

OpenIMU300ZI

EZ-Family High-Performance IMU

The ACEINNA OpenIMU300ZI "EZ" is an easy-to-use high-performance 9-DOF open inertial platform. The OpenIMU300ZI features a precision 3-Axis Accelerometer, low-drift 3-Axis Rate Gyro, and 3-Axis Magnetometer. The low-power platform is powered by a 168MHz ARM M4 CPU with a Floating Point Unit. The OpenIMU300ZI runs the OpenIMU open-source stack that includes an optimized full-state Kalman Filter for Attitude and GPS-Aided Position-Velocity-Time (PVT) measurement. A free tool-chain based on VS Code supports PC, MAC, and Ubuntu.

OpenIMU300ZI

EZ-Family High-Performance IMU

The ACEINNA OpenIMU300ZI is designed for use in embedded applications and operates from a 3.0 to 5.5 power supply. The cost-effective and light-weight cast aluminum housing provides rigidity and minimizes potential stress coupling from the PCBA to the sensor. Four mounting holes are provided to secure the OpenIMU300ZI to your PCBA with screws.

Applications

- Autonomous Vehicles
- Unmanned Vehicles
- Self-Driving Taxis / Delivery Vehicles
- Agriculture Vehicles and Implements
- Forklifts
- Robotics Control / Feedback
- Antenna / Camera Gimballing and Stabilization

Features

- Easy to Customize Open Source Algorithms
- Precision 3-axis MEMS Accelerometer
- Low-Drift 3-axis MEMS Angular Rate Sensor
- High Performance 3-axis AMR Magnetometer
- 168 MHz ARM M4 processor
- SPI and up to 3 UART interfaces
- Open Source Tool Chain
- Open Source Algorithms (VG / AHRS / INS)
- Built in 16-State Open Source Extended Kalman Filter
- Open Community & Support
- Wide Temp Range, -40C to +85C
- High Reliability, MTBF > 50k hours

This product has been developed exclusively for commercial applications. It has not been tested for, and makes no representation or warranty as to conformance with, any military specifications or its suitability for any military application or end-use. Additionally, any use of this product for nuclear, chemical or biological weapons, or weapons research, or for any use in missiles, rockets, and/or UAV's of 300km or greater range, or any other activity prohibited by the Export Administration Regulations, is expressly prohibited without the written consent and without obtaining appropriate US export license(s) when required by US law. Diversion contrary to U.S. law is prohibited. Specifications are subject to change without notice.

info@aceinna.com

www.aceinna.com

Document: 6020-3885-01 F

OpenIMU300ZI EZ-Family High-Performance IMU

Performance Specification Ta = 25°C, VDC = 3.3 V, unless otherwise stated

Angular Rate	MIN	TYP ²	MAX
Range (°/s)	-400		+400
Bias Instability (°/hr) ¹		6	
Bias Stability over Temp (°/s)		0.3	
Scale Factor Accuracy (%)		0.03	
Cross-Axis Error (%FSR)		0.02	
Angle Random Walk (°/√hr)¹		0.3	
Configurable Bandwidth (Hz)	5		50
Acceleration	MIN	TYP ²	MAX
Range (g)	-8		+8
Bias Instability (μg) ¹		10	
Bias Stability over Temp (mg)		3	
Scale Factor Accuracy (%FSR)		0.03	
Non-Linearity (%FSR)		0.03	
$VRW (m/s/\sqrt{hr})^{1}$		0.06	
Configurable Bandwidth (Hz)	2		50
Magnetic Field	MIN	TYP ²	MAX
Range (mGauss)	-8000		+8000
Resolution (mGauss)		0.25	
Noise (mGauss/√Hz)		0.25	
Bandwidth (Hz)		5	

Note 1: Allan variance curve, constant temperature

Note 2: Typical values are 1-sigma values unless otherwise noted

Electrical Specifications

Characteristic	Specification
Input voltage	3.0 – 5.5 V
Power Consumption	< 350 mW
Interface	SPI and UART
Max Output Data Rate - SPI	200 Hz
Max Output Data Rate - UART	200 Hz
Input Clock Sync	1pps, 1 kHz

Physical Specifications

Characteristic	Specification	
Size	24.15 x 37.7 x 9.5 mm	
Weight	<17 gram	
Connector	20-Pin (10x2) 1.0 mm pitch header	
Mating Connector	SAMTEC CLM-110-02	
Mounting holes	4 x 2.5 mm thru hole	

Environmental Specifications

Characteristic	Specification
Operating Temperature	-40 °C to 85 °C
Storage Temperature	-55 °C to 105 °C

ESD Specification

Model	Class	MAX
Human Body	2	2000 V
Charged Device	II	500 V

Qualification Summary (Not inclusive of all tests)

Item	Condition	Summary	
Hot Soak - Operating	Powered	96 Hours 85 °C per IEC 60068-2-2, method BE	
Cold Soak - Operating	Powered	96 Hours -40 °C per IEC 60068-2-1, method AD	
Temperature Cycle	Not Powered	415 cycles, -40 °C to 85 °C	
Temperature Cycle	Powered	141 cycles, , -40 °C to 85 °C	
Temperature Shock	Not Powered	50 Cycles; -40 °C to 85 °C, <60 s transition, 1 hour dwell	
Mechanical Shock	Powered	3 Shocks x 3 axis x 2 directions (18 total) 500 m/s ² , ½ sine, 11 ms pulse	
Vibration Swept Sine	Powered	5 to 2000 Hz; 5 to 55 Hz Disp.	= 0.01 in; 55 Hz to 2000 Hz, 1.5 g Peak
Vibration Random	Powered	Frequency Breakpoint	Acceleration Spectral Density (g ² /Hz)
		5	0.015
		100	0.04
		1000	0.04
		2000	0.02

Document: 6020-3885-01_F

OpenIMU300ZI

EZ-Family High-Performance IMU

Evaluation and Development Kit

- OpenIMU300ZI EVK
- ST-Link/v2 debugger for in-system development of application code
- Fixture and Interface Board
 - JTAG, USB and UART Interfaces

Open Navigation Platform

Embedded navigation applications quickly developed on PC, MAC, and Ubuntu and deployed to run on OpenIMU hardware.

Code / Compile / Debug / Simulate / Analyze

Aceinna Navigation Studio developer tools and GUI are found on our developer site: <u>developers.aceinna.com</u>

Full manual, API and Algorithm documentation are found at: openimu.readthedocs.io

IDE and Compilation tools: download and Install Microsoft VS Code and add the free Aceinna Extension: **code.visualstudio.com**

Development System Requirements

- PC or MAC
- USB Port (2.0)
- Internet Connection

Ready to Use Open Source Algorithms

- Calibrated IMU, 3D Acceleration, 3D Rate, 3D Mag
- VG / AHRS, and Dynamic Roll, Pitch and Heading
- INS, Position, Velocity, Attitude and Heading

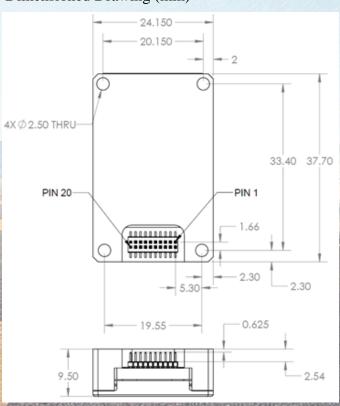
VG / AHRS Performance ³	Typical	
Pitch and Roll Dynamic Accuracy (Degree) ⁴	0.5	
Heading Accuracy (Degree) ⁵	2	
INS Performance ³		
Position Accuracy (m) ⁶	2	
Pitch and Roll (Degree) ⁶ 0.2		
Velocity Accuracy (m/s) ⁶ 0.05		
Heading Accuracy (Degree) ⁶	0.5	

Note 3: Aceinna Open Source Reference Algorithm

Note 4: RMS Error as referenced to Novatel SPAN during 30 minute drive test.

RESTAURANT CONTRACTOR CONTRACTOR

Note 5: Tested in low distortion magnetic environment.


Note 6: RMS Error as referenced to Novatel SPAN during 30 minute drive test using GNSS input from UBLOX M8

Ordering Information

Embedded High-P	Performance OpenIMU Platform
OpenIMU300ZI 9 DOF IMU, FSR = 400dps / ±8 g / ±8 Gauss	
OpenIMU300ZI	Developer Kit with OpenIMU300ZI, JTAG, STLink/v2
EVK Pod and Cable	

Dimensioned Drawing (mm)

info@aceinna.com

www.aceinna.com

Document: 6020-3885-01_F

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Position Sensor Development Tools category:

Click to view products by ACEINNA manufacturer:

Other Similar products are found below:

AS5115 PB AS5215 AB STEVAL-MKI043V1 EVB90340-LDC-200-Rev1.0 STEVAL-STWINMAV1 1032 178 DPP401Z000 EVAL-ADXRS453Z-M EVAL-ADXRS453Z-V 1007214-3 STEVAL-MKI045V1 STEVAL-MKI042V1 STEVAL-MKI037V1 IMX-070 164 EVAL-KIT DMU381ZA-400 OpenIMU300RI EVK OpenIMU330BI EVK 3595 AS5200L-MF_EK_AB AS5215 DB AS5600L-SO_EK_AB AS5600L-WL_EK_AB AS5715-TS_EK_AB AS5X47D-TO_EK_ST TRK-1T02-E ADIS16265/PCBZ ADIS16260/PCBZ ADIS16477-1/PCBZ ADIS16477-3/PCBZ EVAL-ADXRS450Z-S EVAL-ADXRS450Z-S EVAL-ADXRS453Z EVAL-ADXRS453Z-S EVAL-ADXRS646Z EVAL-ADXRS800Z-EY EVAL-ADXRS800Z-M EVAL-ADXRS800Z-RG EVAL-CN0341-SDPZ ATBNO055-XPRO DFR0027 DFR0053 DPP401A000 EVB90365-Rev1.0 EVB90371-GDC-100-Rev1.0 EVB90371-GDC-200-Rev1.0 EVB90371-GDC-300-Rev1.0 EVB90371-GGO-200-Rev1.0