ACT510xEVK1-102 User's Guide

Description

This document describes the characteristic and operation of the Active Semi ACT5101EVK1-102 and ACT5102EVK1-102 evaluation kits (EVK). It provides setup and operation instructions, schematic, layout, BOM, and test data. The ACT5101EVK1-102 demonstrates the ACT5101QI102 power management IC. The ACT5102EVK1-102 demonstrates the ACT5102QI102 power management IC. Other ACT5101Qlxxx and ACT5102QIxxx options can be evaluated on these EVKs by replacing the IC and any other necessary components.

The two EVKs are very similar. The difference is that the ACT5101 output voltage is set by internal registers and it has A/D functionality. The ACT5102 output voltage is set by external resistors and it does not have A/D functionality. The setup and operation of the two EVKs are identical, so this document only references the ACT5101.

Features

The EVKs can be used as a standalone board if desired. However, to access the internal registers and to take full advantage of the IC's capability, the user must connect the EVK kits to a PC with Active Semi's USB-TOI2C interface dongle and use the GUI software. The EVK provides full access to the each converter's input and output voltage, as well as all the digital control signals. This gives the user the flexibility to configure the EVK to match their real world system.

Figure 1. EVK Picture

Innovative Power ${ }^{\text {TM }}$
ActiveSwitcher ${ }^{\text {TM }}$ is a trademark of Qorvo.

EVK Contents

The ACT5101EVK1-102 evaluation kit comes with the following items:

1. EVK assembly
2. USB-TO-I2C dongle
a. Dongle
b. Custom 4-pin connector that connects the USB-TO-I2C dongle to the EVK assembly

Required Equipment

ACT5101EVK1-102
USB-TO-I2C Dongle
Power supply $\rightarrow 4 \sim 22 \mathrm{~V}$ @ 6A for full power operation
Oscilloscope $\rightarrow 100 \mathrm{MHz}, 4$ channels
Digital Multi-meters (DMM)
Windows compatible PC with spare USB port.

Hardware Setup

Figure 2. EVK Setup

Quick Start

Hardware Connections

Refer to Figure 2 for hardware connections.

1. Connect a DC power supply to J 1 . Please ensure the correct power supply polarity.
2. Connect an E-Load to J7.
3. Connect Digital Multi-Meters to VIN and VOUT to monitor the input voltage and output voltages.
4. Add a digital Multi-Meter in series with VIN and VOUT if you want to observe input and output current.
5. Be careful to keep the input voltage and battery voltage within the specifications.
6. Add a jumper to J 6 to connect INTBP to V_IO.
7. Optional - Connect the EVK to the PC with the USB dongle.

GUI Setup (optional)

1. Refer to the end of this document for detailed instructions to install the ACT5101 GUI.
2. Connect the USB-TO-I2C dongle to the computer via a USB cable.
3. Connect the USB-TO-I2C dongle to the EVK J5 connector. Refer to Figure 3 to ensure the correct polarity of the connection. As a guide, use the "Active-Semi" logo on the top of the dongle so the black wire is connected to the Dongle GND pin.

Figure 3. USB-TO-I2C Dongle Connection

Recommended Operating Conditions

The ACT5101EVK1-102 is designed for a $4 \mathrm{~V}-22 \mathrm{~V}$ input voltage. The maximum operating voltage is determined by the IC's maximum input voltage rating. The minimum operating voltage is determined by the buck-boost converter's minimum input voltage. The maximum output current is configured by the CMI and external components.

Table 1. Recommended Operating Conditions

Parameter	Description	Min	Typ	Max	Unit
VIN	Input voltage	4	-	22	V
VOUT	Output voltage	3	-	20	V
$\mathrm{l}_{\text {in_max }}$	Maximum input current		5		A
$\mathrm{l}_{\text {out_max }}$	Maximum output current		5		A
$\mathrm{I}_{\text {REG_max }}$	Maximum LDO VREG load current		0.1		A

EVK Operation

Turn On the Evaluation Board

Before applying the input voltage, please make sure the jumper (J6) is installed. Connect V_IO to INTBP or VREG. INTBP is the typical connection.

Figure 4 - Hardware Configuration
After the power source and E-Load are connected to the evaluation board per the required connections, the EVK can be powered for operation. Perform the following steps to turn on the board.

1. Ensure that the power supply connected to VIN (J1) is $>4 \mathrm{~V}$ and $<22 \mathrm{~V}$.
2. Turn on power supply.
3. Apply the load.
4. Remove the shorting jumper from J 2 to enable output. Replace the jumper to disable the output.

Input Current Limit Configuration

The ACT5101's ActivePath charger features configurable input and output current limit. These features are programmed with a combination of an external resistor and an internal ${ }^{2} \mathrm{C}$ register. Refer to the ACT5101 datasheet for programming details.
Input Current Limit - The ACT5101EVK1-102 EVK input current limit is set to 11.11A. This is a function of the $5 \mathrm{~m} \Omega$ current sense resister, R2, the $36 \mathrm{k} \Omega$ RILIM resistor, R6, and the $I^{2} \mathrm{C}$ Input Current Limit bits, INLIMIT, which are set to 200% by default. The hardware current limit set by R2 and R6 is 5.56 A . This current multiplied by the input current limit scaling factor of 200% gives a 11.11A input current limit. The input current limit is easily changed by modifying any of these three parameters. The easiest way to change the input current limit is with
the Input Current Limit field in the GUI.

Output Current Limit - The ACT5101EVK1-102 EVK output current limit is set to 5A. This is a function of the $10 \mathrm{~m} \Omega$ current sense resister, R16, the 20k Ω RILIM resistor, R12, and the $\mathrm{I}^{2} \mathrm{C}$ Input Current Limit bits, CC, which are set to 100% by default. The hardware current limit set by R16 and R12 is 5A. This current multiplied by the input current limit scaling factor of 100% gives a 5 A output current limit. The output current limit is easily changed by modifying any of these three parameters. The easiest way to change the output current limit is with the Output Constant Current field in the GUI.

Output Voltage Setting

ACT5101 5.1 V default output voltage can be changed $I^{2} \mathrm{C}$ using the Output Voltage field GUl setting.

Buck-Boost Converter	5.00 V
Operating Mode	5.02 V
Converter Status	5.04 V
Output Voltage	5.06 V
Input WV offset voltage	5.08 V
	5.10 V
Input WV threshold	5.12 V
	5.14 V
	5.16 V

Additional Programmable Functionality

The ACT5101 contains many additional programmable parameters. Refer to the ACT5101 datasheet for additional functionality and default $I^{2} \mathrm{C}$ register values.

Test Results

$200 \mathrm{~ms} / \mathrm{div}$

$4 \mathrm{~ms} / \mathrm{div}$
CMI 102

$10 \mathrm{~ms} / \mathrm{div}$

CMI 102

20us / div
CMI 102

$2 \mathrm{~ms} /$ div
CMI 102

CMI 102

Schematic

Figure 4. Schematic

Layout

Figure 5. Layout Top Layer

Figure 6. Layout Layer GND

Figure 7. Layout Layer VCC

Figure 8. Layout Bottom Layer

Bill of Materials

Table 2. ACT510x EVK BOM

	\circ + $\stackrel{1}{0}$ 						
Item	QTY	QTY	Ref Des	Description	Package	MFR	Part Number
1	3	3	C1,C20,C21	$\begin{aligned} & \text { Cap, Ceramic, } \\ & \text { 10uF, } 35 \mathrm{~V}, 10 \%, \\ & \text { X5R } \end{aligned}$	1206	Murata	GRM319R6YA106 KA12
2	1	1	C2	$\begin{aligned} & \text { ELCap, 100uF, } \\ & 25 \mathrm{~V} \end{aligned}$	$6.3 \mathrm{mmx11mm}$	Wurth Elektronik	865080445010
3	1	1	C3	$\begin{aligned} & \text { Cap, Ceramic, } \\ & 3.9 \mathrm{nF}, 25 \mathrm{~V}, 10 \% \text {, } \\ & \text { X7R } \end{aligned}$	0603	Wurth Elektronik	885012206061
4	1	1	C4	Cap, Ceramic, 39nF, 25V, 10\%, X7R	0603	Wurth Elektronik	885012206067
5	5	5	$\begin{aligned} & \text { C5,C8,C11, } \\ & \text { C14,C15 } \end{aligned}$	$\begin{aligned} & \text { Cap, Ceramic, } \\ & 100 \mathrm{nF}, 50 \mathrm{~V}, 10 \% \text {, } \\ & \text { X7R } \end{aligned}$	0603	Wurth Elektronik	885012206095
6	0	0	C6,C10	DNI	0603	std	std
7	4	4	$\begin{aligned} & \text { C7,C9,C17, } \\ & \text { C18 } \end{aligned}$	$\begin{aligned} & \text { Cap, Ceramic, } \\ & 22 \mathrm{uF}, 35 \mathrm{~V}, 10 \%, \\ & \text { X5R } \end{aligned}$	1206	TDK	$\begin{gathered} \text { C3216X5R1V226 } \\ \text { M160AC } \end{gathered}$
8	2	2	C12,C13	Cap, Ceramic, $47 \mathrm{nF}, 50 \mathrm{~V}, 10 \%$, X7R	0603	Wurth Elektronik	885012206093
9	1	1	C16	$\begin{aligned} & \text { Cap, Ceramic, } \\ & \text { 1uF, 10V, 10\%, } \\ & \text { X7R } \end{aligned}$	0603	Wurth Elektronik	885012206026
10	1	1	C19	$\begin{aligned} & \text { ELCap, 220uF, } \\ & 25 \mathrm{~V} \end{aligned}$	$6.3 \mathrm{mmx11mm}$	Wurth Elektronik	860010473011
11	1	1	D1	SMD LED blue	0603	Wurth Elektronik	150060BS75000
12	2	2	J1, J7	Connector, 2 pin	2141 S 3.50 mm Horizontal Entry Modular	Wurth Elektronik	$691214110002 S$
13	1	1	J2	Header, 2pin, 100mil		Wurth Elektronik	61300211119
14	2	2	J3, J4	Header, 1 pin, 100mil		Wurth Elektronik	61300211119
15	2	2	J5, J6	Header, 3pin, 100mil		Wurth Elektronik	61300211119

Rev 2.0, 14-Apr-2020

16	1	1	L1	Inductor $10 \mathrm{uH}, 5 \mathrm{~A}$, 26.5 mohm	$6 m m x 6 m m x 6 m$ m	Wurth Elektronik	74439346100
17	3	3	R1,R4,R17	Res, 10k , 1\%	0603	std	std
18	1	1	R2	Res, $5 \mathrm{~m} \Omega, 1 \%$	1206	std	std
19	2	2	R3,R12	Res, 20k ${ }^{\text {, 1\% }}$	0603	std	std
20	0	0	$\begin{aligned} & \text { R5,R7,R10, } \\ & \text { R11,R13 } \end{aligned}$	DNI	0603	std	std
21	1	1	R6	Res, 36k ${ }^{\text {, 1\% }}$	0603	std	std
22	4	4	$\begin{aligned} & \text { R8,R9,R14, } \\ & \text { R15 } \\ & \hline \end{aligned}$	Res, 30ת, 1\%	0603	std	std
23	1	1	R16	Res, 10m 2 , 1\%	1206	std	std
24	0	1	R18	Res, 200k Ω, 1\%	0603	std	std
25	0	1	R19	Res, 133k Ω, 1\%	0603	std	std
26	1	1	R20	Res, 0ת, 1\%	0603	std	std
27	6	6	$\begin{aligned} & \text { TP1,TP5,TP } \\ & \text { 6,TP7,TP9,T } \\ & \text { P13 } \end{aligned}$	Test Point, Red, Through Hole, 1 mm	0.040"	Key- stone	5000
28	9	9	$\begin{aligned} & \text { TP2,TP3,TP } \\ & \text { 4,TP6,TP8,T } \\ & \text { P10,TP11,T } \\ & \text { P12,TP14 } \end{aligned}$	Test Point, Black, Through Hole, 1 mm	0.040"	Key- stone	5001
29	1	0	U1	IC, ACT5101, Integrated Buck-Boost	QFN32-4x4	Active Semi	na
	0	1		IC, ACT5102, Integrated Buck-Boost	QFN32-4x4	Active Semi	na
30	1	1	--	$\begin{aligned} & \text { PCB, ACT5101/02 } \\ & \text { EVK1 REVB } \\ & \hline \end{aligned}$	n/a	n/a	PCB-0314-00
31	2	2	--	Shunt, 100mil, Black	n/a	n/a	60900213421

GUI Installation

1. Get GUI files from the Active Semi website
2. Plug the USB-TO-I2C dongle into a free USB port.
3. Follow the instructions in the "Active-Semi GUI and Dongle Driver Installation" folder.
4. Double click on the ACT5101 GUI Rev1.0.exe to start the ACT5101 GUI.
\square
\square

Driver
ACT5101 GUI Rev1.0.cpmu
(3) ACT5101 GUI Rev1.0.exe
(3) Active-Semi GUI and Dongle Driver Installation.pdf
(8) User Guide.pdf

GUI Overview

The GUI has 2 basic function buttons allocated in top-left of the Tool Bar which are Read and Write $I^{2} \mathrm{C}$. The GUI contains 2 setting modes: Basic Mode and Advanced Mode. In Basic Mode screen it displays basic user programmable configuration options are programmed using the drop-down boxes or check boxes. Advanced Mode contains the button text for changing setting for every single bit.

Basic Mode

The following figure shows the GUI in basic mode. This mode allows the user to easily change one or more IC settings.

Advanced Mode

Click the "Advanced Mode" button in the left of the GUI screen to see all available user programmable options. With Advanced Mode, additional user programmable features can be selected using the button text. In the left side of the Advanced Mode Screen, click on the Tiles Selector to display the register to view or change. Then change a register one bit at a time by clicking on the desired bit. The value of the bit is display right next to the bit-name button.

Note that the right side of the screen contains a scroll down button to scroll down to additional registers since the Tile Screen can only display up to 8 bytes at once.

Button Descriptions

Read: Clicking on this button reads the ACT5101 registers and displays them in the GUI. Note that this reads all registers. Active-Semi recommends reading registers each time the ACT5101 powers-up to acquire the initial register settings. Active-semi also recommends reading registers after making changes to them. Immediately reading the registers after a write confirms the changes were properly stored.
Q

Read Button

Write: Clicking on this button writes the GUI settings to the ACT5101's registers. All registers are written, regardless of whether or not they were changed.
Active-Semi Proprietary! ? ?

Write Button

Dongle Connection Status: The GUI also contains a dongle connection status that indicates Active-Semi's USB-TO-I2C dongle is connected to the USB port. The figure below shows the two possible indication status graphics.

Dongle connected

Dongle Disconnected

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Active-Semi manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1715-3.3-EVALZ ADP1716-2.5EVALZ ADP1740-1.5-EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6EVALZ ADP1874-0.3-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL-1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ

