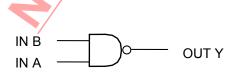
- Wide power supply range:
- Low current consumption:
- Typical propagation delay:
- High noise immunity:
- Power down protection:
- Lead-free


Applications

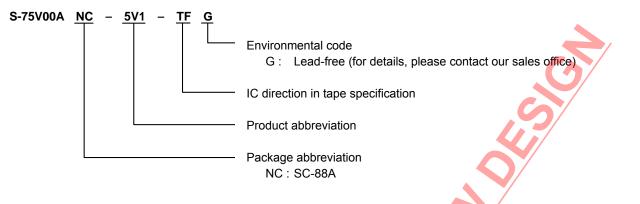
- Personal computers, peripherals
- Cellular phones
- Cameras
- Games


Package

• SC-88A


Pin Configuration

Marking Specification



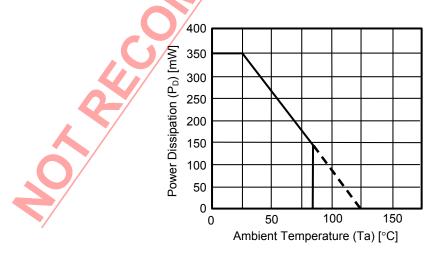
Logic Diagram

Thue values									
А	В	Y							
L	L	Н							
L	Н	Н							
Н	L	Н							
Н	Н	L							

True volues

Absolute Maximum Ratings

		(Ta = 25°C unless other	wise specified
Item	Symbol	Absolute Maximum Ratings	Unit
Power supply voltage	V _{CC}	-0,5 to +7.0	V
Input voltage	V _{IN}	-0.5 to +7.0	V
Output voltage	V _{OUT}	-0.5 to V _{CC} + 0.5	V
Input parasitic diode current	I _{IK}	-20	mA
Output parasitic diode current	Ι _{οκ}	±20	mA
Output current	I _{OUT}	±25	mA
V _{CC} /GND current	I _{CC}	±50	mA
Dewer dissinction		200 (When not mounted on board)	mW
Power dissipation	PD	350 ^{*1}	mW
Operating ambient temperature	T _{opr}	_40 to +85	°C
Storage temperature	T _{stg}	-65 to +150	°C
Lead temperature (10 s)	TL	260	°C


*1. When mounted on board

[Mounted board]

(1) Board size : 114.3 mm × 76.2 mm × t1.6 mm

(2) Board name : JEDEC STANDARD51-7

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

Power Dissipation of Package (When Mounted on Board)

Recommended Operating Conditions

Item	Symbol	Standard	Unit
Power voltage	V _{CC}	2 to 5.5	V
Input voltage	V _{IN}	0 to 5.5	V
Output voltage	V _{OUT}	0 to V _{CC}	V
langest size of fall times		0 to 100 (V _{CC} = 3.3±0.3 V)	ns
Input rise / fall time	t _R , t _F	0 to 20 (V _{CC} = 5±0.5 V)	ns

■ DC Electrical Characteristics

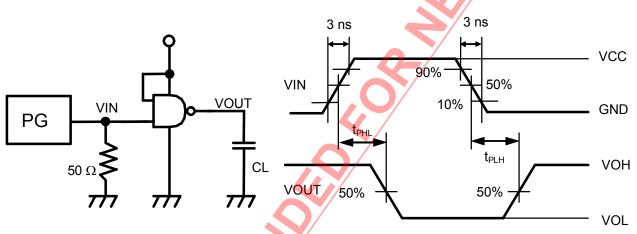
				Canditiana			Ta - 2500		To - 40	te 0500	
Iter	n	Symbol		Conditions	14		Ta = 25°Q		Ta = -40		Unit
	1				V_{CC}	Min.	Тур.	Max.	Min.	Max.	
	"H" level	VIH			2.0	1.5		<i>—</i>	1.5		V
Input	II level	VIH			3 to 5.5	$V_{CC} \times 0.7$	H.	/_	$V_{CC} \times 0.7$		V
voltage	"!" lovel	V			2.0	_		0.5		0.5	V
	"L" level	V _{IL}		_	3 to 5.5			$V_{CC} \times 0.3$		$V_{CC} \times 0.3$	V
					2.0	1.9	2.0	_	1.9		V
			., .,	I _{OH} = –50 μA	3.0	2.9	3.0	_	2.9	_	V
	"H" level	V _{OH}	$V_{IN} = V_{IL}$		4.5	4.4	4.5	_	4.4	_	V
			or V _{IH}	I _{он} = –4 mA	3.0	2.58	_	_	2.48	_	V
Output				I _{он} = –8 mA	4.5	3.94	_	_	3.80	_	V
voltage					2.0		0	0.1		0.1	V
				I _{OL} = 50 μA	3.0	/ _	0	0.1	_	0.1	V
	"L" level	V _{OL}	$V_{IN} = V_{IH}$		4.5	_	0	0.1	_	0.1	V
				I _{OL} = 4 mA	3.0			0.36		0.44	V
				I _{OL} = 8 mA	4.5			0.36	_	0.44	V
Input curren	t	I _{IN}	V _{IN} = 5.5 V	V _{IN} = 5.5 V or GND				±0.1		±1.0	μA
Current con	sumption	Icc	$V_{IN} = V_{CC} o$	r GND	5.5			1.0		10.0	μA

<u>5.5 V</u> <u>J = V_{CC} or </u>

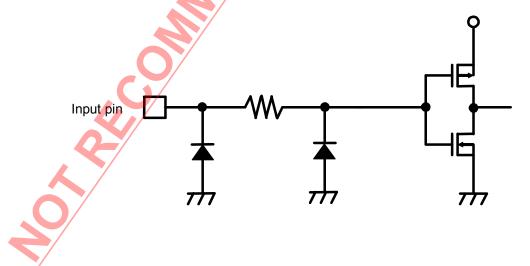
MINI LOGIC SERIES 2 INPUT NAND GATE S-75V00ANC

nlana athan vian an aifiad)

■ AC Electrical Characteristics


					(1	input t _r = 1	i _F = 3 ns u	niess othe	rwise spe	cified)			
lto an	Currah al	Measur	rement Co	onditions		Ta = 25°C		Ta = -40	to 85°C	Linit			
Item	Symbol		V _{CC} (V)	C _L (pF)	Min.	Тур.	Max.	Min.	Max.	Unit			
				15	_	5.5	7.9	1.0	9.5	ns			
Dranagation dology time	t _{PLH} ,	_	_			3.3±0.3	50		10.0	14.0	1.0	15.0	ns
Propagation delay time	t _{PHL}			EQUOE	15		3.7	5.5	1.0	6.5	ns		
			5.0±0.5	50		6.1	8.5	1.0	9.0	ns			
Input capacitance	C _{IN}	_			4	10	7	10	pF				
Equivalent internal capacitance	C _{PD} ^{*1}		_			14		_		pF			

.....


*1. C_{PD} is the no-load equivalent capacitance inside the circuitry. Refer to the measurement circuit shown below. Current consumption is averaged by the following equation.

 $I_{CC(opr)} = C_{PD} \times V_{CC} \times fin + I_{CC}$

Measurement Circuit

Remark No-load output during measurement of current consumption.

© ABLIC Inc., 1999-2014

S-75V02ANC

MINI LOGIC SERIES 2 INPUT NOR GATE

Rev.4.0_01

The S-75V02ANC is a single 2-input NOR gate fabricated by utilizing advanced silicon-gate CMOS technology which provides the inherent benefit of CMOS low power consumption to achieve ultra high speed operation correspond to LSTTL IC's.

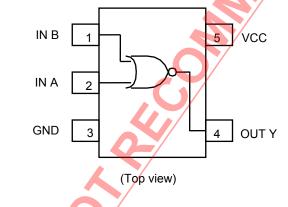
All gates of the internal circuitry have buffered outputs to ensure high noise immunity and output stability,

Input voltage is allowed to be applied even if power voltage is not supplied because no diode is inserted between an input pin and V_{CC} .

This allows for interfaces between power supplies of different voltage, output level conversion from 5 V to 3 V and battery backup applications.

Features

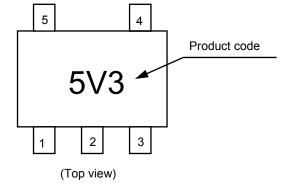
- Wide power supply range:
- Low current consumption:
- Typical propagation delay:
- High noise immunity:
- Power down protection:
- Lead-free

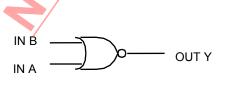

Applications

- Personal computers, peripherals
- Cellular phones
- Cameras
- Games

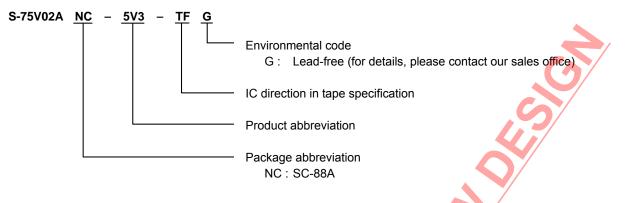
Package

• SC-88A


Pin Configuration


2 V to 5.5 V

- 1.0 μA max. (at 5.5 V, 25°C)
- t_{PD} = 3.6 ns (at 5 V)
- $V_{NIH} = V_{NIL} = 28\% V_{CC} min.$ All pins

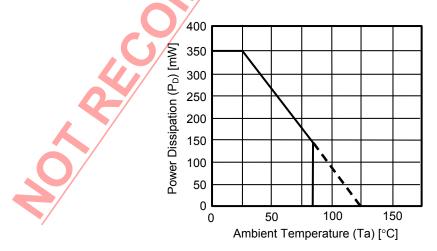

Marking Specification

Logic Diagram

True values		
A	В	Y
L	L	Н
L	Н	L
Н	L	L
Н	Н	L

Absolute Maximum Ratings

		(Ta ≠ 25°C unless other	wise specified
ltem	Symbol	Absolute Maximum Ratings	Unit
Power supply voltage	V _{CC}	0,5 to +7.0	V
Input voltage	V _{IN}	-0.5 to +7.0	V
Output voltage	V _{OUT}	0.5 to V _{CC} + 0.5	V
Input parasitic diode current	I _{IK}	-20	mA
Output parasitic diode current	Ι _{οκ}	±20	mA
Output current	I _{OUT}	±25	mA
V _{CC} /GND current	I _{CC}	±50	mA
Dever dissignation		200 (When not mounted on board)	mW
Power dissipation	PD	350 ^{*1}	mW
Operating ambient temperature	T _{opr}	-40 to +85	°C
Storage temperature	T _{stq}	-65 to +150	°C
Lead temperature (10 s)	TL	260	°C
Lead temperature (10 s)		260	°C


*1. When mounted on board

[Mounted board]

(1) Board size : 114.3 mm × 76.2 mm × t1.6 mm

(2) Board name : JEDEC STANDARD51-7

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

Power Dissipation of Package (When Mounted on Board)

Recommended Operating Conditions

Item	Symbol	Standard	Unit
Power voltage	V _{cc}	2 to 5.5	V
Input voltage	V _{IN}	0 to 5.5	V
Output voltage	V _{OUT}	0 to V _{CC}	V
Innut rice / fell time		0 to 100 (V _{CC} = 3.3±0.3 V)	ns
Input rise / fall time	t _R , t _F	0 to 20 (V _{CC} = 5±0.5 V)	ns

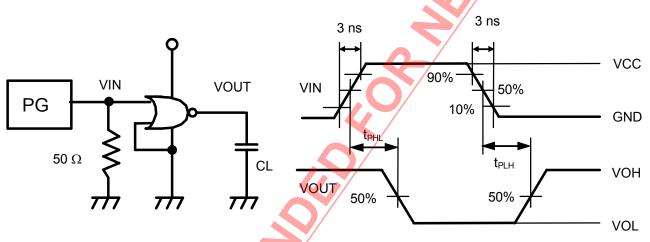
DC Electrical Characteristics

14	_	O wash al		Conditions			Ta = 25°C		Ta = -40) to 85°C	1.1 14		
lter	T1	Symbol			V_{CC}	Min.	Тур.	Max.	Min.	Max.	Unit		
	"II" Javal	V			2.0	1.5			1.5		V		
Input	"H" level	V _{IH}		_	3 to 5.5	V _{CC} ×0.7			$V_{CC} \times 0.7$		V		
voltage	"L" level	V			2.0	_		0.5	_	0.5	V		
	Lievei	V _{IL}			3 to 5.5			$V_{CC} \times 0.3$	_	$V_{CC} \times 0.3$	V		
					2.0	1.9	2.0		1.9		V		
				I _{OH} = –50 μA	3.0	2.9	3.0	_	2.9	_	V		
	"H" level	V _{OH}	$V_{IN} = V_{IL}$	$V_{IN} = V_{IL}$	$V_{IN} = V_{IL}$		4.5	4.4	4.5	_	4.4	_	V
				I _{OH} = -4 mA	3.0	2.58	_	_	2.48	_	V		
Output				I _{OH} = –8 mA	4.5	3.94	_	_	3.80	_	V		
voltage					2.0		0	0.1	_	0.1	V		
			V - V	I _{OL} = 50 μA	3.0	/	0	0.1	_	0.1	V		
	"L" level	V _{OL}	$V_{IN} = V_{IH}$		4.5		0	0.1	_	0.1	V		
			or V _{IL}	I _{OL} = 4 mA	3.0	_	_	0.36		0.44	V		
				I _{OL} = 8 mA	4.5			0.36		0.44	V		
Input curren	t	I _{IN}	V _{IN} = 5.5 V	V _{IN} = 5.5 V or GND				±0.1		±1.0	μA		
Current con	sumption	I _{CC}	$V_{IN} = V_{CC} o$	r GND	5.5			1.0		10.0	μA		

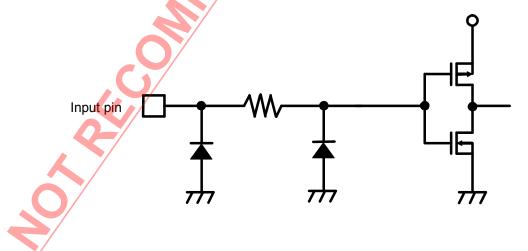
م منط م ما

undere ethernuise

■ AC Electrical Characteristics


(Input $t_R = t_F = 3$ ns unless otherwise specified								cified)					
Itom	Symbol	Measur	ement Co	onditions		Ta = 25°C		Ta = -40	to 85°C	Linit			
Item	Symbol		V _{CC} (V)	C _L (pF)	Min.	Тур.	Max.	Min.	Max.	Unit			
		_		15	_	5.6	7.9	1.0	9.5	ns			
Dranagation dology time	t _{PLH} ,		_			3.3±0.3	50		10.0	14.0	1.0	15.0	ns
Propagation delay time	t _{PHL}			5.0±0.5	15		3.6	5.5	1.0	6.5	ns		
			5.0±0.5	50		5.7	8.0	1.0	9.0	ns			
Input capacitance	CIN		_			4	10		10	pF			
Equivalent internal capacitance	C _{PD} ^{*1}		—			15		_		pF			

......


*1. C_{PD} is the no-load equivalent capacitance inside the circuitry. Refer to the measurement circuit shown below. Current consumption is averaged by the following equation.

 $I_{\text{CC(opr)}} = C_{\text{PD}} \times V_{\text{CC}} \times fin + I_{\text{CC}}$

Measurement Circuit

Remark No-load output during measurement of current consumption.

S-75V04ANC

MINI LOGIC SERIES

www.ablicinc.com © ABLIC Inc., 1999-2014

Rev.4.0_01

The S-75V04ANC is a INVERTER fabricated by utilizing advanced silicon-gate CMOS technology which provides the inherent benefit of CMOS low power consumption to achieve ultra high speed operation correspond to LSTTL IC's. The special purpose unbuffered circuit design is suitable for a wide variety of linear circuits.

Input voltage is allowed to be applied even if power voltage is not supplied because no diode is inserted between an input pin and V_{CC} .

This allows for interfaces between power supplies of different voltage, output level conversion from 5 V to 3 V and battery backup applications.

2 V to 5.5 V

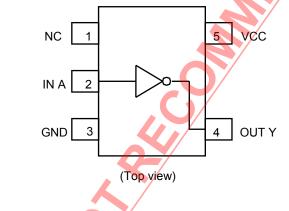
All pins

1.0 μA max. (at 5.5 V, 25°C)

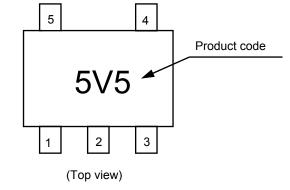
 $t_{\rm PD}$ = 3.8 ns (at 5 V) V_{NIH} = V_{NIL} = 28% V_{CC} min.

Features

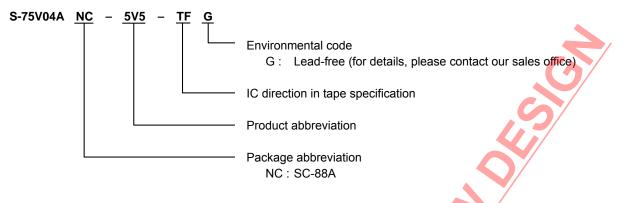
- Wide power supply range:
- Low current consumption:
- Typical propagation delay:
- High noise immunity:
- Power down protection:
- Lead-free


Applications

- Personal computers, peripherals
- Cellular phones
- Cameras
- Games


Package

• SC-88A


Marking Specification

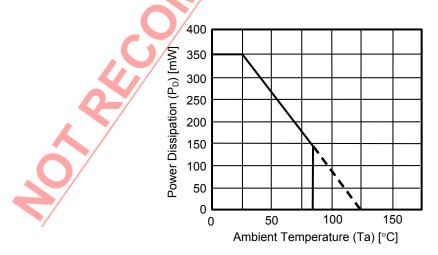
Logic Diagram

\mathbf{A}		
IN A —	$\sqrt{2}$	OUT Y

True values					
А	Y				
L	Н				
Н	L				

Absolute Maximum Ratings

		(Ta = 25°C unless other	wise specified
Item	Symbol	Absolute Maximum Ratings	Unit
Power supply voltage	V _{CC}	-0,5 to +7.0	V
Input voltage	V _{IN}	-0.5 to +7.0	V
Output voltage	V _{OUT}	-0.5 to V _{CC} + 0.5	V
Input parasitic diode current	I _{IK}	-20	mA
Output parasitic diode current	Ι _{ΟΚ}	±20	mA
Output current	I _{OUT}	±25	mA
V _{CC} /GND current	I _{cc}	±50	mA
Dewer disaination		200 (When not mounted on board)	mW
Power dissipation	P _D	350 ^{*1}	mW
Operating ambient temperature	T _{opr}	-40 to +85	°C
Storage temperature	Tstg	-65 to +150	°C
Lead temperature (10 s)	TL	260	°C


*1. When mounted on board

[Mounted board]

(1) Board size : 114.3 mm × 76.2 mm × t1.6 mm

(2) Board name : JEDEC STANDARD51-7

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

Power Dissipation of Package (When Mounted on Board)

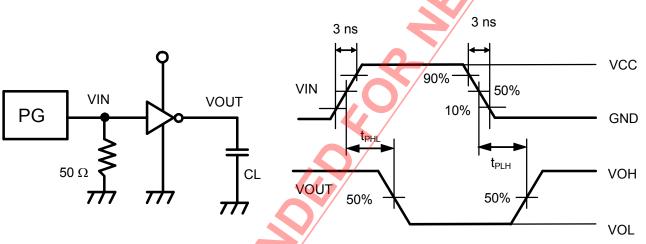
Recommended Operating Conditions

Item	Symbol	Standard	Unit
Power voltage	V _{cc}	2 to 5.5	V
Input voltage	V _{IN}	0 to 5.5	V
Output voltage	V _{OUT}	0 to V _{CC}	V
length rises / fell times		0 to 100 (V _{CC} = 3.3±0.3 V)	ns
Input rise / fall time	t _R , t _F	0 to 20 (V _{CC} = 5±0.5 V)	ns

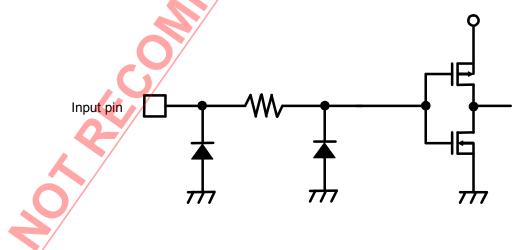
DC Electrical Characteristics

	Conditions						Ta = 25°C			a = -40 to 85°C		
Iter	n	Symbol				Min.	Тур. 💧	Max.	Min.	Max.	Unit	
	"I I" Joy of	V			2.0	1.5	_		1.5		V	
Input	"H" level	VIH			3 to 5.5	V _{CC} ×0.7			V _{CC} ×0.7		V	
voltage	"L" level	V			2.0			0.5		0.5	V	
	L level	V _{IL}			3 to 5.5			V _{CC} ×0.3		$V_{CC} \times 0.3$	V	
			$V_{IN} = V_{IL}$		2.0	1.9 ┥	2.0		1.9		V	
				I _{OH} = -50 μA	3.0	2.9	3.0		2.9		V	
	"H" level	V _{OH}			4.5	4.4	4.5		4.4		V	
						I _{OH} = –4 mA	3.0	2.58			2.48	
Output				I _{OH} = -8 mA	4.5	3.94			3.80		V	
voltage					2.0		0	0.1		0.1	V	
				I _{OL} = 50 μA	3.0		0	0.1		0.1	V	
	"L" level	V _{OL}	$V_{IN} = V_{IH}$		4.5	—	0	0.1		0.1	V	
				I _{OL} = 4 mA	3.0	_		0.36		0.44	V	
				I _{OL} = 8 mA	4.5			0.36		0.44	V	
Input curren	nt	I _{IN}	V _{IN} = 5.5 V	$V_{IN} = 5.5 V \text{ or GND}$				±0.1		±1.0	μA	
Current con	sumption	I _{CC}	$V_{IN} = V_{CC} o$	r GND	5.5			1.0		10.0	μA	

 $\frac{|\mathbf{u}_{i}|^{2}}{|\mathbf{u}_{i}|^{2} \otimes \mathbf{mA}} (\mathbf{u}_{i}) = \frac{1}{|\mathbf{u}_{i}|^{2} \otimes \mathbf{mA}} (\mathbf{u}_{i}) = \frac{1}{|\mathbf{u}_{i}|$


AC Electrical Characteristics

(Input $t_R = t_F = 3$ ns unless otherwise specified)										
lt a va	Symbol	Measu	rement Co	onditions		Ta = 25°C		Ta = -40	to 85°C	Linit
Item	Symbol		V _{CC} (V)	C _L (pF)	Min.	Тур.	Max.	Min.	Max.	Unit
	t _{PLH} , t _{PHL}		3.3±0.3	15		5.0	7.1	1.0	8.5	ns
			5.5±0.5	50		9.6	13.5	1.0	14.5	ns
Propagation delay time			5.0±0.5	15	_	3.8	5.5	1.0	6.5	ns
			5.0±0.5	50		5.7	8.0	1.0	9.0	ns
Input capacitance	CIN					4	10		10	pF
Equivalent internal capacitance	C _{PD} ^{*1}					13		_		pF


*1. C_{PD} is the no-load equivalent capacitance inside the circuitry. Refer to the measurement circuit shown below. Current consumption is averaged by the following equation.

 $I_{\text{CC(opr)}} = C_{\text{PD}} \times V_{\text{CC}} \times \text{fin} + I_{\text{CC}}$

Measurement Circuit

Remark No-load output during measurement of current consumption.

© ABLIC Inc., 1999-2014

S-75VU04ANC

MINI LOGIC SERIES INVERTER (unbuffer)

Rev.4.0_01

The S-75VU04ANC is a inverter fabricated by utilizing advanced silicon-gate CMOS technology which provides the inherent benefit of CMOS low power consumption to achieve ultra high speed operation correspond to LSTTLIC's. The special purpose unbuffered circuit design is suitable for a wide variety of linear circuits.

Input voltage is allowed to be applied even if power voltage is not supplied because no diode is inserted between an input pin and V_{CC} .

This allows for interfaces between power supplies of different voltage, output level conversion from 5 V to 3 V and battery backup applications.

2 V to 5.5 V

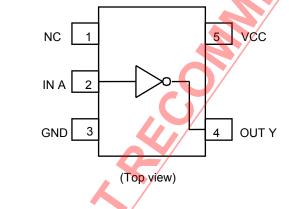
All pins

1.0 μA max. (at 5.5 V, 25°C)

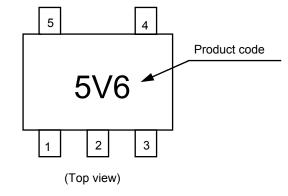
 $\label{eq:tpd} \begin{array}{l} t_{\text{PD}} = 3.5 \text{ ns (at 5 V)} \\ V_{\text{NIH}} = V_{\text{NIL}} = 10\% \ V_{\text{CC}} \text{ min.} \end{array}$

Features

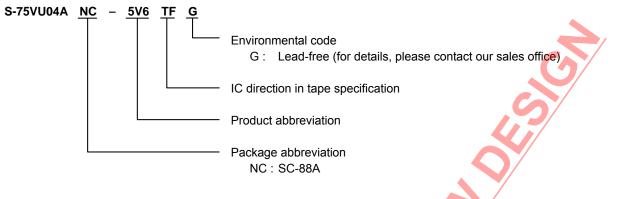
- Wide power supply range:
- Low current consumption:
- Typical propagation delay:
- High noise immunity:
- Power down protection:
- Fower down protect
- Lead-free


Applications

- Personal computers, peripherals
- Cellular phones
- Cameras
- Games


Package

• SC-88A


Marking Specification

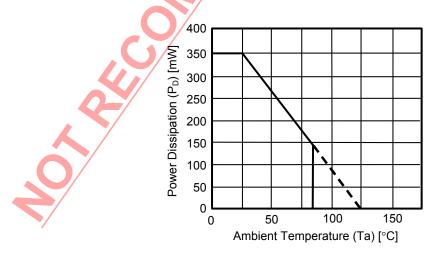
Logic Diagram

\rightarrow —	OUT Y

True values						
Y						
Н						
L						

Absolute Maximum Ratings

		(Ta = 25°C unless other	wise specified
Item	Symbol	Absolute Maximum Ratings	Unit
Power supply voltage	V _{CC}	-0,5 to +7.0	V
Input voltage	V _{IN}	-0.5 to +7.0	V
Output voltage	V _{OUT}	-0.5 to V _{CC} + 0.5	V
Input parasitic diode current	I _{IK}	-20	mA
Output parasitic diode current	Ι _{οκ}	±20	mA
Output current	I _{OUT}	±25	mA
V _{CC} /GND current	I _{CC}	±50	mA
Dewer dissinction		200 (When not mounted on board)	mW
Power dissipation	PD	350 ^{*1}	mW
Operating ambient temperature	T _{opr}	_40 to +85	°C
Storage temperature	T _{stg}	-65 to +150	°C
Lead temperature (10 s)	TL	260	°C


*1. When mounted on board

[Mounted board]

(1) Board size : 114.3 mm × 76.2 mm × t1.6 mm

(2) Board name : JEDEC STANDARD51-7

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

Power Dissipation of Package (When Mounted on Board)

Rev.4.0_01

Recommended Operating Conditions

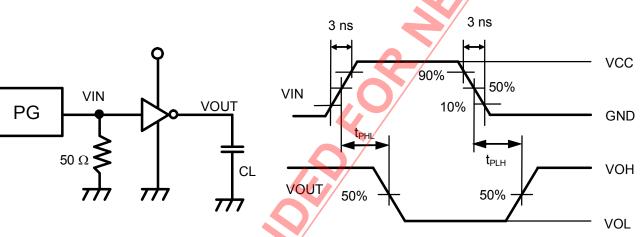
Item	Symbol	Standard	Unit
Power voltage	V _{CC}	2 to 5.5	V
Input voltage	V _{IN}	0 to 5.5	V
Output voltage	V _{OUT}	0 to V_{CC}	V

DC Electrical Characteristics

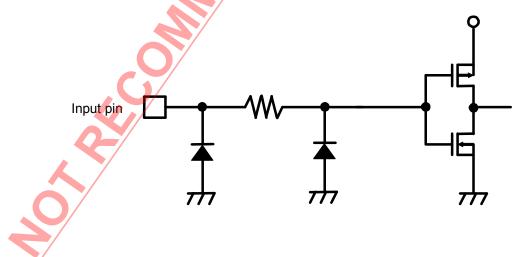
		r	1								
Iter	~	Symbol		Conditions		Conditions Ta = 25°C			Ta = -40) to 85°C	Unit
iter	Π	Symbol				Min.	Тур.	Max.	Min.	Max.	Unit
	"I I" Iovial	V	V _V		2.0	1.7	_		1.7		V
Input	"H" level	VIH	$V_{OUT} = V_{OL}$		3 to 5.5	$V_{CC} \times 0.8$		—	V _{CC} ×0.8		V
voltage	"I" lovel	V	V _V		2.0		4	0.3		0.3	V
	"L" level	V _{IL}	$V_{OUT} = V_{OH}$		3 to 5.5			V _{CC} ×0.2		$V_{CC} \times 0.2$	V
					2.0	1.8	2.0	_	1.8		V
			н	I _{OH} = –50 μA	3.0	2.7 👅	3.0		2.7		V
	"H" level	V _{OH}			4.5	4.0	4.5		4.0		V
				I _{OH} = –4 mA	3.0	2.58			2.48		V
Output			V _{IN} = GND	I _{OH} = –8 mA	4.5	3.94	_		3.80		V
voltage					2.0		0	0.2		0.2	V
			$V_{IN} = V_{IH}$	I _{OL} = 50 μA	3.0		0	0.3		0.3	V
	"L" level	V _{OL}			4.5		0	0.5		0.5	V
			V - V	I _{OL} = 4 mA	3.0	/_		0.36		0.44	V
			$V_{IN} = V_{CC}$	I _{OL} = 8 mA	4.5			0.36		0.44	V
Input curren	nt	I _{IN}	V _{IN} = 5.5 V	V _{IN} = 5.5 V or GND				±0.1		±1.0	μA
Current con	sumption	I _{CC}	$V_{IN} = V_{CC} o$	r GND	5.5			1.0		10.0	μA

 $\frac{10L}{|l_{0L}|^{2} 8 mA}}{\frac{1}{|l_{0L}|^{2} 8 mA}}$

MINI LOGIC SERIES INVERTER (unbuffer) S-75VU04ANC


■ AC Electrical Characteristics

(Input $t_R = t_F = 3$ ns unless otherwise specified)										
Item	Symbol	Measur	ement Co	onditions		Ta = 25°C		Ta = -40	to 85°C	Linit
	Symbol		V _{CC} (V)	C _L (pF)	Min.	Тур.	Max.	Min.	Max.	Unit
			3.3±0.3	15		5.0	8.9	1.0	10.5	ns
Dranagation dology time	t _{PLH} , t _{PHL}	_	5.5±0.5	50		8.9	12.5	1.0	13.5	ns
Propagation delay time			5.0±0.5	15		3.5	5.5	1.0	6.5	ns
			5.0±0.5	50		5.4	7.5	1.0	8.0	ns
Input capacitance	CIN					5	10		10	pF
Equivalent internal capacitance	C _{PD} ^{*1}					6				pF


*1. C_{PD} is the no-load equivalent capacitance inside the circuitry. Refer to the measurement circuit shown below. Current consumption is averaged by the following equation.

 $I_{CC(opr)} = C_{PD} \times V_{CC} \times fin + I_{CC}$

Measurement Circuit

Remark No-load output during measurement of current consumption.

S-75V08ANC

MINI LOGIC SERIES 2 INPUT AND GATE

Rev.4.0_01

© ABLIC Inc., 1999-2014

The S-75V08ANC is a Single 2-Input AND Gate fabricated by utilizing advanced silicon-gate CMOS technology which provides the inherent benefit of CMOS low power consumption to achieve ultra high speed operation correspond to LSTTL IC's.

All gates of the internal circuitry have buffered outputs to ensure high noise immunity and output stability,

1.0 μA max. (at 5.5 V, 25°C)

 t_{PD} = 4.3 ns (at 5 V) V_{NIH} = V_{NIL} = 28% V_{CC} min.

2 V to 5.5 V

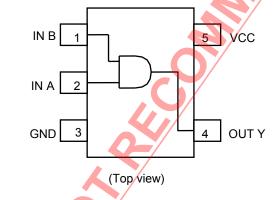
All pins

Input voltage is allowed to be applied even if power voltage is not supplied because no diode is inserted between an input pin and V_{CC} .

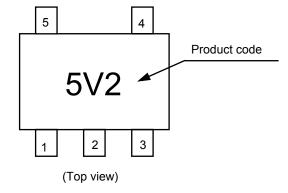
This allows for interfaces between power supplies of different voltage, output level conversion from 5 V to 3 V and battery backup applications.

Features

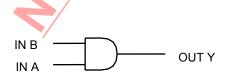
- Wide power supply range:
- Low current consumption:
- Typical propagation delay:
- High noise immunity:
- Power down protection:
- Lead-free

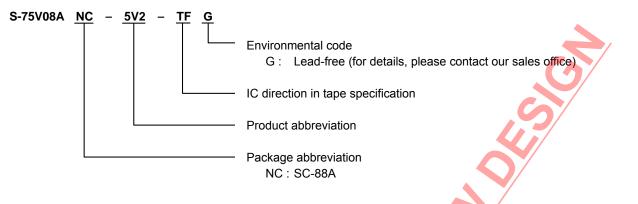

Applications

- Personal computers, peripherals
- Cellular phones
- Cameras
- Games


Package

• SC-88A


Pin Configuration

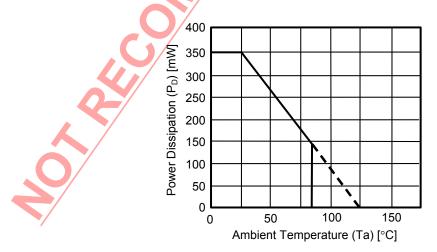

Marking Specification

Logic Diagram

True values		
А	В	Y
L	L	L
L	Н	L
Н	L	L
Н	Н	Н

Absolute Maximum Ratings

		(Ta = 25°C unless other	wise specified
Item	Symbol	Absolute Maximum Ratings	Unit
Power supply voltage	V _{CC}	-0,5 to +7.0	V
Input voltage	V _{IN}	-0.5 to +7.0	V
Output voltage	V _{OUT}	-0.5 to V _{CC} + 0.5	V
Input parasitic diode current	I _{IK}	-20	mA
Output parasitic diode current	Ι _{ΟΚ}	±20	mA
Output current	I _{OUT}	±25	mA
V _{CC} /GND current	I _{CC}	±50	mA
Deuver disaination		200 (When not mounted on board)	mW
Power dissipation	PD	350 ^{*1}	mW
Operating ambient temperature	T _{opr}	-40 to +85	°C
Storage temperature	T _{stq}	–65 to +150	°C
Lead temperature (10 s)	TL	260	°C


*1. When mounted on board

[Mounted board]

(1) Board size : 114.3 mm × 76.2 mm × t1.6 mm

(2) Board name : JEDEC STANDARD51-7

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

Power Dissipation of Package (When Mounted on Board)

Recommended Operating Conditions

Item	Symbol	Standard	Unit
Power voltage	V _{CC}	2 to 5.5	V
Input voltage	V _{IN}	0 to 5.5	V
Output voltage	V _{OUT}	0 to V _{CC}	V
Innut view / fell times		0 to 100 (V _{CC} = 3.3±0.3 V)	ns
Input rise / fall time	t _R , t _F	0 to 20 (V _{CC} = 5±0.5 V)	ns

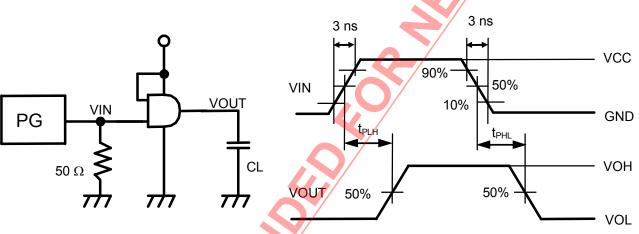
DC Electrical Characteristics

				Conditions			Ta = 25°C		Ta = –40 to 85°C		
Iter	n	Symbol			V _{CC}	Min.	Тур. 🎸	Max.	Min.	Max.	Unit
	"H" level	V				1.5	_		1.5		V
Input	п ievei	VIH				$V_{CC} \times 0.7$			V _{CC} ×0.7		V
voltage	"L" level	V			2.0			0.5		0.5	V
	L level	V _{IL}			3 to 5.5			V _{CC} ×0.3		$V_{CC} \times 0.3$	V
					2.0	1.9 ┥	2.0		1.9		V
"H" level			I_{OH} = $-50 \ \mu A$	3.0	2.9	3.0		2.9		V	
	"H" level	V _{OH}	V _{IN} = V _{IH}		4.5	4.4	4.5		4.4		V
				I _{OH} = -4 mA	3.0	2.58	_		2.48		V
Output				I _{OH} = –8 mA	4.5	3.94	_		3.80		V
voltage				I _{OL} = 50 μA	2.0		0	0.1		0.1	V
			V -V		3.0		0	0.1		0.1	V
	"L" level	V _{OL}	$V_{IN} = V_{IH}$		4.5	/ _	0	0.1		0.1	V
			or V _{IL}	I _{OL} = 4 mA	3.0	_	_	0.36		0.44	V
				I _{OL} = 8 mA	4.5			0.36		0.44	V
Input curren	it	I _{IN}	V _{IN} = 5.5 V	$V_{IN} = 5.5 V \text{ or GND}$		—		±0.1	—	±1.0	μA
Current con	sumption	I _{CC}	$V_{IN} = V_{CC} o$	r GND	5.5			1.0		10.0	μA

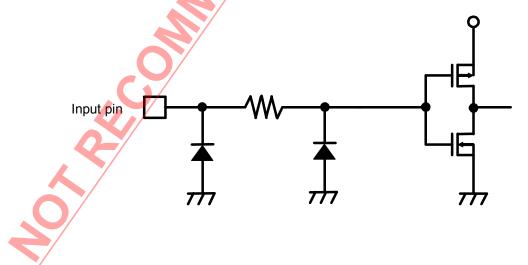
 $\frac{|\mathbf{u}_{i}|^{2}}{|\mathbf{u}_{i}|^{2}} = 8 \text{ mA}}{|\mathbf{u}_{i}|^{2}} = 8 \text{ mA}}$

unless otherwise energified)

■ AC Electrical Characteristics


	(Input $t_R = t_F = 3$ ns unless otherwise specified)											
Item	Symbol	Measurement Conditio		onditions		Ta = 25°C		Ta = -40	Linit			
nem	Symbol		V _{CC} (V)	C _L (pF)	Min.	Тур.	Max.	Min.	Max.	Unit		
Deservation dalar time	t _{PLH} , t _{PHL}		3.3±0.3	15		6.2	8.8	1.0	10.5	ns		
		_	3.3±0.3	50		9.6	13.5	1.0	14.5	ns		
Propagation delay time			5.0±0.5	15		4.3	5.9	1.0	7.0	ns		
				50		5.7	7.9	1.0	9.0	ns		
Input capacitance	CIN				4	10		10	pF			
Equivalent internal capacitance	C _{PD} ^{*1}					14		_		pF		

.....


*1. C_{PD} is the no-load equivalent capacitance inside the circuitry. Refer to the measurement circuit shown below. Current consumption is averaged by the following equation.

 $I_{CC(opr)} = C_{PD} \times V_{CC} \times fin + I_{CC}$

Measurement Circuit

Remark No-load output during measurement of current consumption.

© ABLIC Inc., 1999-2014

S-75V14ANC

MINI LOGIC SERIES SCHMITT INVERTER

Rev.4.0_01

The S-75V14ANC is a SCHMITT INVERTER fabricated by utilizing advanced silicon-gate CMOS technology which provides the inherent benefit of CMOS low power consumption to achieve ultra high speed operation correspond to LSTTL IC's. All gates of the internal circuitry have buffered outputs to ensure high noise immunity and output stability. Input voltage is allowed to be applied even if power voltage is not supplied because no diode is inserted between an input pin and V_{CC} .

This allows for interfaces between power supplies of different voltage, output level conversion from 5 V to 3 V and battery backup applications.

2 V to 5.5 V

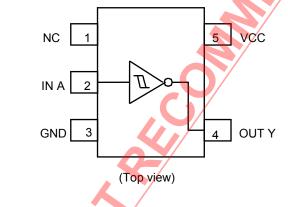
All pins

1.0 μA max. (at 5.5 V, 25°C)

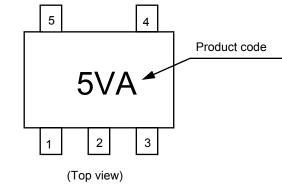
 $t_{\rm PD}$ = 5.5 ns (at 5 V) V_{NIH} = V_{NIL} = 28% V_{CC} min.

Features

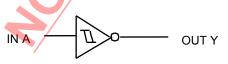
- Wide power supply range:
- Low current consumption:
- Typical propagation delay:
- High noise immunity:
- Power down protection:
- Lead-free

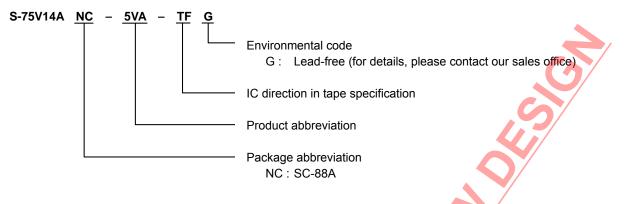

Applications

- Personal computers, peripherals
- Cellular phones
- Cameras
- Games


Package

• SC-88A


Pin Configuration

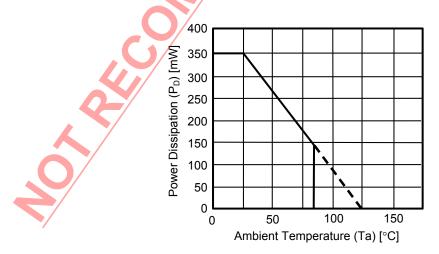


Marking Specification

Logic Diagram

Absolute Maximum Ratings

		(Ta ≠ 25°C unless otherwise specified				
Item	Symbol	Absolute Maximum Ratings	Unit			
Power supply voltage	V _{CC}	-0.5 to +7.0	V			
Input voltage	V _{IN}	-0.5 to +7.0	V			
Output voltage	V _{OUT}	-0.5 to V _{CC} + 0.5	V			
Input parasitic diode current	I _{IK}	-20	mA			
Output parasitic diode current	Ι _{ΟΚ}	±20	mA			
Output current	I _{OUT}	±25	mA			
V _{CC} /GND current	I _{CC}	±50	mA			
Device discipation		200 (When not mounted on board)	mW			
Power dissipation	PD	350*1	mW			
Operating ambient temperature	T _{opr}	-40 to +85	°C			
Storage temperature	T _{stg}	-65 to +150	°C			
Lead temperature (10 s)	T	260	°C			


*1. When mounted on board

[Mounted board]

(1) Board size : 114.3 mm × 76.2 mm × t1.6 mm

(2) Board name : JEDEC STANDARD51-7

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

Power Dissipation of Package (When Mounted on Board)

Rev.4.0_01

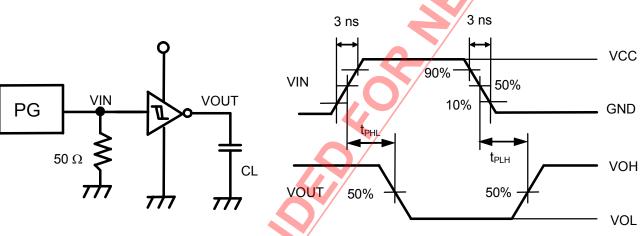
Recommended Operating Conditions

Item	Symbol	Standard	Unit
Power voltage	V _{CC}	2 to 5.5	V
Input voltage	V _{IN}	0 to 5.5	V
Output voltage	V _{OUT}	0 to V_{CC}	V

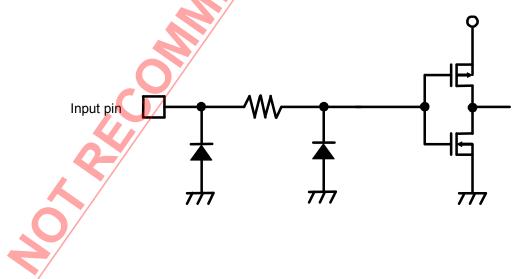
DC Electrical Characteristics

											1
Iter	n	Symbol		Conditions			Ta = 25°C		Ta ≠ -40) to 85°C	Unit
iter	11	Symbol			V _{CC}	Min.	Тур.	Max.	Min.	Max.	Unit
					3.0	_		2.20		2.20	V
	"H" level	VP			4.5	_	—	3.15		3.15	V
Threshold					5.5		_	3.85		3.85	V
voltage					3.0	0.90			0.90	—	V
	"L" level	V _N			4.5	1.35	H	/	1.35		V
				5.5	1.65			1.65		V	
				3.0	0.30		1.20	0.30	1.20	V	
Hysteresis v	/oltage	V _H			4.5	0.40		1.40	0.40	1.40	V
					5.5	0.5	/_	1.60	0.5	1.60	V
				I _{OH} = –50 μA	2.0	1.9	2.0		1.9	—	V
					3.0	2.9	3.0		2.9	—	V
	"H" level	V _{OH}	$V_{IN} = V_{IL}$		4.5	4,4	4.5	_	4.4	—	V
				I _{OH} = -4 mA	3.0	2.58	—	_	2.48	—	V
Output				I _{OH} = -8 mA	4.5	3.94	—	_	3.80	—	V
voltage					2.0		0	0.1	—	0.1	V
				I _{OL} = 50 μA	3.0	_	0	0.1	—	0.1	V
	"L" level	V _{OL}	$V_{IN} = V_{IH}$		4.5	_	0	0.1	—	0.1	V
				I _{OL} = 4 mA	3.0	_	—	0.36	—	0.44	V
			I _{OL} = 8 mA	4.5	_	—	0.36	—	0.44	V	
Input currer	nt	I _{IN}	V _{IN} = 5.5 V	or GND	0 to 5.5	—	—	±0.1	—	±1.0	μA
Current con	sumption	I _{cc}	$V_{IN} = V_{CC} o$	r GND	5.5			1.0		10.0	μA

 V_{lh}


■ AC Electrical Characteristics

	(Input $t_R = t_F = 3$ ns unless otherwise specified)											
Itom	Symbol	Measur	Measurement Conditions		Ta = 25°C			Ta = -40	Linit			
Item			V _{CC} (V)	C _L (pF)	Min.	Тур.	Max.	Min.	Max.	Unit		
Dranasation dalay time	t _{PLH} , t _{PHL}		3.3±0.3	15		8.3	12.8	1.0	15.0	ns		
		—	3.3±0.3	50		10.8	16.3	1.0	18.5	ns		
Propagation delay time			5.0±0.5	15		5.5	8.6	1.0	10.0	ns		
				50		7.0	10.6	1.0	12.0	ns		
Input capacitance	C _{IN}	_				4	10	7	10	pF		
Equivalent internal capacitance	C _{PD} ^{*1}				_	14		_		pF		


*1. C_{PD} is the no-load equivalent capacitance inside the circuitry. Refer to the measurement circuit shown below. Current consumption is averaged by the following equation.

 $I_{CC(opr)} = C_{PD} \times V_{CC} \times fin + I_{CC}$

Measurement Circuit

Remark No-load output during measurement of current consumption.

© ABLIC Inc., 1999-2014

S-75V32ANC

MINI LOGIC SERIES 2 INPUT OR GATE

Rev.4.0_01

The S-75V32ANC is a single 2-input OR gate fabricated by utilizing advanced silicon-gate CMOS technology which provides the inherent benefit of CMOS low power consumption to achieve ultra high speed operation correspond to LSTTL IC's. All gates of the internal circuitry have buffered outputs to ensure high noise immunity and output stability. Input voltage is allowed to be applied even if power voltage is not supplied because no diode is inserted between an input pin and V_{CC} .

This allows for interfaces between power supplies of different voltage, output level conversion from 5 V to 3 V and battery backup applications.

2 V to 5.5 V

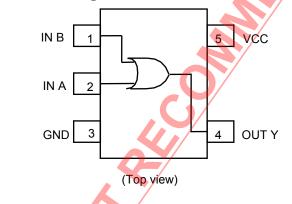
All pins

1.0 µA max. (at 5.5 V, 25°C)

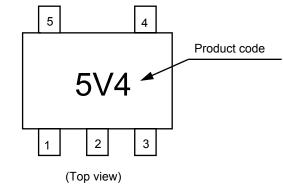
 $t_{\rm PD}$ = 3.8 ns (at 5 V) V_{NIH} = V_{NIL} = 28% V_{CC} min.

Features

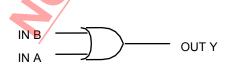
- Wide power supply range:
- Low current consumption:
- Typical propagation delay:
- High noise immunity:
- Power down protection:
- Lead-free

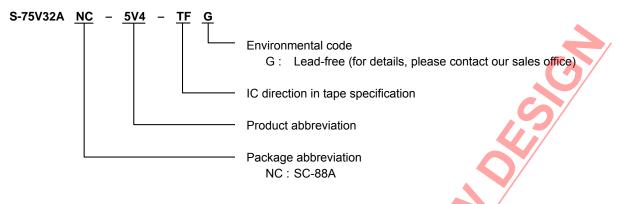

Applications

- Personal computers, peripherals
- Cellular phones
- Cameras
- Games


Package

• SC-88A


Pin Configuration

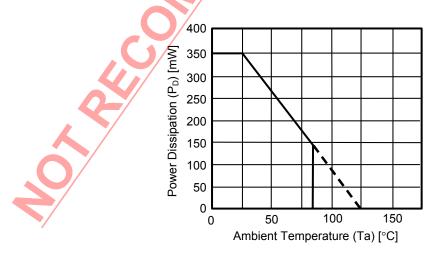

Marking Specification

Logic Diagram

I rue values		
А	В	Y
L	L	L
L	Н	Н
Н	L	Н
Н	Н	Н

Absolute Maximum Ratings

		(Ta ≠ 25°C unless otherwise specified				
Item	Symbol	Absolute Maximum Ratings	Unit			
Power supply voltage	V _{CC}	-0.5 to +7.0	V			
Input voltage	V _{IN}	-0.5 to +7.0	V			
Output voltage	V _{OUT}	0.5 to V _{CC} + 0.5	V			
Input parasitic diode current	I _{IK}	-20	mA			
Output parasitic diode current	Ι _{ΟΚ}	±20	mA			
Output current	I _{OUT}	±25	mA			
V _{CC} /GND current	I _{CC}	±50	mA			
Device discipation		200 (When not mounted on board)	mW			
Power dissipation	PD	$ \begin{array}{c} -0.5 \text{ to } +7.0 \\ -0.5 \text{ to } +7.0 \\ -0.5 \text{ to } V_{CC} + 0.5 \\ -20 \\ \pm 20 \\ \pm 25 \\ \pm 50 \\ \end{array} $	mW			
Operating ambient temperature	T _{opr}	-40 to +85	°C			
Storage temperature	T _{stg}	-65 to +150	°C			
Lead temperature (10 s)	TL	260	°C			


*1. When mounted on board

[Mounted board]

(1) Board size : 114.3 mm × 76.2 mm × t1.6 mm

(2) Board name : JEDEC STANDARD51-7

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

Power Dissipation of Package (When Mounted on Board)

Recommended Operating Conditions

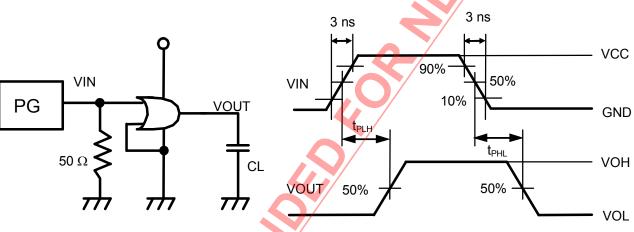
Item	Symbol	Standard	Unit
Power voltage	V _{CC}	2 to 5.5	V
Input voltage	V _{IN}	0 to 5.5	V
Output voltage	V _{OUT}	0 to V _{CC}	V
lanut rice / fell time		0 to 100 (V _{CC} = 3.3±0.3 V)	ns
Input rise / fall time	t _R , t _F	0 to 20 (V _{CC} = 5±0.5 V)	ns

DC Electrical Characteristics

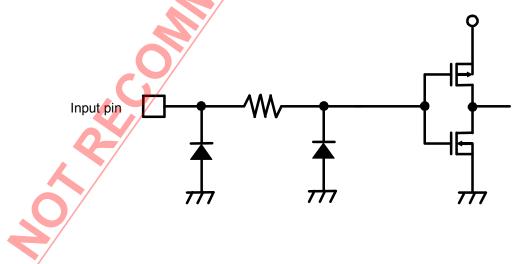
				Conditions			Ta = 25°C		Ta = –40) to 85°C	
Iter	n	Symbol			V _{CC}	Min.	Тур.	Max.	Min.	Max.	Unit
	"H" level	V				1.5	_		1.5		V
Input	п ievei	VIH				$V_{CC} \times 0.7$			V _{CC} ×0.7		V
voltage	"L" level	V			2.0			0.5		0.5	V
	Lievei	V _{IL}			3 to 5.5			V _{CC} ×0.3		$V_{CC} \times 0.3$	V
"Н" level V _{он}			I _{OH} = -50 μA	2.0	1.9 ┥	2.0		1.9		V	
				3.0	2.9	3.0		2.9		V	
	"H" level	V _{OH}	OH V _{IN} = V _{IL} or V _{IH}		4.5	4.4	4.5		4.4		V
				I _{OH} = -4 mA	3.0	2.58	_		2.48		V
Output				I _{OH} = –8 mA	4.5	3.94	_		3.80		V
voltage					2.0		0	0.1		0.1	V
				I _{OL} = 50 μA	3.0		0	0.1		0.1	V
	"L" level	V _{OL}	$V_{IN} = V_{IL}$		4.5	/ _	0	0.1		0.1	V
				I _{OL} = 4 mA	3.0	_	_	0.36		0.44	V
				I _{OL} = 8 mA	4.5			0.36		0.44	V
Input curren	it	I _{IN}	V _{IN} = 5.5 V	V _{IN} = 5.5 V or GND				±0.1		±1.0	μA
Current con	sumption	I _{CC}	$V_{IN} = V_{CC} o$	r GND	5.5			1.0		10.0	μA

 $\frac{|\mathbf{u}_{i}|^{2} + \mathbf{u}_{i}|^{2}}{|\mathbf{u}_{i}|^{2} + \mathbf{u}_{i}|^{2}} + \frac{|\mathbf{u}_{i}|^{2} + \mathbf{u}_{i}|^{2}}{|\mathbf{u}_{i}|^{2} + |\mathbf{u}_{i}|^{2}} + \frac{|\mathbf{u}_{i}|^{2} + |\mathbf{u}_{i}|^{2}}{|\mathbf{u}_{i}|^{2} + |\mathbf{u}_{i}|^{2} + |\mathbf$

unless otherwise energified)


■ AC Electrical Characteristics

(input $t_R = t_F = 3$ ns unless otherwise specified										cifiea)
Item	Symbol	Measurement Conditions		Ta = 25°C			Ta = -40 to 85°C		L lunit	
			V _{CC} (V)	C _L (pF)	Min.	Тур.	Max.	Min.	Max.	Unit
Propagation delay time			3.3±0.3	15	_	5.5	7.9	1.0	9.5	ns
	t _{PLH} , t _{PHL}	_		50		10.0	14.0	1.0	15.0	ns
			5.0±0.5	15		3.8	5.5	1.0	6.5	ns
				50		6.1	8.5	1.0	9.0	ns
Input capacitance	CIN	_				4	10	7	10	pF
Equivalent internal capacitance	C _{PD} ^{*1}	—				15		_		pF


*1. C_{PD} is the no-load equivalent capacitance inside the circuitry. Refer to the measurement circuit shown below. Current consumption is averaged by the following equation.

 $I_{CC(opr)} = C_{PD} \times V_{CC} \times fin + I_{CC}$

Measurement Circuit

Remark No-load output during measurement of current consumption.

© ABLIC Inc., 1999-2014

The S-75V86ANC is a EXCLUSIVE OR GATE fabricated by utilizing advanced silicon-gate CMOS technology which provides the inherent benefit of CMOS low power consumption to achieve ultra high speed operation correspond to LSTTL IC's.

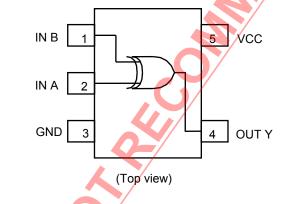
All gates of the internal circuitry have buffered outputs to ensure high noise immunity and output stability.

Input voltage is allowed to be applied even if power voltage is not supplied because no diode is inserted between an input pin and V_{CC} .

This allows for interfaces between power supplies of different voltage, output level conversion from 5 V to 3 V and battery backup applications.

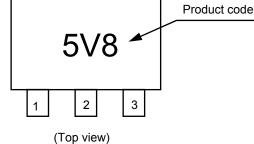
Features

- Wide power supply range:
- Low current consumption:
- Typical propagation delay:
- High noise immunity:
- Power down protection:
- Lead-free

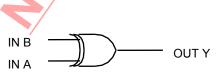

Applications

- Personal computers, peripherals
- Cellular phones
- Cameras
- Games

Package


• SC-88A

Pin Configuration


5

Marking Specification

4

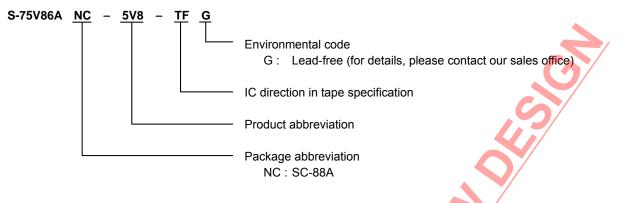
Logic Diagram

True values		
А	В	Y
L	L	L
L	Н	Н
Н	L	Н
Н	Н	L

2 V to 5.5 V

- 1.0 μA max. (at 5.5 V, 25°C)
- t_{PD} = 4.8 ns (at 5 V) V_{NIH} = V_{NIL} = 28% V_{CC} min.

All pins


H

S-75V86ANC

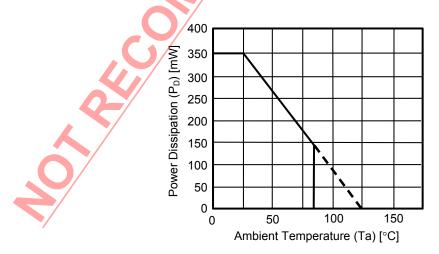
MINI LOGIC SERIES EXCLUSIVE OR GATE

29

Rev.4.0_01

Absolute Maximum Ratings

		(Ta ≠ 25°C unless other	wise specified
Item	Symbol	Absolute Maximum Ratings	Unit
Power supply voltage	V _{CC}	-0.5 to +7.0	V
Input voltage	V _{IN}	-0.5 to +7.0	V
Output voltage	V _{OUT}	0.5 to V _{CC} + 0.5	V
Input parasitic diode current	I _{IK}	-20	mA
Output parasitic diode current	Ι _{ΟΚ}	±20	mA
Output current	I _{OUT}	±25	mA
V _{CC} /GND current	I _{CC}	±50	mA
Deuron disaination		200 (When not mounted on board)	mW
Power dissipation	PD	350 ^{*1}	mW
Operating ambient temperature	T _{opr}	-40 to +85	°C
Storage temperature	T _{stg}	-65 to +150	°C
Lead temperature (10 s)	TL	260	°C


*1. When mounted on board

[Mounted board]

(1) Board size : 114.3 mm × 76.2 mm × t1.6 mm

(2) Board name : JEDEC STANDARD51-7

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

Power Dissipation of Package (When Mounted on Board)

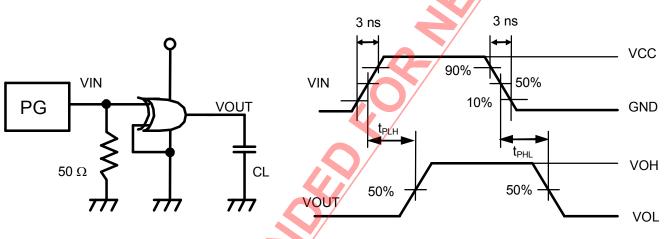
Recommended Operating Conditions

Item	Symbol	Standard	Unit
Power voltage	V _{CC}	2 to 5.5	V _
Input voltage	V _{IN}	0 to 5.5	V
Output voltage	V _{OUT}	0 to V _{CC}	V
length rises (fell times		0 to 100 (V _{CC} = 3.3±0.3 V)	ns
Input rise / fall time	t _R , t _F	0 to 20 (V _{CC} = 5±0.5 V)	ns

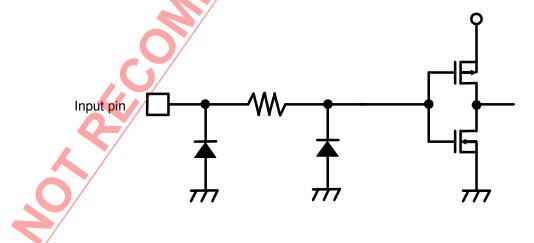
DC Electrical Characteristics

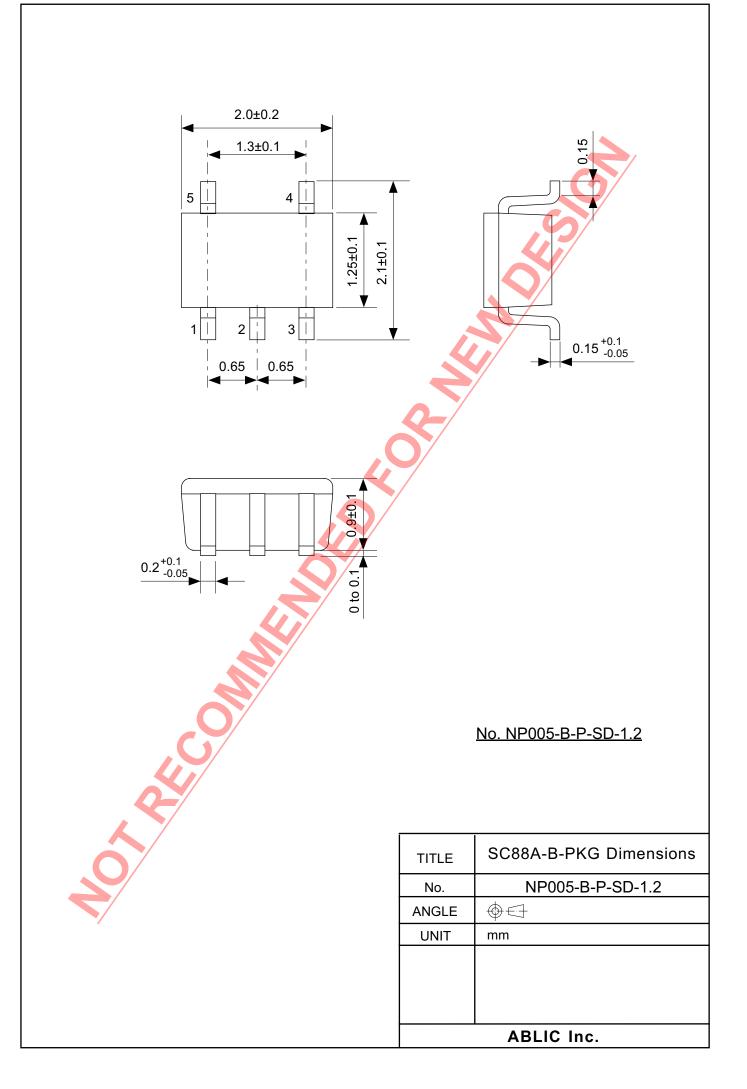
Item		Conditions			Ta = 25°C			Ta = -40 to 85°C			
		Symbol		V _{cc}			Тур.	Max.	Min.	Max.	Unit
	"H" loval	V				1.5	_		1.5		V
Input "H" level		VIH			3 to 5.5	$V_{CC} \times 0.7$			V _{CC} ×0.7		V
voltage	"I " lovol	V			2.0			0.5		0.5	V
"L" level	Lievei	V _{IL}			3 to 5.5			V _{CC} ×0.3		$V_{CC} \times 0.3$	V
"H" level			V _{IN} = V _{IL} or V _{IH}	I _{OH} = -50 μA I _{OH} = -4 mA	2.0	1.9 ┥	2.0		1.9		V
					3.0	2.9	3.0		2.9		V
	"H" level	V _{OH}			4.5	4.4	4.5		4.4		V
					3.0	2.58	_		2.48		V
				I _{OH} = –8 mA	4.5	3.94	_		3.80		V
voltage				I _{OL} = 50 μA	2.0		0	0.1		0.1	V
"L" leve					3.0		0	0.1		0.1	V
	"L" level	V _{OL}	$V_{IN} = V_{IL}$		4.5	/ _	0	0.1		0.1	V
			or V _{IH}	I _{OL} = 4 mA	3.0			0.36		0.44	V
				I _{OL} = 8 mA	4.5			0.36		0.44	V
Input curren	it	I _{IN}	V_{IN} = 5.5 V or GND		0 to 5.5	—		±0.1	—	±1.0	μA
Current con	sumption	I _{CC}	$V_{IN} = V_{CC} o$	r GND	5.5			1.0		10.0	μA

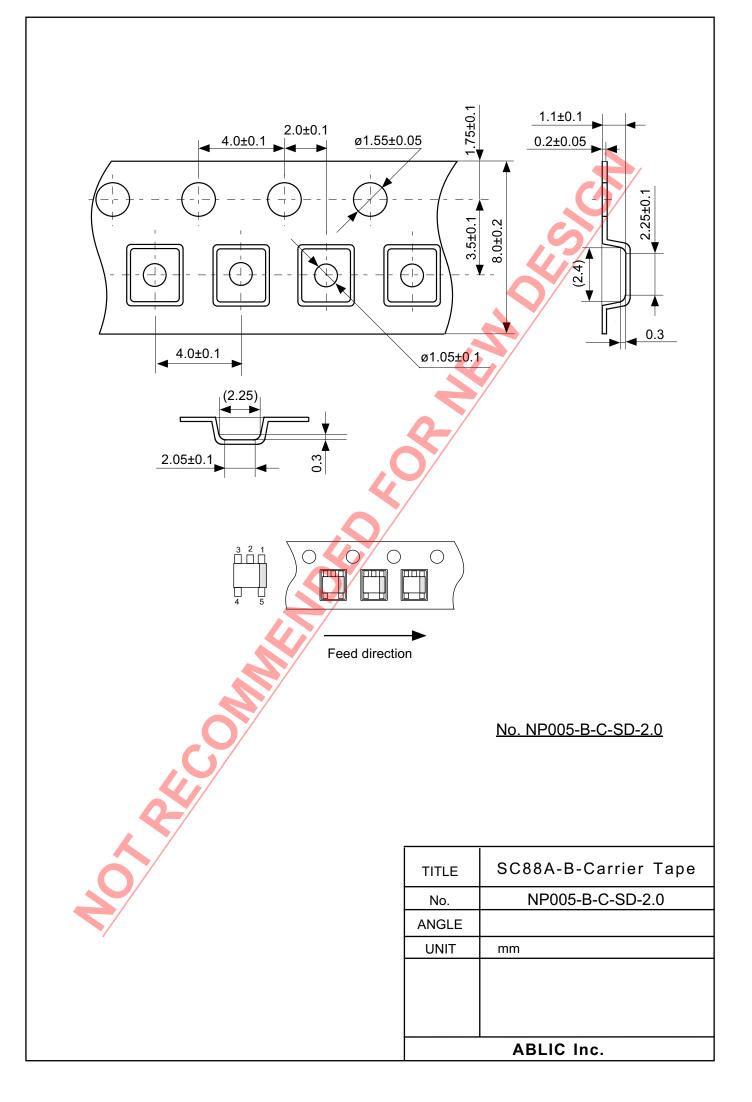
 $\frac{|O_{L}|^{2}}{|O_{L}|^{2}} \otimes \frac{|O_{L}|^{2}}{|O_{L}|^{2}} \otimes \frac{|O_{L}|^{2}} \otimes \frac{|O_{L}|^{2}}{|O_{L}|^{2}} \otimes \frac{|O_{L}|^{2}}{|O_{L}|^{2}} \otimes \frac{|O_{L}|^{2}} \otimes \frac{|O_{L}|^{2$

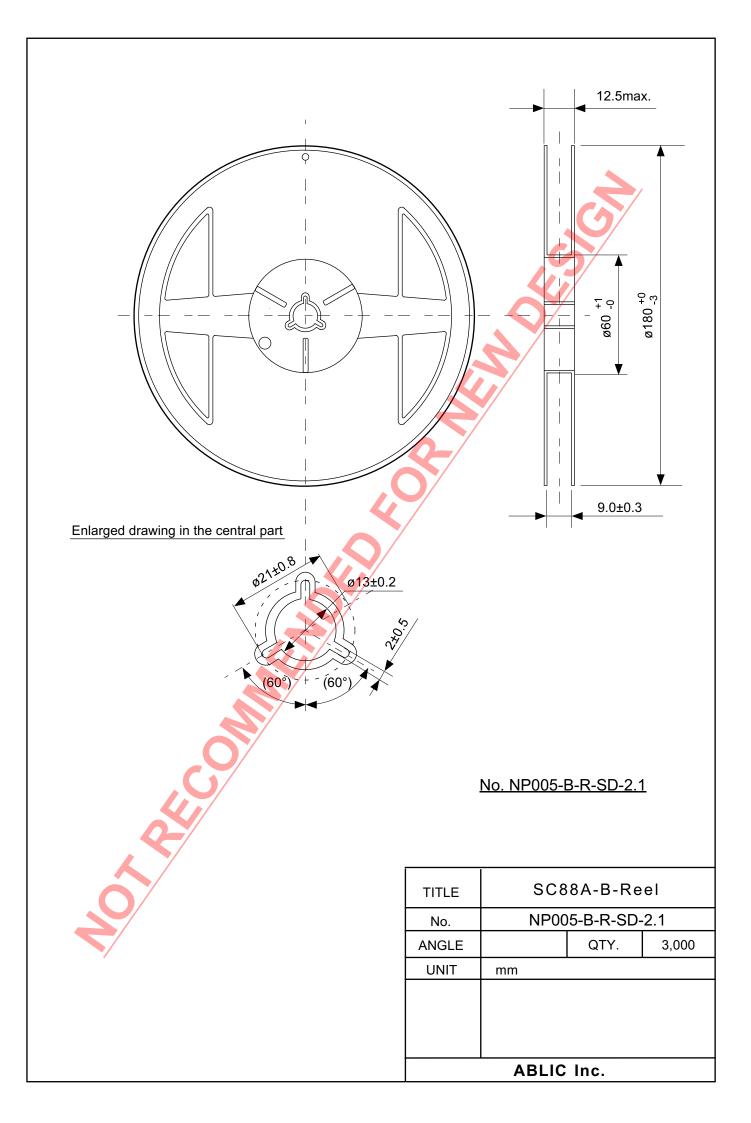

■ AC Electrical Characteristics

(Input t _R = t _F = 3 ns unless otherwise specified)										
Item	Symbol	Measurement Cond		onditions	nditions Ta = 25°C		Ta = -40		to 85°C	Linit
			V _{CC} (V)	C _L (pF)	Min.	Тур.	Max.	Min.	Max.	Unit
Propagation delay time	t _{PLH} , t _{PHL}	_	3.3±0.3	15	_	7.0	11.0	1.0	13.0	ns
				50		10.4	14.5	1.0	16.5	ns
			5.0±0.5	15		4.8	6.8	1.0	8.0	ns
				50		6.5	9.0	1.0	10.0	ns
Input capacitance	CIN	_				4	10		10	pF
Equivalent internal capacitance	C _{PD} ^{*1}	_				18		_		pF


*1. C_{PD} is the no-load equivalent capacitance inside the circuitry. Refer to the measurement circuit shown below. Current consumption is averaged by the following equation.


 $I_{\text{CC(opr)}} = C_{\text{PD}} \times V_{\text{CC}} \times fin + I_{\text{CC}}$


Measurement Circuit



Remark No-load output during measurement of current consumption.

Disclaimers (Handling Precautions)

- 1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.
- 2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of any specific mass-production design. ABLIC Inc. is not responsible for damages caused by the reasons other than the products described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use
- of the information described herein.
- 3. ABLIC Inc. is not responsible for damages caused by the incorrect information described herein.
- 4. Be careful to use the products within their specified ranges. Pay special attention to the absolute maximum ratings, operation voltage range and electrical characteristics, etc. ABLIC Inc. is not responsible for damages caused by failures and / or accidents, etc. that occur due to the use of the products outside their specified ranges.
- When using the products, confirm their applications, and the laws and regulations of the region or country where they 5. are used and verify suitability, safety and other factors for the intended use.
- 6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related laws, and follow the required procedures.
- 7. The products must not be used or provided (exported) for the purposes of the development of weapons of mass destruction or military use. ABLIC Inc. is not responsible for any provision (export) to those whose purpose is to develop, manufacture, use or store nuclear, biological or chemical weapons, missiles, or other military use.
- 8. The products are not designed to be used as part of any device or equipment that may affect the human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses. Do not apply the products to the above listed devices and equipments without prior written permission by ABLIC Inc. Especially, the products cannot be used for life support devices, devices implanted in the human body and devices that directly affect human life, etc.

Prior consultation with our sales office is required when considering the above uses. ABLIC Inc. is not responsible for damages caused by unauthorized or unspecified use of our products.

- 9. Semiconductor products may fail or malfunction with some probability. The user of the products should therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction. The entire system must be sufficiently evaluated and applied on customer's own responsibility.
- 10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the product design by the customer depending on the intended use.
- 11. The products do not affect human health under normal use. However, they contain chemical substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be careful when handling these with the bare hands to prevent injuries, etc.
- 12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.
- 13. The information described herein contains copyright information and know-how of ABLIC Inc. The information described herein does not convey any license under any intellectual property rights or any other rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this document described herein for the purpose of disclosing it to a third-party without the express permission of ABLIC Inc. is strictly prohibited.
- 14. For more details on the information described herein, contact our sales office.

2.0-2018.01

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by ABLIC manufacturer:

Other Similar products are found below :

74HC85N NLU1G32AMUTCG NLVHC1G08DFT1G CD4068BE NL17SG32P5T5G NL17SG86DFT2G NLV14001UBDR2G NLX1G11AMUTCG NLX1G97MUTCG 74LS38 74LVC32ADTR2G MC74HCT20ADTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV74HC02ADR2G 74HC32S14-13 74LS133 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 NLV74HC08ADTR2G NLV74HC14ADR2G NLV74HC20ADR2G NLX2G86MUTCG 5962-8973601DA 74LVC2G02HD4-7 NLU1G00AMUTCG 74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G00HK3-7 74LVC2G86HK3-7 NLX1G99DMUTWG NLV74HC1G00DFT2G NLVHC1G08DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ86USG NLV27WZ00USG NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7 NLV74HC02ADTR2G NLX1G332CMUTCG NL17SG86P5T5G NL17SZ05P5T5G NLV74VHC00DTR2G