Features

(v) Xtremely Low Jitter
(v) Low Cost
(v) XpRESS Delivery
(v) Frequency Resolution to six decimal places
(v) Stabilities to ± 20 PPM
() -20 to $+70^{\circ} \mathrm{C}$ or -40 to $+85^{\circ} \mathrm{C}$ operating temperatures
(v) Tri-State Enable / Disable Feature
(v) Industry Standard Package, Footprint \& Pin-Out
(v) Fully RoHS compliant
(v) Gold over Nickel Termination Finish
(v) Serial ID with Comprehensive Traceability

For more information -- Click on the drawing

Description

The Fox XpressO Crystal Oscillator is a breakthrough in configurable Frequency Control
Solutions. XPRESSO utilizes a family of proprietary ASICs, designed and developed by Fox, with a key focus on noise reduction technologies.

The $3^{\text {rd }}$ order Delta Sigma Modulator reduces noise to the levels that are comparable to traditional Bulk Quartz and SAW oscillators. The ASICs family has ability to select the output type, input voltages, and temperature performance features.

With the Xpress lead-time, low cost, low noise, wide frequency range, excellent ambient performance, XpressO is an excellent choice over the conventional technologies.

Need a Sample ${ }^{\circ}$

Applications

- ANY application requiring an oscillator
- SONET
- Ethernet
- Storage Area Network
- Broadband Access
- Microprocessors / DSP / FPGA
- Industrial Controllers
- Test and Measurement Equipment
- Fiber Channel

Contents

Model Selection \& Part Number Guide page
Electrical Characteristic 3
Absolute Maximums 3
Output Wave Characteristics 4
Phase Noise 5
Jitter 5
Pin Assignment 6
Recommended Circuit 6
Reflow 6
Mechanical Drawing and Pad Layout 7
Tape and Reel Specification 8
Label 8
Traceability - LOT Number \& Serial IdentificationRoHS Material Declaration10
SGS Report 11 \& 12
Mechanical Test 13
Burn-In Test 13
MTTF / FITS calculations 14
Other Xpresso Links 15
Fox Contact Information 15

Model Selection Guide \& Fox Part Number

STEP \#1: Customer selects the Model Description and provides to Fox Customer Service

Model Description

Q LVDEC (
$\mathrm{Q}=\mathrm{LVPECL}($ pin 2 E/D)
$\mathrm{X}=\mathrm{HCMOS}\left(\right.$ comp $2^{\text {nd }}$ Output)

STEP \#2: The Fox Customer Service team provides a customer specific Part Number for use on their Bill Of Materials (BOM).

Fox Part Number (The assigned Fox Part Number must be on the BOM - not the above Model Description) (This will ensure receipt of the proper part)

The ${ }^{\text {st }}$ Field
Product Code \#
767 =FXO-HC5
768 =FXO-HC7
770 =FXO-LC5
771 =FXO-LC7
773 = FXO-PC5
774 =FXO-PC7

The $2^{\text {nd }}$ Field
The Customer's Frequency

The $3^{\text {rd }}$ Field
Fox Internally Generated Number (If any specification changes, the last digits change)
(The same specs for a different customer also changes the last digits)

This example, FXO-LC536R-622.08 = LVDS Output, Ceramic, $5 \times 3.2 \mathrm{~mm}$ Package, 3.3 V , ± 25 PPM Stability, -40 to $+85^{\circ} \mathrm{C}$ Temperature Range, at 622.08 MHz

Electrical Characteristics

Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)
Frequency Range	F_{O}		0.750 MHz to 1.35 GHz
Frequency Stability ${ }^{1}$			$100,50,25, \& 20 \mathrm{ppm}$
Temperature Range	T_{O}	Standard operating Optional operating Storage	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage	$\mathrm{T}_{\text {STG }}$	Standard	$3.3 \mathrm{~V} \pm 5 \%$
Input Current @ 100 ohm LOAD)	V_{DD}	I_{DD}	Standard Load
Output Load		Standard	100 mA
Start-Up Time	T_{S}		100 Ohms Typ.
Output Enable / Disable Time			10 mS
Moisture Sensitivity Level	MSL	JEDEC J-STD-20	100 nS
Termination Finish			1

Note 1 - Stability is inclusive of $25^{\circ} \mathrm{C}$ tolerance, operating temperature range, input voltage change, load change, aging, shock and vibration.

Absolute Maximum Ratings (Useful life may be impaired. For user guidelines only, not tested)

Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)
Input Voltage	V_{DD}		-0.5 V to +5.0 V
Operating Temperature	$\mathrm{T}_{\text {AMAX }}$		$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature			$150^{\circ} \mathrm{C}$
ESD Sensitivity	HBM	Human Body Model	1 kV

Output Wave Characteristics

Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)
Differential Output Voltage	$\mathrm{V}_{\text {OD }}$	0.75 MHz to 1.35 GHz	0.6V Typ.
Output Offset Voltage	$\mathrm{V}_{\text {OS }}$	Volts DC	1.3 V Typ.
Output Symmetry (See Drawing Below)		@ 50\% V ${ }_{\text {P.P }}$ Level	45\% ~ 55\%
Output Enable (PIN \# 1) Voltage ${ }^{\text {Note1 }}$	V_{IH}		$>70 \% \mathrm{~V}_{\mathrm{DD}}$
Output Disable (PIN\#1) Voltage ${ }^{\text {Note1 }}$	V_{IL}		$<30 \% \mathrm{~V}_{\text {DD }}$
Cycle Rise Time (See Drawing Below)	T_{R}	20\%~80\%	400 pS
Cycle Fall Time (See Drawing Below)	T_{F}	80\% ~20\%	400 pS

${ }^{1}$ An optional PIN \# 2 as Enable / Disable is available - see Model Selection Guide (page 2)

Rise Time / Fall Time Measurements

Oscillator Symmetry
Ideally, Symmetry should be 50/50 for $1 / 2$ period -- Other expressions are 45/55 or 55/45

Jitter is frequency dependent. Below are typical values at select frequencies.
LVDS Phase Jitter \& Time Interval Error (TIE)

Frequency	Phase Jitter $(12 \mathrm{kHz}$ to 20 MHz$)$	T I E (Sigma of Jitter Distribution)	Units
62.5 MHz	0.77	3.0	pS RMS
156.25 MHz	1.19	3.6	pS RMS
212.5 MHz	0.89	3.9	pS RMS
622.08 MHz	0.99	3.2	pS RMS

Phase Jitter is integrated from HP3048 Phase Noise Measurement System; measured directly into 50 ohm input; $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$. TIE was measured on LeCroy LC684 Digital Storage Scope, directly into 50 ohm input, with Amherst M1 software; $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$. Per MJSQ spec (Methodologies for Jitter and Signal Quality specifications)

LVDS Random \& Deterministic Jitter Composition			
Frequency	Random (Rj) $(\mathrm{pS} R M S)$	Deterministic (Dj) $(\mathrm{pS} \mathrm{P-P)}$	Total Jitter (Tj) $(14 \times \mathrm{Rj})+\mathrm{Dj}$
62.5 MHz	1.3	7.0	24.9 pS
156.25 MHz	1.3	5.8	23.6 pS
212.5 MHz	0.9	6.7	18.7 pS
622.08 MHz	1.1	5.3	20.7 pS

Rj and Dij, measured on LeCroy LC684 Digital Storage Scope, directly into 50 ohm input, with Amherst M1 software. Per MJSQ spec (Methodologies for Jitter and Signal Quality specifications)

Pin Description and Recommended Circuit

Pin \#	Name	Type	Function
1	E / D^{1}	Logic	Enable / Disable Control of Output (0 = Disabled)
2	NC		No Connection - Leave OPEN
3	GND	Ground	Electrical Ground for V_{DD}
4	Output	Output	LVDS Oscillator Output
5	Output 2	Output	Complimentary LVDS Output
6	$\mathrm{V}_{\mathrm{DD}}{ }^{2}$	Power	Power Supply Source Voltage
NOTES: 1 Includes pull-up resistor to $V_{D D}$ to provide output when the pin (1) is No Connect. 2 Installation should include a $0.01 \mu \mathrm{~F}$ bypass capacitor placed between V_{DD} (Pin 6) and GND (Pin 3) to minimize power supply line noise.			

Terminations as viewed from the Top
NOTE: XpressO LVDS XOs are designed to fit on Industry Standard, 6 pad layouts

Enable / Disable Control
Pin \# 1 (state) OPEN ${ }_{\text {(No Connection) }}$
"1" Level $\mathrm{V}_{\mathrm{IH}}>70 \% \mathrm{~V}_{\mathrm{DD}}$ " 0 " Level $\mathrm{V}_{\text {IL }}<30 \% \mathrm{~V}_{\mathrm{DD}}$

Output (Pin \# 4, Pin \# 5)
ACTIVE Output
ACTIVE Output
High Impedance

Soldering Reflow Profile (2 times Maximum at $260^{\circ} \mathrm{C}$ for 10 seconds MAX)
$260^{\circ} \mathrm{C}$

Mechanical Dimensional Drawing \& Pad Layout

Actual part marking is depicted.

See Traceability (pg. 9) for more information

Note: XpressO LVDS XOs are designed to fit on Industry standard, 6 pad, layouts.

Pin Connections
\#1) E/D
\#4) Output
\#2) $N C$
\#5) Output 2
\#3) GND
\#6) $V_{D D}$

Drawing is for reference to critical specifications defined by size measurements.
Certain non-critical visual attributes, such as side castellations, reference pin shape, etc. may vary

Tape and Reel Dimensions

Labeling (Reels and smaller packaging are labeled with the below)

- Fox Part Number: 770-622.08-2 \longrightarrow
- Quantity: 2000 pieces \longrightarrow
- Description: FXO-LC536R-622.08

An additional identification code is contained internally if tracking should ever be necessary

Traceability - LOT Number \& Serial Identification

LOT Number

The LOT Number has direct ties to the customer purchase order. The LOT Number is marked on the "Reel" label, and also stored internally on non-volatile memory inside the XPRESSO part. XPRESSO parts that are shipped Tape and Reel, are also placed in an Electro Static Discharge (ESD) bag and will have the LOT Number labeled on the exterior of the ESD bag.

It is recommended that the XPRESSO parts remain in this ESD bag during storage for protection and identification.

If the parts become separated from the label showing the LOT Number, it can be retrieved from inside one of the parts, and the information that can be obtained is listed below:

- Customer Purchase Order Number
- Internal Fox Sales Order Number
- Dates that the XpressO part was shipped from the factory
- The assigned customer part number
- The specification that the part was designed for

Serial Identification

The Serial ID is the individualized information about the configuration of that particular XPRESSO part. The Serial ID is unique for each and every XPRESSO part, and can be read by special Fox equipment.

With the Serial ID, the below information can be obtained about that individual, XPRESSO part:

- Equipment that the XPRESSO part was configured on
- Raw material used to configure the XPRESSO part
- Traceability of the raw material back to the foundries manufacturing lot
- Date and Time that the part was configured
- Any optimized electrical parameters based on customer specifications
- Electrical testing of the actual completed part
- Human resource that was monitoring the configuration of the part

Fox has equipment placed at key Fox locations World Wide to read the Lot Identification and Serial Number of any XPRESSO part produced and can then obtain the information from above within 24 hours

This part is no longer available from Fox, please contact IRC for thisrries

RoHS Material Declaration

	Material Name	Component	Content (mg)	Content (wt\%)	(CAS Number)
Cover	Kovar	Nickel (Ni)	1.890	3.09\%	7440-02-0
		Cobalt (Co)	1.113	1.82\%	7440-48-4
		Iron (Fe)	3.540	5.78\%	7439-89-6
Base	Ceramic	Alumina ($\mathrm{Al}_{2} \mathrm{O}_{3}$)	35.484	57.98\%	1344-28-1
		Silicon Oxide (SiO_{2})	1.733	2.83\%	14808-60-7
		Chromium Oxide ($\mathrm{Cr}_{2} \mathrm{O}_{3}$)	0.268	0.44\%	1308-38-9
		Molybdenum Oxide (MoO_{2})	0.364	0.59\%	18868-43-4
		Magnesium Oxide (MgO)	0.234	0.38\%	1309-48-4
		Calcium Oxide (CaO)	0.253	0.41\%	1305-78-8
	+ Metallization	Tungsten (W)	6.290	10.28\%	7440-33-7
		Molybdenum (Mo)	0.195	0.32\%	7439-98-7
	+ Nickel Plating	Nickel (Ni)	0.810	1.32\%	7440-02-0
		Cobalt (Co)	0.203	0.33\%	7440-48-4
	+ Gold Plating	Gold (Au)	0.281	0.46\%	7440-57-5
	+ Seal ring	Iron (Fe)	2.438	3.98\%	7439-89-6
		Nickel (Ni)	1.309	2.14\%	7440-02-0
		Cobalt (Co)	0.768	1.25\%	7440-48-4
	+ silver solder	Silver (Ag)	1.191	1.95\%	7440-22-4
		Copper (Cu)	0.210	0.34\%	7440-50-8
I C	I C	Aluminum (AI)	0.0021	0.00343\%	7429-90-5
		Silicon (Si)	0.950	1.55\%	7440-21-3
	Gold	Gold (Au)	0.480	0.784\%	7440-57-5
	Adhesive	Silver (Ag)	0.000210	0.000343\%	7440-22-4
		Epoxy	0.0000700	0.0001144\%	
Crystal	Crystal	Silicon Dioxide (SiO_{2})	1.170	1.91\%	14808-60-7
	Electrode	Silver (Ag)	0.019	0.0310\%	7440-22-4
		Nickel (Ni)	0.000159	0.000260\%	7440-02-0
	Adhesive	Silver (Ag)	0.00037	0.000605\%	7440-22-4
		Silicon (Si)	0.000125	0.000204\%	7440-21-3
TOTAL			61.196	100.00\%	

$3^{\text {rd }}$ Party (SGS) Material Report

Test Report
 No. 2053204/EC
 Date : Mar 012006
 Page 1 of 2

```
FOX ELECTRONICS
5570 ENTERPRISE PARKWAY
FT. MYERS, FL }3390
```

Report on the submitted sample said to be CERAMIC SEAM SEAL OSCILLATOR.

SGS Job No.
Supplier / Manufacturer Sample Receiving Date
Testing Period

1981176
FOX ELECTRONICS
FEB 172006
FEB 18-24 2006

Test Results : 1-5) Please refer to next page.

Signed for and on behalf of
SGS Hong Kong Ltd

[^0] This Test Report cannot be reproduced, except in full, without prior written permission of the Company.
$3^{\text {rd }}$ Party (SGS) Material Report (continued)

Test Results

Test Item	1	Detection Limit
1) Cadmium (Cd)	ND	2 ppm
2) Lead (Pb)	ND	2 ppm
3) Mercury (Hg)	ND	2 ppm
4) Hexavalent Chromium (Cr^{6+})	ND	2 ppm
(Results shown are of the total weight of samples)		
Note: $\quad \mathrm{ppm}=\mathrm{mg} / \mathrm{kg}$ ND = Not Detected Not detected is reported	an	

5)

Flame Retardants	1	Detection Limit
Polybrominated Biphenyls (PBBs)	---	---
Monobromobiphenyl	ND	5 ppm
Dibromobiphenyl	ND	5 ppm
Tribromobiphenyl	ND	5 ppm
Tetrabromobiphenyl	ND	5 ppm
Pentabromobiphenyl	ND	5 ppm
Hexabromobiphenyl	ND	5 ppm
Heptabromobiphenyl	ND	5 ppm
Octabromobiphenyl	ND	5 ppm
Nonabromobiphenyl	ND	5 ppm
Decabromobiphenyl	ND	5 ppm
Polybrominated Diphenylethers (PBDEs)	---	---
Monobromodiphenyl ether	ND	5 ppm
Dibromodiphenyl ether	ND	5 ppm
Tribromodiphenyl ether	ND	5 ppm
Tetrabromodiphenyl ether	ND	5 ppm
Pentabromodiphenyl ether	ND	5 ppm
Hexabromodiphenyl ether	ND	5 ppm
Heptabromodiphenyl ether	ND	5 ppm
Octabromodiphenyl ether	ND	5 ppm
Nonabromodiphenyl ether	ND	5 ppm
Decabromodiphenyl ether	ND	5 ppm

Note
$\mathrm{ppm}=\mathrm{mg} / \mathrm{kg}$
ND $=$ Not Detected
Not detected is reported when the reading is less than detection limit value.
Sample Description:

1. Black Ceramic w/ Silvery, Golden Metal w/ Silvery Chips
*** End of Report ***

[^1] This Test Report cannot be reproduced, except in full, without prior written permission of the Company.

Mechanical Testing

Parameter	Test Method
Mechanical Shock	Drop from 75 cm to hardwood surface -3 times
Mechanical Vibration	$10 \sim 55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ amplitude, 1 Minute Sweep
2 Hours each in 3 Directions ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$)	
High Temperature Burn-in	Under Power @ $125^{\circ} \mathrm{C}$ for 2000 Hours (results below)
Hermetic Seal	He pressure: $4 \pm 1 \mathrm{kgf} / \mathrm{cm}^{2} 2$ Hour soak

2,000 Hour Burn-In

Burn-In Testing - under power 2000 Hours, $125^{\circ} \mathrm{C}$

MTTF / FITS Calculations

Products are grouped together by process for MTTF calculations.
(All XpressO output and package types are manufactured with the same process)
Number of Parts Tested: $\quad 360$ (120 of each output type: HCMOS, LVDS, LVPECL)
Number of Failures: 0
Test Temperature: $\quad 125^{\circ} \mathrm{C}$
Number of Hours: 2000

MTTF was calculated using the following formulas:
[1.] Device Hours (devhrs) $=$ (number of devices) \times (hours at elevated temperature in ${ }^{\circ} \mathrm{K}$)
[2.] MTTF $=\frac{\text { devhrs } \times a f \times 2}{\chi^{2}}$
[3.] FITS $=\frac{1}{M T T F} * 10^{9}$
Where:
Label Name Formula/Value

af	Acceleration Factor	$\boldsymbol{e}^{\left(\frac{e V}{k}\right) \times\left(\frac{1}{t_{1}}-\frac{1}{t_{2}}\right)}$
eV	Activation Energy	0.40 V
k	Bolzman's Constant	$8.62 \times 10^{-5} \mathrm{eV} /{ }^{\circ} \mathrm{K}$
t_{1}		Operating Temperature ($\left.{ }^{\circ} \mathrm{K}\right)$
t_{2}		Accelerated Temperature ($\left.{ }^{\circ} \mathrm{K}\right)$
Θ	Theta	Confidence Level (60\% industry standard)
r	Failures	Number of failed devices
X^{2}	Chi-Square	statistical significance for bivariate tabular analysis [table look- upl based on assumed Θ (Theta - confidence) and number of failures (r) For zero failures (60\% Confidence): $\mathrm{x}^{2}=1.830$

DEVICE-HOURS $=360 \times 2000$ HOURS $=720,000$
ACCELERATION FACTOR $=e^{\left(\frac{0.40}{8.625}\right) \times\left(\frac{1}{298}-\frac{1}{398}\right)}=49.91009$
MTTF $=\frac{720,000 \times 49.91009 \times 2}{1.833}=15,607,065$ Hours
Failure Rate $=\frac{1.833}{720,000 \times 49.91009 \times 2}=6.41 \mathrm{E}-8$
FITS $=$ Failure Rate *1E9 $=64$

Notes:

Other XpressO Links

XPRESSO Brochure

Main Website www.foxonline.com

Patent Numbers:
US 6,664,860, US 5,960,403, US 5,952,890; US 5,960,405; US 6,188,290;
Foreign Patents: R.S.A. 98/0866, R.O.C. 120851; Singapore 67081, 67082; EP 0958652
China ZL 98802217.6, Malaysia MY-118540-A, Philippines 1-1998-000245, Hong Kong \#HK1026079, Mexico \#232179 US and Foreign Patents Pending

XpressO ${ }^{\text {TM }}$ Fox Electronics

Contact Information

(USA)-Worldwide Headquarters
Tel: 888-GET-2-FOX
Outside US: +1.239.693.0099,
Fax:+1.239.693.1554
Email: www.foxonline.com/email.htm

Fox Japan

Tel:+81.3.3374.2079,
Fax: +81.3.3377.5221
Email: www.foxonline.com/email.htm
\qquad

The above specifications, having been carefully prepared and checked, is believed to be accurate at the time of publication; however, no responsibility is assumed by Fox Electronics for inaccuracies.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Standard Clock Oscillators category:
Click to view products by Abracon manufacturer:
Other Similar products are found below :
601252 F335-25 F535L-33.333 F535L-50 ECS-2018-160-BN-TR MXO45HS-2C-66.6666MHZ SiT1602BI-22-33E-50.000000E SiT8209AI-32-33E-125.000000 SIT8918AA-11-33S-50.000000G SM4420TEV-40.0M-T1K F335-24 F335-40 F535L-10 F535L-12 F535L-16 F535L$\underline{24}$ F535L-27 F535L-48 PE7744DW-100.0M CSX-750FCC14745600T ASF1-3.686MHZ-N-K-S XO57CTECNA3M6864 ECS-2100A-147.4 601251 EP16E7E2H26.000MTR SIT8918AA-11-33S-16.000000G XO3003 9120AC-2D2-33E212.500000 9102AI-243N25E100.00000 8208AC-82-18E-25.00000 ASDK2-32.768KHZ-LR-T3 8008AI-72-XXE-24.545454E 8004AC-13-33E-133.33000X AS-4.9152-16-SMD-TR ASFL1-48.000MHZ-LC-T SIT8920AM-31-33E-25.0000 DSC1028DI2-019.2000 9121AC-2C3-25E100.00000 9102AI-233N33E100.00000X 9102AI-233N25E200.00000 9102AI-232H25S125.00000 9102AI-133N25E200.00000 9102AC-283N25E200.00000 9001AC-33-33E1-30.000 3921AI-2CF-33NZ125.000000 5730-1SF PXA000010 8003AI-12-33S-40.00000Y 1602BI-13-33S-19.200000E 8208AI-2F-18E-25.000000X

[^0]: This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification and jurisdictional issues defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated

[^1]: This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the imitations of liability, indemnification and jurisdictional issues defined therein. The resuits shown in this test report refer only to the sample(s) tested unless otherwise stated.

