

Adafruit 1-Wire GPIO Breakout - DS2413

Created by Bill Earl

https://learn.adafruit.com/adafruit-1-wire-gpio-breakout-ds2413

Last updated on 2021-11-15 06:09:59 PM EST

©Adafruit Industries Page 1 of 17

3

4

4

5

5

6

6

7

7

8

8

9

9

11

13

13

13

14

14

14

15

15

16

16

17

17

Table of Contents

Overview

Assembly & Wiring

• Headers

• Position the Header

• And Solder!

• Wiring

• Basic Wiring:

• Wiring Multiple DS2413 Breakouts

Use it!

OneWire Library

• Download and Install

• Library Documentation

• DS2413 Example Sketch

Open Drain GPIO

Running the Example Code

• Download the example sketch from our Github repository:

• Wiring:

Reading, Writing and Arithmetic

• myWire.read();

• myWire.write(num);

• Binary and Hexadecimal

• Reading GPIO Pins

Downloads

• Files

• Schematic

• Fabrication Print

©Adafruit Industries Page 2 of 17

Overview

Pins are precious in the microcontroller world. How many times have you needed just

one more pin? Sure, you could step up to a Mega and get a whole bunch more, but

what if you really just need one or two? The DS2413 breakout board is the perfect

solution. Each DS2413 breakout has 2 open drain GPIO pins and a 1-Wire interface.

Just one of these boards will give you 2 pins for the price of one. But you can keep

expanding from there.

You can put as many of these boards as you want on the the 1-wire bus and still

control all of them with just one Arduino pin. Each chip has a 48-bit unique address,

which means (in theory*) you could have as many as 2 * 2^48 pins controlled by just

one Arduino pin! What could you control with 562 trillion pins?

* In practice, you would run out of Arduino memory long before that. But it's fun to

imagine!

©Adafruit Industries Page 3 of 17

Assembly & Wiring

The board comes pre-assembled and tested from our factory. We include optional

headers for breadboard use. Or you can wire the board directly into your project.

Headers

Installing the optional headers is a simple process and takes just a few minutes:

©Adafruit Industries Page 4 of 17

Position the Header

Cut the header strip to length if

necessary and place it in the breadboard

(long pins down!). Position the breakout

board over the header.

And Solder!

Solder each pin to assure a good

electrical connection. If you are new to

soldering, check out the Adafruit Guide

to Excellent Soldering. (https://adafru.it/

aTk)

©Adafruit Industries Page 5 of 17

Wiring

Wiring to the Arduino is simple as well. Just power, ground and a signal wire:

Basic Wiring:

GND -> Arduino GND

IO -> Arduino GPIO pin (The example code uses pin 8)

Then connect a 4.7K ohm pullup resistor (included) from IO to 5v.

•

•

©Adafruit Industries Page 6 of 17

Wiring Multiple DS2413 Breakouts

To add more breakouts, just connect more to the same GND and IO pin. Additional

pullup resistors are not required.

Use it!

Once connected to the onewire bus, the GPIO pins can be used for either input or

output. The following pages will show you how to control these pins via the onwire

library. We will also show you how to connect things to the open drain outputs of the

GPIO pins.

©Adafruit Industries Page 7 of 17

OneWire Library

Download and Install

The DS2413 uses the Maxim/Dallas OneWire protocol. You can download the OneWire

library (https://adafru.it/das) from the Arduino library manager.

Open up the Arduino library manager

©Adafruit Industries Page 8 of 17

Search for the OneWire library and install it. You'll have to scroll down a bit to find the

right one.

Library Documentation

Detailed documentation of the OneWire Library can be found at the PJRC site here:

OneWire Library Documentation and

Examples

https://adafru.it/das

DS2413 Example Sketch

We have an example sketch that shows how to use the OneWire library to talk to the

DS2413 GPIO pins here at GitHub: https://github.com/adafruit/

Adafruit_Learning_System_Guides/tree/master/Adafruit_DS2413 (https://adafru.it/

EDu)

DS2413 Example Sketch Download

https://adafru.it/EDv

// SPDX-FileCopyrightText: 2014 Bill Earl for Adafruit Industries

//

// SPDX-License-Identifier: MIT

©Adafruit Industries Page 9 of 17

#include <OneWire.h>

#define DS2413_ONEWIRE_PIN (8)

#define DS2413_FAMILY_ID 0x3A

#define DS2413_ACCESS_READ 0xF5

#define DS2413_ACCESS_WRITE 0x5A

#define DS2413_ACK_SUCCESS 0xAA

#define DS2413_ACK_ERROR 0xFF

OneWire oneWire(DS2413_ONEWIRE_PIN);

uint8_t address[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };

void printBytes(uint8_t* addr, uint8_t count, bool newline=0)

{

 for (uint8_t i = 0; i < count; i++)

 {

 Serial.print(addr[i]>>4, HEX);

 Serial.print(addr[i]&0x0f, HEX);

 Serial.print(" ");

 }

 if (newline)

 {

 Serial.println();

 }

}

byte read(void)

{�￰ �￰

 bool ok = false;

 uint8_t results;

 oneWire.reset();

 oneWire.select(address);

 oneWire.write(DS2413_ACCESS_READ);

 results = oneWire.read(); /* Get the register results */

 ok = (!results & 0x0F) == (results >> 4); /* Compare nibbles */

 results &= 0x0F; /* Clear inverted values */

 oneWire.reset();

 // return ok ? results : -1;

 return results;

}

bool write(uint8_t state)

{

 uint8_t ack = 0;

 /* Top six bits must '1' */

 state |= 0xFC;

 oneWire.reset();

 oneWire.select(address);

 oneWire.write(DS2413_ACCESS_WRITE);

 oneWire.write(state);

 oneWire.write(~state); /* Invert data and resend */

 ack = oneWire.read(); /* 0xAA=success, 0xFF=failure */

 if (ack == DS2413_ACK_SUCCESS)

 {

 oneWire.read(); /* Read the status byte */

 }

 oneWire.reset();

 return (ack == DS2413_ACK_SUCCESS ? true : false);

}

void setup(void)

©Adafruit Industries Page 10 of 17

{

 Serial.begin(9600);

 Serial.println(F("Looking for a DS2413 on the bus"));

 /* Try to find a device on the bus */

 oneWire.reset_search();

 delay(250);

 if (!oneWire.search(address))

 {

 printBytes(address, 8);

 Serial.println(F("No device found on the bus!"));

 oneWire.reset_search();

 while(1);

 }

 /* Check the CRC in the device address */

 if (OneWire::crc8(address, 7) != address[7])

 {

 Serial.println(F("Invalid CRC!"));

 while(1);

 }

 /* Make sure we have a DS2413 */

 if (address[0] != DS2413_FAMILY_ID)

 {

 printBytes(address, 8);

 Serial.println(F(" is not a DS2413!"));

 while(1);

 }

 Serial.print(F("Found a DS2413: "));

 printBytes(address, 8);

 Serial.println(F(""));

}

void loop(void)

{

 /* Read */

 /*

 uint8_t state = read();

 if (state == -1)

 Serial.println(F("Failed reading the DS2413"));

 else

 Serial.println(state, BIN);

 */

 /* Write */

 bool ok = false;

 ok = write(0x3);

 if (!ok) Serial.println(F("Wire failed"));

 delay(1000);

 ok = write(0x0);

 if (!ok) Serial.println(F("Wire failed"));

 delay(1000);

}

Open Drain GPIO

The DS2413 outputs are "Open Drain". What that means is that the output is the

"Drain" of an N-channel FET:

©Adafruit Industries Page 11 of 17

Internally, the "Source" of the FET is connected to Ground. But the Drain is left open.

When switched on, the FET provides a path for current to flow from the output pin to

ground.

Since there is no internal connection to VCC, the open drain output does not put out

a voltage like an Arduino GPIO pin. You have to provide your own external pullup.

While this may seem inconvenient, the open drain configuration allows for a lot of

flexibility. Since the output voltage is not dependent on the operating voltage of the

breakout, you can use a variety of power sources. The FETs in the DS2413 are

capable of switching voltages up to 28v and up to 20mA.

The diagram below from the DS2413 data sheet (https://adafru.it/deP) shows how

input and output connections should be made - with an external pullup to a local

power source.

For more information, refer to the DS2413 data sheet:

©Adafruit Industries Page 12 of 17

DS2413 Data Sheet

https://adafru.it/deP

Running the Example Code

Download the example sketch from our Git

hub repository (https://adafru.it/deQ):

Download Example Code

https://adafru.it/EDu

Wiring:

Connect a LED to IOA and IOB as follows:

Cathode (short leg) of LED connected to the GPIO pin.

Anode (long leg) of LED connected to one end of a resistor*.

Other end of the resistor connected to 5v.

* A 1K resistor is shown here as a 'safe' value. For maximum LED brightness, you can

learn how to calculate the optimum resistance in this guide: http://learn.adafruit.com/

all-about-leds (https://adafru.it/clH)

•

•

•

©Adafruit Industries Page 13 of 17

Compile and upload the example sketch and you should see both LEDs blinking: 1

second on and 1 second off.

Reading, Writing and Arithmetic

Reading and writing to the DS2413 is via the read() and write() functions of the

Onewire library:

myWire.read();

Read a byte.

myWire.write(num);

Write a byte.

These functions read and write a byte at a time. So you need to use a little binary

arithmetic to separate out the 2 bits corresponding to the 2 GPIO pins.

In the example code, the 2 LEDs are flashed by alternately writing 0x0 and 0x3.

/* Write */

 bool ok = false;

 ok = write(0x3);

 if (!ok) Serial.println(F("Wire failed"));

 delay(1000);

 ok = write(0x0);

 if (!ok) Serial.println(F("Wire failed"));

 delay(1000);

©Adafruit Industries Page 14 of 17

Binary and Hexadecimal

The 0x3 in the example is the hexadecimal equivalent to the binary number B00000

011. In the DS2413, the low-order bit (the one to the far right) corresponds to IOA and

the one next to it corresponds to IOB. Writing 0x3 writes a binary '1' to both pins and

turns them both on.

To turn on just IOA you could write 0x1 (B00000001). And to turn on just IOB, you

could write 0x2 (B00000010).

If you substitute the following code, the LEDs will flash alternately:

/* Write */

 bool ok = false;

 ok = write(0x1);

 if (!ok) Serial.println(F("Wire failed"));

 delay(1000);

 ok = write(0x2);

 if (!ok) Serial.println(F("Wire failed"));

 delay(1000);

Or, if you prefer, you can use the binary representation instead:

/* Write */

 bool ok = false;

 ok = write(B00000001);

 if (!ok) Serial.println(F("Wire failed"));

 delay(1000);

 ok = write(B00000010);

 if (!ok) Serial.println(F("Wire failed"));

 delay(1000);

For more on integer constants in the different number bases, see the Arduino Integer

Constants (https://adafru.it/deR)page.

Reading GPIO Pins

Reading is a little trickier: You need to separate the individual pin values from the byte

that is returned from the read(). A read can return one of 5 values:

0x0 (B00000000) - Both pins LOW

0x1 (B00000001) - IOA = HIGH, IOB = LOW

0x2 (B00000010) - IOA = LOW, IOB = HIGH

0x3 (B00000011) - Both pins HIGH

0xFF (B11111111) - Read Failed!

•

•

•

•

•

©Adafruit Industries Page 15 of 17

To extract the state of an individual pin, you will need to use a little binary math (https

://adafru.it/deS). In particular the "bitwise AND" operator: "&".

If you AND the read value from the GPIO breakout with the bit pattern of the pin you

are interested in, you will get a boolean "TRUE" if the pin is HIGH and a "FALSE" if the

pin is LOW. The following code snippet prints "A" if IOA is HIGH and "B" if IOB is HIGH.

uint8_t state = read();

 const int IOA = 0x1;

 const int IOB = 0x2;

 if (state == -1)

 {

 Serial.println(F("Failed reading the DS2413"));

 }

 else

 {

 if (state & IOA)

 {

 Serial.println("A");

 }

 if (state & IOB)

 {

 Serial.println("B");

 }

 }

Downloads

Files

Datasheet for the DS2413 (https://adafru.it/deT)

Product page for the DS2413 (https://adafru.it/deU)

One-Wire overview (https://adafru.it/deV)

EagleCAD PCB files on GitHub (https://adafru.it/rAs)

Fritzing object in Adafruit Fritzing library (https://adafru.it/aP3)

•

•

•

•

•

©Adafruit Industries Page 16 of 17

Schematic

Fabrication Print

©Adafruit Industries Page 17 of 17

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Interface Development Tools category:

Click to view products by Adafruit manufacturer:

Other Similar products are found below :

DP130SSEVM ISO3086TEVM-436 ADP5585CP-EVALZ CHA2066-99F AS8650-DB I2C-CPEV/NOPB ISO35TEVM-434

XR18910ILEVB XR21B1421IL28-0A-EVB EVAL-ADM2491EEBZ MAXREFDES23DB# MAX9286COAXEVKIT# MAX3100EVKIT

MAX13235EEVKIT MAX14970EVKIT# XR21B1424IV64-0A-EVB CMOD232+ MAX13042EEVKIT+ MAX14838EVKIT#

MAX9205EVKIT DS100BR111AEVK/NOPB DC241C MAX9286RCARH3DB# MAX13035EEVKIT+ DC1794A SN65HVS885EVM

EVB81112-A1 DFR0257 ZLR964122L ZLR88822L DC196A-B DC196A-A DC327A OM13585UL MAX16972AGEEVKIT# MARS1-

DEMO3-ADAPTER-GEVB PIM511 PIM536 PIM517 DEV-17512 STR-FUSB3307MPX-PPS-GEVK MAXREFDES177# EVAL-

ADN4654EBZ MAX9275COAXEVKIT# MAX2202XEVKIT# MAX13171EEVKIT+ MAX7322EVKIT+ MAX9281COAXEVKIT#

MAX96715COAXEVKIT# ZSSC3240KIT

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/analog-digital-ic-development-tools/interface-development-tools
https://www.x-on.com.au/manufacturer/adafruit
https://www.x-on.com.au/mpn/texasinstruments/dp130ssevm
https://www.x-on.com.au/mpn/texasinstruments/iso3086tevm436
https://www.x-on.com.au/mpn/analogdevices/adp5585cpevalz
https://www.x-on.com.au/mpn/unitedmonolithicsemiconductors/cha206699f
https://www.x-on.com.au/mpn/ams/as8650db
https://www.x-on.com.au/mpn/texasinstruments/i2ccpevnopb
https://www.x-on.com.au/mpn/texasinstruments/iso35tevm434
https://www.x-on.com.au/mpn/maxlinear/xr18910ilevb
https://www.x-on.com.au/mpn/maxlinear/xr21b1421il280aevb
https://www.x-on.com.au/mpn/analogdevices/evaladm2491eebz
https://www.x-on.com.au/mpn/maxim/maxrefdes23db
https://www.x-on.com.au/mpn/maxim/max9286coaxevkit
https://www.x-on.com.au/mpn/maxim/max3100evkit
https://www.x-on.com.au/mpn/maxim/max13235eevkit
https://www.x-on.com.au/mpn/maxim/max14970evkit
https://www.x-on.com.au/mpn/maxlinear/xr21b1424iv640aevb
https://www.x-on.com.au/mpn/maxim/cmod232
https://www.x-on.com.au/mpn/maxim/max13042eevkit
https://www.x-on.com.au/mpn/maxim/max14838evkit
https://www.x-on.com.au/mpn/maxim/max9205evkit
https://www.x-on.com.au/mpn/texasinstruments/ds100br111aevknopb
https://www.x-on.com.au/mpn/analogdevices/dc241c
https://www.x-on.com.au/mpn/maxim/max9286rcarh3db
https://www.x-on.com.au/mpn/maxim/max13035eevkit
https://www.x-on.com.au/mpn/analogdevices/dc1794a
https://www.x-on.com.au/mpn/texasinstruments/sn65hvs885evm
https://www.x-on.com.au/mpn/melexis/evb81112a1
https://www.x-on.com.au/mpn/dfrobot/dfr0257
https://www.x-on.com.au/mpn/microsemi/zlr964122l
https://www.x-on.com.au/mpn/microsemi/zlr88822l
https://www.x-on.com.au/mpn/analogdevices/dc196ab
https://www.x-on.com.au/mpn/analogdevices/dc196aa
https://www.x-on.com.au/mpn/analogdevices/dc327a
https://www.x-on.com.au/mpn/nxp/om13585ul
https://www.x-on.com.au/mpn/maxim/max16972ageevkit
https://www.x-on.com.au/mpn/onsemiconductor/mars1demo3adaptergevb
https://www.x-on.com.au/mpn/onsemiconductor/mars1demo3adaptergevb
https://www.x-on.com.au/mpn/pimoroni/pim511
https://www.x-on.com.au/mpn/pimoroni/pim536
https://www.x-on.com.au/mpn/pimoroni/pim517
https://www.x-on.com.au/mpn/sparkfun/dev17512
https://www.x-on.com.au/mpn/onsemiconductor/strfusb3307mpxppsgevk
https://www.x-on.com.au/mpn/maxim/maxrefdes177
https://www.x-on.com.au/mpn/analogdevices/evaladn4654ebz
https://www.x-on.com.au/mpn/analogdevices/evaladn4654ebz
https://www.x-on.com.au/mpn/maxim/max9275coaxevkit
https://www.x-on.com.au/mpn/maxim/max2202xevkit
https://www.x-on.com.au/mpn/maxim/max13171eevkit
https://www.x-on.com.au/mpn/maxim/max7322evkit
https://www.x-on.com.au/mpn/maxim/max9281coaxevkit
https://www.x-on.com.au/mpn/maxim/max96715coaxevkit
https://www.x-on.com.au/mpn/renesas/zssc3240kit

