QOMVO

FEATURES

- 2A Output Current
- Up to 95% Efficiency
- 6.0V to 30V Input Range
- 210 kHz Switching Frequency
- Adjustable Output Voltage
- Cycle-by-Cycle Current Limit Protection
- Thermal Shutdown Protection
- Frequency Foldback at Short Circuit
- Stability with Wide Range of Capacitors, Including Low ESR Ceramic Capacitors
- SOP-8 Package

APPLICATIONS

- TFT LCD Monitors
- Portable DVDs
- Car-Powered or Battery-Powered Equipments
- Set-Top Boxes
- Telecom Power Supplies
- DSL and Cable Modems and Routers
- Termination Supplies

ACT4065A
 High Input 2A Step Down Converter
 GENERAL DESCRIPTION

The ACT4065A is a current-mode step-down DC/DC converter that generates up to 2 A output current at 210 kHz switching frequency.
The ACT4065A is highly efficient with peak efficiency at 95% when in operation. Protection features include cycle-by-cycle current limit, thermal shutdown, and frequency foldback at short circuit.

The ACT4065A is available in SOP-8 package and requires very few external devices for operation.

Note: ACT4065A is the drop-in replacement for ACT4065 with feedback resistance value change.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE	PINS	PACKING
ACT4065ASH-T	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SOP-8	8	TAPE \& REEL

PIN CONFIGURATION

SOP-8

PIN DESCRIPTIONS

PIN NUMBER	NAME	DESCRIPTION
1	BS	Bootstrap. This pin acts as the positive rail for the high-side switch's gate driver. Connect a 10nF between this pin and SW.
2	IN	Input Supply. Bypass this pin to G with a low ESR capacitor. See Input Capacitor in Application Information section.
3	SW	Switch Output. Connect this pin to the switching end of the inductor.
4	G	Ground.
5	FB	Feedback Input. The voltage at this pin is regulated to 0.808V. Connect to the resistor divider between output and ground to set output voltage.
6	COMP	Compensation Pin. See Compensation Techniques in Application Information section.
7	EN	Enable Input. When higher than 0.8V, this pin turns the IC on. When lower than 0.8V, this pin turn the IC off. Output voltage is discharged when the IC is off. This pin has a small internal pull-up current to a high level voltage when pin is not connected. Do not allow EN pin to exceed 6V.
8	N/C	Not Connected.

ABSOLUTE MAXIMUM RATINGS ${ }^{\circledR}$

PARAMETER	VALUE	UNIT
IN Supply Voltage	-0.3 to 30	V
SW Voltage	-1 to $\mathrm{VIN}^{2}+1$	V
BS Voltage	$\mathrm{Vsw}^{\prime}-0.3$ to $\mathrm{Vsw}+7$	V
EN, FB, COMP Voltage	-0.3 to 6	V
Continuous SW Current	Internally limited	A
Maximum Power Dissipation	0.76	W
Junction to Ambient Thermal Resistance ($\theta \mathrm{JJA}$)	105	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Junction Temperature	-40 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature	-55 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	300	${ }^{\circ} \mathrm{C}$

(1): Do not exceed these limits to prevent damage to the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage	V IN	VOUT $=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A}$	6		30	V
Feedback Voltage	$V_{\text {Fb }}$	$\mathrm{V}_{\text {comp }}=1.5 \mathrm{~V}$	0.792	0.808	0.824	V
High-Side Switch On Resistance	Ronh			0.22		Ω
Low-Side Switch On Resistance	Ronl			8		Ω
SW Leakage		$\mathrm{V}_{\text {EN }}=0$		1	10	$\mu \mathrm{A}$
High-Side Switch Current Limit	ILim	Duty $=50 \%$		3.5		A
COMP to Current Limit Transconductance	Gсомр			3.4		A/V
Error Amplifier Transconductance	G_{EA}	$\Delta \mathrm{COMP}= \pm 10 \mu \mathrm{~A}$		650		$\mu \mathrm{A} / \mathrm{V}$
Error Amplifier DC Gain	Avea			4000		V/V
Switching Frequency	fsw		190	210	240	kHz
Short Circuit Switching Frequency		$\mathrm{V}_{\mathrm{FB}}=0$		30		kHz
Maximum Duty Cycle	$\mathrm{D}_{\text {max }}$	$\mathrm{V}_{\mathrm{FB}}=0.7 \mathrm{~V}$		88		\%
Minimum Duty Cycle		$\mathrm{V}_{\mathrm{FB}}=1.0 \mathrm{~V}$			0	\%
Enable Threshold Voltage		Hysteresis $=0.1 \mathrm{~V}$	0.75	0.8	0.85	V
Enable Pull-Up Current		Pin pulled up to 4.5 V typically when left unconnected		4		$\mu \mathrm{A}$
Supply Current in Shutdown		$\mathrm{V}_{\text {EN }}=0$		75	100	$\mu \mathrm{A}$
IC Supply Current in Operation		$\mathrm{V}_{\mathrm{EN}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=1.0 \mathrm{~V}$		0.75		mA
Thermal Shutdown Temperature		Hysteresis $=10^{\circ} \mathrm{C}$		155		${ }^{\circ} \mathrm{C}$

FUNCTIONAL BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

As seen in, Functional Block Diagram, the ACT4065A is a current mode pulse width modulation (PWM) converter. The converter operates as follows:
A switching cycle starts when the rising edge of the Oscillator clock output causes the High-Side Power Switch to turn on and the Low-Side Power Switch to turn off. With the SW side of the inductor now connected to IN , the inductor current ramps up to store energy in its magnetic field. The inductor current level is measured by the Current Sense Amplifier and added to the Oscillator ramp signal. If the resulting summation is higher than the COMP volt- age, the output of the PWM Comparator goes high. When this happens or when Oscillator clock output goes low, the High-Side Power Switch turns off and the Low-Side Power Switch turns on. At this point, the SW side of the inductor swings to a diode voltage below ground, causing the inductor current to decrease and magnetic energy to be transferred to the output. This state continues until the cycle starts again.
The High-Side Power Switch is driven by logic using the BS bootstrap pin as the positive rail. This pin is charged to $\mathrm{V} s \mathrm{w}+5 \mathrm{~V}$ when the Low-Side Power Switch turns on.

The COMP voltage is the integration of the error between the FB input and the internal 0.808 V
reference. If FB is lower than the reference voltage, COMP tends to go higher to increase current to the output. Current limit happens when COMP reaches its maximum clamp value of 2.0 V .

The Oscillator normally switches at 210 kHz . However, if the FB voltage is less than 0.6 V , then the switching frequency decreases until it reaches a minimum of 30 kHz at $\mathrm{V}_{\mathrm{FB}}=0.15 \mathrm{~V}$.

Shutdown Control

The ACT4065A has an enable input EN for turning the IC on or off. When EN is less than 0.7 V , the IC is in $8 \mu \mathrm{~A}$ low current shutdown mode. When EN is higher than 0.8 V , the IC is in normal operation mode. EN is internally pulled up with a $4 \mu \mathrm{~A}$ current source and can be left unconnected for always-on operation. EN should never be directly connected to IN .

Thermal Shutdown

The ACT4065A automatically turns off when its junction temperature exceeds $155^{\circ} \mathrm{C}$.

APPLICATIONS INFORMATION

Output Voltage Setting

Figure 1:
Output Voltage Setting

Figure 1 shows the connections for setting the output voltage. Select the proper ratio of the two feedback resistors $R_{F B 1}$ and $R_{\text {FB2 }}$ based on the output voltage. Typically, use $R_{\text {FB } 2} \approx 10 \mathrm{k} \Omega$ and determine $R_{\mathrm{FB} 1}$ from the output voltage:

$$
\begin{equation*}
R_{F B 1}=R_{F B 2}\left(\frac{V_{\text {OUT }}}{0.808 V}-1\right) \tag{1}
\end{equation*}
$$

Inductor Selection

The inductor maintains a continuous current to the output load. This inductor current has a ripple that is dependent on the inductance value: higher inductance reduces the peak-to-peak ripple current. The trade off for high inductance value is the increase in inductor core size and series resistance, and the reduction in current handling capability. In general, select an inductance value L based on ripple current requirement:

$$
\begin{equation*}
L=\frac{V_{\text {out }} \times\left(V_{\text {IN }}-V_{\text {oUT }}\right)}{V_{\text {IN }} f_{\text {SW }} I_{\text {OUTMAX }} K_{\text {RIPPLE }}} \tag{2}
\end{equation*}
$$

where V_{IN} is the input voltage, $\mathrm{V}_{\text {out }}$ is the output voltage, fsw is the switching frequency, loutmax is the maximum output current, and KRIPPLE is the ripple factor. Typically, choose KRIPPLE $=30 \%$ to correspond to the peak-to-peak ripple current being 30% of the maximum output current.

With this inductor value (Table 1), the peak inductor current is lout $\times(1+$ Kripple / 2$)$. Make sure that this peak inductor current is less that the 3A current limit. Finally, select the inductor core size so that it does not saturate at 3 A .

Table 1.
Typical Inductor Values

Vout	$\mathbf{1 . 5 V}$	$\mathbf{1 . 8 V}$	$\mathbf{2 . 5 V}$	$\mathbf{3 . 3 V}$	$\mathbf{5 V}$
L	$10 \mu \mathrm{H}$	$10 \mu \mathrm{H}$	$15 \mu \mathrm{H}$	$22 \mu \mathrm{H}$	$33 \mu \mathrm{H}$

Input Capacitor

The input capacitor needs to be carefully selected to maintain sufficiently low ripple at the supply input of the converter. A low ESR capacitor is highly recommended. Since a large current flows in and out of this capacitor during switching, its ESR also affects efficiency.

The input capacitance needs to be higher than $10 \mu \mathrm{~F}$. The best choice is the ceramic type; however, low ESR tantalum or electrolytic types may also be used provided that the RMS ripple current rating is higher than 50% of the output current. The input capacitor should be placed close to the $I N$ and G pins of the IC, with shortest possible traces. In the case of tantalum or electrolytic types, they can be further away if a small parallel $0.1 \mu \mathrm{~F}$ ceramic capacitor is placed right next to the IC.

Output Capacitor

The output capacitor also needs to have low ESR to keep low output voltage ripple. The output ripple voltage is:

$$
\begin{equation*}
V_{\text {RIPPLE }}=I_{\text {OUTMAX }} K_{\text {RIPPLE }}\left(R_{E S R}+\frac{1}{8 \times f_{S W} \times C_{\text {OUT }}}\right) \tag{3}
\end{equation*}
$$

where loutmax is the maximum output current, Kripple is the ripple factor, RESR is the ESR resistance of the output capacitor, fsw is the switching frequency, L is the inductor value, Cout is the output capacitance, RESR is very small and does not contribute to the ripple. Therefore, a lower capacitance value can be used for ceramic type. In the case of tantalum or electrolytic type, the ripple is dominated by RESR multiplied by the ripple current. In that case, the output capacitor is chosen to have sufficiently low ESR.
For ceramic output type, typically choose a capacitance of about $22 \mu \mathrm{~F}$. For tantalum or electrolytic type, choose a capacitor with less than $50 \mathrm{~m} \Omega$ ESR.

Rectifier Diode

Use a Schotky diode as the rectifier to conduct current when the High-Side Power Switch is off. The Schottky diode must have current rating higher than the maximum output current and the reverse voltage rating higher than the maximum input voltage.

Stability Compensation

Figure 2:
Stability Compensation

(1): C COMP2 is needed only for high ESR output capacitors

The feedback system of the IC is stabilized by the components at COMP pin, as shown in Figure 2. The DC loop gain of the system is determined by the following equation:

$$
\begin{equation*}
A_{V D C}=\frac{0.808 \mathrm{~V}}{I_{\text {OUT }}} A_{V E A} G_{C O M P} \tag{4}
\end{equation*}
$$

The dominant pole P 1 is due to Ccomp:

$$
\begin{equation*}
f_{P 1}=\frac{G_{E A}}{2 \pi A_{V E A} C_{C O M P}} \tag{5}
\end{equation*}
$$

The second pole P2 is the output pole:

$$
\begin{equation*}
f_{P 2}=\frac{I_{\text {OUT }}}{2 \pi V_{\text {OUT }} C_{\text {OUT }}} \tag{6}
\end{equation*}
$$

The first zero Z 1 is due to RcomP and $\mathrm{C}_{\text {сомр: }}$

$$
\begin{equation*}
f_{Z 1}=\frac{1}{2 \pi R_{\text {COMP }} C_{\text {COMP }}} \tag{7}
\end{equation*}
$$

And finally, the third pole is due to Rcomp and Ccomp2 (if Ccomp2 is used):

$$
\begin{equation*}
f_{P 3}=\frac{1}{2 \pi R_{\text {COMP }} C_{\text {COMP2 }}} \tag{8}
\end{equation*}
$$

Follow the following steps to compensate the IC:
STEP 1. Set the cross over frequency at $1 / 5$ of the switching frequency via RCOMP:

$$
\begin{align*}
& R_{\text {COMP }}=\frac{2 \pi V_{\text {OUT }} C_{\text {OUT }} f_{\text {SW }}}{10 G_{E A} G_{\text {COMP }} \times 0.808 \mathrm{~V}} \tag{9}\\
& =2.75 \times 10^{8} V_{\text {OUT }} C_{\text {OUT }}
\end{align*}
$$

but limit $\mathrm{R}_{\text {comp }}$ to $15 \mathrm{k} \Omega$ maximum.
STEP 2. Set the zero $f z 1$ at $1 / 4$ of the cross over frequency. If $\mathrm{Rcomp}^{\text {cos }}$ less than $15 \mathrm{k} \Omega$, the equation for $\mathrm{C}_{\text {comp }}$ is:

$$
\begin{equation*}
C_{\text {COMP }}=\frac{1.8 \times 10^{-5}}{R_{\text {COMP }}} \tag{10}
\end{equation*}
$$

If Rcomp is limited to $15 \mathrm{k} \Omega$, then the actual cross over frequency is 6.1 / (VoutCout). Therefore:

$$
\begin{equation*}
C_{\text {COMP }}=1.2 \times 10^{-5} V_{\text {OUT }} C_{\text {OUT }} \tag{11}
\end{equation*}
$$

STEP 3. If the output capacitors ESR is high enough to cause a zero at lower than 4 times the cross over frequency, an additional compensation capacitor Ccomp2 is required. The condition for using Ссомр2 is required. The condition for using Ccomp2 is:

$$
\begin{equation*}
R_{\text {ESROUT }} \geq \operatorname{Min}\left(\frac{1.1 \times 10^{-6}}{C_{\text {OUT }}}, 0.012 V_{\text {OUT }}\right) \tag{12}
\end{equation*}
$$

And the proper value for $\mathrm{C}_{\text {comp2 }}$ is:

$$
\begin{equation*}
C_{\text {COMP } 2}=\frac{C_{\text {OUT }} R_{\text {ESROUT }}}{R_{\text {COMP }}} \tag{13}
\end{equation*}
$$

Though Ccomp2 is unnecessary when the output capacitor has sufficiently low ESR, a small value Ccomp2 such as 100 pF may improve stability against PCB layout parasitic effects.

Table 2 shows some calculated results based on the compensation method above

Table 2:
Typical Compensation for Different Output voltages and Output Capacitors

$\mathrm{V}_{\text {OUt }}$	Cout	$\mathbf{R}_{\text {comp }}$	$\mathrm{C}_{\text {comp }}$	$\mathrm{C}_{\text {Comp2 }}{ }^{\text {® }}$
2.5 V	$22 \mu \mathrm{~F}$ Ceramic	12k Ω	2.2 nF	None
3.3 V	$22 \mu \mathrm{~F}$ Ceramic	$12 \mathrm{k} \Omega$	1.5 nF	None
5 V	$22 \mu \mathrm{~F}$ Ceramic	$15 \mathrm{k} \Omega$	2.2 nF	None
2.5 V	$47 \mu \mathrm{~F}$ SP Cap	$15 \mathrm{k} \Omega$	1.5 nF	None
3.3 V	47 μ F SP Cap	15k Ω	1.8 nF	None
5 V	47 $\mu \mathrm{F}$ SP Cap	$15 \mathrm{k} \Omega$	2.7 nF	None
2.5 V	$470 \mu \mathrm{~F} / 6.3 \mathrm{~V} / 30 \mathrm{~m} \Omega$	$15 \mathrm{k} \Omega$	1.5 nF	47pF
3.3 V	$470 \mu \mathrm{~F} / 6.3 \mathrm{~V} / 30 \mathrm{~m} \Omega$	15k Ω	2.2 nF	47pF
5 V	$470 \mu \mathrm{~F} / 10 \mathrm{~V} / 30 \mathrm{~m} \Omega$	$15 \mathrm{k} \Omega$	2.7 nF	47pF

(1): $\mathrm{C}_{\text {CoMP2 }}$ is needed only for high ESR output capacitors

Figure 3 shows a sample ACT4065A application circuit generating a $2.5 \mathrm{~V} / 2 \mathrm{~A}$ output.

Figure 3:
Typical Application Circuit for 5V/2A Car Charge

Table 3:
BOM List for 5V/2A Car Charger

ITEM	REFERENCE	DESCRIPTION	MANUFACTURER	QTY
1	U1	IC, ACT4065ASH, SOP-8EP	Active-Semi	1
2	C1	Capacitor, Electrolytic, $47 \mu \mathrm{~F} / 35 \mathrm{~V}, 6.3 \times 7 \mathrm{~mm}$	Murata, TDK	1
3	C2	Capacitor, Ceramic, $10 \mu \mathrm{~F} / 35 \mathrm{~V}, 1210, \mathrm{SMD}$	Murata, TDK	1
4	C3	Capacitor, Ceramic, $2.2 \mathrm{nF} / 6.3 \mathrm{~V}, 0603, \mathrm{SMD}$	Murata, TDK	1
5	C4	Capacitor, Ceramic, $10 \mathrm{nF} / 50 \mathrm{~V}, 0603$, SMD	Murata, TDK	1
6	C5	Capacitor, Electrolytic, $100 \mu \mathrm{~F} / 10 \mathrm{~V}, 6.3 \times 7 \mathrm{~mm}$	Murata, TDK	1
7	C6	Capacitor, Ceramic, $1 \mu \mathrm{~F} / 10 \mathrm{~V}, 0603$, SMD	Murata, TDK	1
8	L1	Inductor,33 $\mu \mathrm{H}, 3.0 \mathrm{~A}$	Sumida	1
9	D1	Diode, Schottky, $40 \mathrm{~V} / 2 \mathrm{~A}, \mathrm{SB} 240$	Diodes	1
10	R1	Chip Resistor, $52 \mathrm{k} \Omega, 0603,1 \%$	Murata, TDK	1
11	R3	Chip Resistor, $8.2 \mathrm{k} \Omega, 0603,5 \%$	Murata, TDK	1
12	R2	Chip Resistor, $10 \mathrm{k} \Omega, 0603,1 \%$	Murata, TDK	1

TYPICAL PERFORMANCE CHARACTERISTICS

(Circuit of Figure 3, unless otherwise specified.)

ACT4065A
High Input 2A Step Down Converter

PACKAGE OUTLINE AND DIMENSIONS

Side View

Dimensional Ref.			
REF.	Min.	Nom.	Max.
A	1.450	--	1.750
A1	0.100	--	0.250
A2	1.350	--	1.550
b	0.330	--	0.510
C	0.170	--	0.250
D	4.900 BSC		
E	6.000 BSC		
E1	3.900 BSC		
e	1.270 BSC		
L	0.400	--	1.270
L1	1.040 REF.		
R	0.070	--	--
R1	0.070	--	--
θ	0°	--	8°
$\theta 1$	5°	--	15°
Tol. of Form\&Position			
aaa	0.10		
bbb	0.20		
cCC	0.10		
ddd	0.25		
eee	0.10		

Notes

1. ALL DIMENSIONS AND TOLERANCES CONFORM TO ASME Y14.5-2009.
2. All DIMENSIONS ARE IN MILLIMETERS.

Product Compliance

This part complies with RoHS directive 2011/65/EU as amended by (EU) 2015/863.
This part also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:
Web: www.qorvo.com
Email: customer.support@qorvo.com
For technical questions and application information:

Email: appsupport@qorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2019 © Qorvo, Inc. | Qorvo ${ }^{\circledR}$ and Active-Semi® ${ }^{\oplus}$ are trademarks of Qorvo, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Active-Semi manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614
MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG
SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 NCP81241MNTXG LTM8064IY LT8315EFE\#TRPBF LTM4668AIY\#PBF
NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0004 MPM54304GMN-0003
XDPE132G5CG000XUMA1 MP8757GL-P MP9943AGQ-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A
U6215B U6620S LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM+ XC9236D08CER-G ISL95338IRTZ MP3416GJ-P
BD9S201NUX-CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MAX38640BENT18+T MAX77511AEWB+

