

Adafruit 1.27" and 1.5" Color OLED

Breakout Board

Created by Bill Earl

https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board

Last updated on 2021-12-09 03:21:37 PM EST

©Adafruit Industries Page 1 of 45

3

4

5

6

7

7

8

8

9

10

11

11

12

13

14

14

15

17

17

17

18

18

23

23

23

24

25

28

29

30

30

31

31

31

31

32

37

40

44

44

45

Table of Contents

Overview

• Board Technical Details

Assembly

• Prepare the header strip

• Position the display

• And Solder!

• Remove the protective film

Wiring and Graphics Test

• Hint:

• Installing the Arduino software

Drawing Bitmaps

• Wiring for the Bitmap Example

• Hint:

• Bitmap Example Sketch

• Insert the card

• Copy the bitmap file

• Load the bitmap example sketch

CircuitPython Displayio Quickstart

• Preparing the Breakout

• Required CircuitPython Libraries

• Code Example Additional Libraries

• CircuitPython Code Example

• Where to go from here

Python Wiring and Setup

• Wiring

• ILI9341 and HX-8357-based Displays

• ST7789 and ST7735-based Displays

• SSD1351-based Displays

• SSD1331-based Display

• Setup

• Python Installation of RGB Display Library

• DejaVu TTF Font

• Pillow Library

Python Usage

• Turning on the Backlight

• Displaying an Image

• Drawing Shapes and Text

• Displaying System Information

Downloads and Links

• Data Sheets:

• Schematic

©Adafruit Industries Page 2 of 45

Overview

We love our black and white monochrome displays but we also like to dabble with

some color now and then. Our big 1.5" color OLED displays are perfect when you

need a small display with vivid, high-contrast 16-bit color. The visible portion of the

OLED measures 1.5" diagonal and contains 128x128 RGB pixels, each one made of

red, green and blue OLEDs. Each pixel can be set with 16-bits of resolution for a large

range of colors. Because the display uses OLEDs, there is no backlight, and the

contrast is very high (black is really black). We picked this display for its excellent

color, this is the nicest mini OLED we could find!

This OLED uses the SSD1351 driver chip, which manages the display. You can talk to

the driver chip using 4-wire write-only SPI (clock, data, chip select, data/command and

an optional reset pin). Included on the fully assembled breakout is the OLED display

and a small boost converter (required for providing 12V to the OLED) and a microSD

card holder. This design includes built-in logic level shifting so you can use it with

3-5VDC power and logic levels. Our example code shows how to read a bitmap from

the uSD card and display it all via SPI.

©Adafruit Industries Page 3 of 45

Board Technical Details

1.5" diagonal OLED, 16-bit color

SPI interface

3.3-5V logic and power

Micro-SD card holder

Dimensions: 43.17mm / 1.7" x 42mm / 1.65" x 5.42mm / 0.2"

Please note: all OLEDs have a “half life” — their brightness naturally diminishes over

time, albeit over many thousands of hours. This makes them a poor choice for always-

on 24/7/365 use. Best to turn off the display when inactive, or consider using a color

LCD for continuously running projects.

•

•

•

•

•

©Adafruit Industries Page 4 of 45

Assembly

The breakout board comes fully assembled and tested. We include an optional strip of

header pins to make it easier to use this display in a breadboard. The header can be

installed in just a few minutes with your soldering iron:

©Adafruit Industries Page 5 of 45

Prepare the header strip

Cut the header to size and insert (long

pins down) into a breadboard to stabilize

for soldering.

©Adafruit Industries Page 6 of 45

Position the display

Place the display breakout on the header

so that the short pins protrude through

the holes.

And Solder!

Solder all pins to assure a good electrical

connection.

©Adafruit Industries Page 7 of 45

Remove the protective film

Gently pull up on the tab to remove the

film.

Wiring and Graphics Test

The pinout ordering is the same for both the 1.27" and 1.5" version of the OLED!

oleddemo.fzz Fritzing File

https://adafru.it/sVa

The library supports flexible wiring to minimize pin conflicts with other shields and

breakouts. For the initial test, we'll use the same wiring as the "test" example from the

library:

GND -> GND (G)

5v -> VIN (+)

#2 -> SCLK (CL)

#3 -> MOSI (SI)

•

•

•

•

©Adafruit Industries Page 8 of 45

#4 -> DC

#5 -> OLEDCS (OC)

#6 -> RST (R)

Hint:

If you are confused by the abbreviations on the front of the board, the full signal

names are printed on the back!

•

•

•

©Adafruit Industries Page 9 of 45

Installing the Arduino software

Now we can run the test software on the Arduino.

Three libraries need to be installed using the Arduino Library Manager…this is the

preferred and modern way. From the Arduino “Sketch” menu, select “Include Library”

then “Manage Libraries…”

Type “gfx” in the search field to quickly find the first library — Adafruit_GFX:

If using an earlier version of the Arduino IDE (pre-1.8.10), locate and install Adafruit_B

usIO (newer versions handle this prerequisite automatically).

Then repeat the search and install steps, looking for the Adafruit_SSD1351 library.

After you restart, you should be able to select File→Examples→Adafruit_SSD1351→te

st - this is the example sketch that just tests the display by drawing text and shapes.

Upload the sketch and you should see the following:

The test sketch demonstrates all the basic drawing functions of the Adafruit GFX

Library. Read through the code to see how to draw text, circles, lines, etc.

For a detailed tutorial on the Adafruit GFX library, including all the functions available

please visit the GFX tutorial page (https://adafru.it/aPx)

©Adafruit Industries Page 10 of 45

Drawing Bitmaps

Wiring for the Bitmap Example

Drawing bitmaps from the on-board micro SD card requires a few more connections

to communicate with the SD card. The library allows you to use any pins. The Arduino

connections listed below match the code in the "bmp" example from the library:

GND -> GND (G)

5v -> VIN (+)

#7 -> SDCS (SC)

#4 -> DC

#6 -> RST (R)

#5 -> OLEDCS (OC)

#11 -> MOSI (SI)

#12 -> MISO (SO)

#13 -> SCLK (CL)

•

•

•

•

•

•

•

•

•

Note that the Bitmap example code uses hardware SPI wiring for maximum

speed. You can still use software SPI, but make sure that the pin definitions

match your wiring and that you modify the example to select the Software SPI

option (#1) in the code. The SPI pins shown are for Atmega-328 processors. To

use this wiring on other processors, software SPI must be used.

©Adafruit Industries Page 11 of 45

Hint:

If you are confused by the abbreviations on the front of the board, the full signal

names are printed on the back!

©Adafruit Industries Page 12 of 45

Bitmap Example Sketch

To display bitmaps from the on-board micro SD slot, you will need a micro SD card (ht

tp://adafru.it/102) formatted FAT16 or FAT32 (they almost always are by default).

There is a built in microSD card slot on the rear of the breakout and we can use that

to load bitmap images!

It's really easy to draw bitmaps. We have a library for it, Adafruit_ImageReader, which

can be installed through the Arduino Library Manager (Sketch→Include

©Adafruit Industries Page 13 of 45

Library→Manage Libraries…). Enter “imageread” in the search field and the library is

easy to spot:

Next you can either download the image here or copy it from the images folder from

inside the library files.

Download lily128.bmp

https://adafru.it/Ey0

Insert the card

Insert the micro SD card into the slot on

the back of the SSD1351 breakout board.

Copy the bitmap file

Copy the file "lily128.bmp" from the

Adafruit_ImageReader_Library\images

folder (or wherever you saved it if you

downloaded the file) over to the root

directory of your micro-SD card.

©Adafruit Industries Page 14 of 45

Load the bitmap example

sketch

Select "Examples-

>Adafruit_ImageReader_Library-

>BreakoutSSD1351" and upload it to your

Arduino.

In the example, find the following section of code:

// Load full-screen BMP file 'rgbwheel.bmp' at position (0,0) (top left).

// Notice the 'reader' object performs this, with 'tft' as an argument.

Serial.print(F("Loading rgbwheel.bmp to screen..."));

stat = reader.drawBMP("/rgbwheel.bmp", tft, 0, 0);

reader.printStatus(stat); // How'd we do?

On the line with reader.drawBMP() change "/rgbwheel.bmp" to "/

lily128.bmp" .

After that, upload it to your Arduino. When the Arduino restarts, you should see the

flower as below!

To make new bitmaps, make sure they are less than 128 by 128 pixels and save them

in 24-bit BMP format! They must be in 24-bit format, even if they are not 24-bit color

©Adafruit Industries Page 15 of 45

as that is the easiest format for the Arduino to decode. You can rotate images using

the setRotation() procedure.

The BreakoutSSD1351 example sketch shows everything you need to work with BMP

images. Here’s just the vital bits broken out…

Several header files are included at the top of the sketch. All of these are required…

they let us access the SD card and the display, and provide the image-reading

functions:

#include <SPI.h>

#include <SD.h>

#include <Adafruit_GFX.h> // Core graphics library

#include <Adafruit_SSD1351.h> // Hardware-specific library

#include <Adafruit_ImageReader.h> // Image-reading functions

Several #defines relate to hardware pin numbers, all fixed values when using the

shield.

Then we declare the tft screen object, and the image-reader object like so:

#define SD_CS 7 // SD card select pin

#define TFT_CS 5 // TFT select pin

#define TFT_DC 4 // TFT display/command pin

#define TFT_RST 6 // Or set to -1 and connect to Arduino RESET pin

Adafruit_SSD1351 tft = Adafruit_SSD1351(SCREEN_WIDTH, SCREEN_HEIGHT, &SPI,

TFT_CS, TFT_DC, TFT_RST);

Adafruit_ImageReader reader; // Class w/image-reading functions

After the SD and TFT’s begin() functions have been called (see the example sketch

again, in the setup() function), you can then call reader.drawBMP() to load an

image from the card to the screen:

ImageReturnCode stat; // Status from image-reading functions

stat = reader.drawBMP("/lily128.bmp", tft, 0, 0);

You can draw as many images as you want — though remember the names must be

less than 8 characters long. Call like so:

reader.drawBMP(filename, tft, x, y);

'x' and 'y' are pixel coordinates where top-left corner of the image will be placed.

Images can be placed anywhere on screen…even partially off screen, the library will

clip the section to load.

©Adafruit Industries Page 16 of 45

Image loading is explained in greater depth in the Adafruit_GFX library guide. (https:/

/adafru.it/DpM)

CircuitPython Displayio Quickstart

You will need a board capable of running CircuitPython such as the Metro M0 Express

or the Metro M4 Express. You can also use boards such as the Feather M0 Express or

the Feather M4 Express. We recommend either the Metro M4 or the Feather M4

Express because it's much faster and works better for driving a display. For this guide,

we will be using a Feather M4 Express. The steps should be about the same for the

Feather M0 Express or either of the Metros. If you haven't already, be sure to check

out our Feather M4 Express (https://adafru.it/EEm) guide.

Adafruit Feather M4 Express - Featuring

ATSAMD51

It's what you've been waiting for, the

Feather M4 Express featuring ATSAMD51.

This Feather is fast like a swift, smart like

an owl, strong like a ox-bird (it's half ox,...

https://www.adafruit.com/product/3857

Preparing the Breakout

Before using the TFT Breakout, you will need to solder the headers or some wires to

it. Be sure to check out the Adafruit Guide To Excellent Soldering (https://adafru.it/drI).

 After that the breakout should be ready to go.

Required CircuitPython Libraries

To use this display with displayio , there is only one required library.

Adafruit_CircuitPython_SSD1351

https://adafru.it/FxO

First, make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/Amd) for your board.

©Adafruit Industries Page 17 of 45

Next, you'll need to install the necessary libraries to use the hardware--carefully

follow the steps to find and install these libraries from Adafruit's CircuitPython library

bundle (https://adafru.it/zdx). Our introduction guide has a great page on how to

install the library bundle (https://adafru.it/ABU) for both express and non-express

boards.

Remember for non-express boards, you'll need to manually install the necessary

libraries from the bundle:

adafruit_ssd1351

Before continuing make sure your board's lib folder or root filesystem has the adafrui

t_ssd1351 file copied over.

Code Example Additional Libraries

For the Code Example, you will need an additional library. We decided to make use of

a library so the code didn't get overly complicated.

Adafruit_CircuitPython_Display_Text

https://adafru.it/FiA

Go ahead and install this in the same manner as the driver library by copying the adaf

ruit_display_text folder over to the lib folder on your CircuitPython device.

CircuitPython Code Example

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This test will initialize the display using displayio and draw a solid green

background, a smaller purple rectangle, and some yellow text.

"""

import board

import terminalio

import displayio

from adafruit_display_text import label

from adafruit_ssd1351 import SSD1351

Release any resources currently in use for the displays

displayio.release_displays()

spi = board.SPI()

tft_cs = board.D5

tft_dc = board.D6

•

©Adafruit Industries Page 18 of 45

display_bus = displayio.FourWire(

 spi, command=tft_dc, chip_select=tft_cs, reset=board.D9, baudrate=16000000

)

display = SSD1351(display_bus, width=128, height=128)

Make the display context

splash = displayio.Group()

display.show(splash)

color_bitmap = displayio.Bitmap(128, 128, 1)

color_palette = displayio.Palette(1)

color_palette[0] = 0x00FF00 # Bright Green

bg_sprite = displayio.TileGrid(color_bitmap, pixel_shader=color_palette, x=0, y=0)

splash.append(bg_sprite)

Draw a smaller inner rectangle

inner_bitmap = displayio.Bitmap(108, 108, 1)

inner_palette = displayio.Palette(1)

inner_palette[0] = 0xAA0088 # Purple

inner_sprite = displayio.TileGrid(inner_bitmap, pixel_shader=inner_palette, x=10,

y=10)

splash.append(inner_sprite)

Draw a label

text = "Hello World!"

text_area = label.Label(terminalio.FONT, text=text, color=0xFFFF00, x=30, y=64)

splash.append(text_area)

while True:

 pass

Let's take a look at the sections of code one by one. We're going to take a look at the

code for the 1.5" display, but there is also an example available for the 128x96 1.27"

display. The example is the same as we are covering in here but with the numbers

adjusted for the different height.

We start by importing the board so that we can initialize SPI , displayio , terminal

io for the font, a label , and the adafruit_ssd1351 driver.

import board

import displayio

import terminalio

from adafruit_display_text import label

from adafruit_ssd1351 import SSD1351

Next we release any previously used displays. This is important because if the

Feather is reset, the display pins are not automatically released and this makes them

available for use again.

displayio.release_displays()

©Adafruit Industries Page 19 of 45

Next, we set the SPI object to the board's SPI with the easy shortcut function board.

SPI() . By using this function, it finds the SPI module and initializes using the default

SPI parameters.

spi = board.SPI()

tft_cs = board.D5

tft_dc = board.D6

In the next line, we set the display bus to FourWire which makes use of the SPI bus.

Additionally, we need to set the baudrate to 16MHz since that is the maximum speed

that the SSD1351 chip will run at. Anything higher creates strange artifacts on the

screen.

display_bus = displayio.FourWire(spi, command=tft_dc, chip_select=tft_cs,

 reset=board.D9, baudrate=16000000)

Finally, we initialize the driver with a width of 128 and a height of 128. If we stopped at

this point and ran the code, we would have a terminal that we could type at and have

the screen update.

display = SSD1351(display_bus, width=128, height=128)

Next we create a background splash image. We do this by creating a group that we

can add elements to and adding that group to the display. In this example, we are

limiting the maximum number of elements to 10, but this can be increased if you

would like. The display will automatically handle updating the group.

©Adafruit Industries Page 20 of 45

splash = displayio.Group(max_size=10)

display.show(splash)

Next we create a Bitmap which is like a canvas that we can draw on. In this case we

are creating the Bitmap to be the same size as the screen, but only have one color.

The Bitmaps can currently handle up to 256 different colors. We create a Palette with

one color and set that color to 0x00FF00 which happens to be green. Colors are

Hexadecimal values in the format of RRGGBB. Even though the Bitmaps can only

handle 256 colors at a time, you get to define what those 256 different colors are.

color_bitmap = displayio.Bitmap(128, 128, 1)

color_palette = displayio.Palette(1)

color_palette[0] = 0x00FF00 # Bright Green

With all those pieces in place, we create a TileGrid by passing the bitmap and palette

and draw it at (0, 0) which represents the display's upper left.

bg_sprite = displayio.TileGrid(color_bitmap,

 pixel_shader=color_palette,

 x=0, y=0)

splash.append(bg_sprite)

Next we will create a smaller purple square. The easiest way to do this is the create a

new bitmap that is a little smaller than the full screen with a single color and place it in

a specific location. In this case, we will create a bitmap that is 10 pixels smaller on

each side. The screen is 128x128, so we'll want to subtract 20 from each of those

numbers.

©Adafruit Industries Page 21 of 45

We'll also want to place it at the position (10, 10) so that it ends up centered.

inner_bitmap = displayio.Bitmap(108, 108, 1)

inner_palette = displayio.Palette(1)

inner_palette[0] = 0xAA0088 # Purple

inner_sprite = displayio.TileGrid(inner_bitmap,

 pixel_shader=inner_palette,

 x=10, y=10)

splash.append(inner_sprite)

Since we are adding this after the first square, it's automatically drawn on top. Here's

what it looks like now.

Next let's add a label that says "Hello World!" on top of that. We're going to use the

built-in Terminal Font. In this example, we won't be doing any scaling because of the

small resolution compared to some of the other displays, so we'll add the label

directly the main group. If we were scaling, we would have used a subgroup.

Labels are centered vertically, so we'll place it at 64 for the Y coordinate, and around

30 pixels make it appear to be centered horizontally, but if you want to change the

text, change this to whatever looks good to you. Let's go with some yellow text, so

we'll pass it a value of 0xFFFF00 .

text = "Hello World!"

text_area = label.Label(terminalio.FONT, text=text, color=0xFFFF00, x=30, y=64)

splash.append(text_area)

Finally, we place an infinite loop at the end so that the graphics screen remains in

place and isn't replaced by a terminal.

©Adafruit Industries Page 22 of 45

while True:

 pass

Where to go from here

Be sure to check out this excellent guide to CircuitPython Display Support Using

displayio (https://adafru.it/EGh)

Python Wiring and Setup

Wiring

It's easy to use display breakouts with Python and the Adafruit CircuitPython RGB

Display (https://adafru.it/u1C) module. This module allows you to easily write Python

code to control the display.

We'll cover how to wire the display to your Raspberry Pi. First assemble your display.

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported (https://adafru.it/BSN).

Connect the display as shown below to your Raspberry Pi.

©Adafruit Industries Page 23 of 45

ILI9341 and HX-8357-based Displays

2.2" Display

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CE0

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be

changed later.

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed

later as well.

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

Download the Fritzing Diagram

https://adafru.it/H6C

Note this is not a kernel driver that will let you have the console appear on the

TFT. However, this is handy when you can't install an fbtft driver, and want to use

the TFT purely from 'user Python' code!

You can only use this technique with Linux/computer devices that have hardware

SPI support, and not all single board computers have an SPI device so check

before continuing

•

•

•

•

•

•

•

©Adafruit Industries Page 24 of 45

2.4", 2.8", 3.2", and 3.5" Displays

These displays are set up to use the 8-bit data lines by default. We want to use them

for SPI. To do that, you'll need to either solder bridge some pads on the back or

connect the appropriate IM lines to 3.3V with jumper wires. Check the back of your

display for the correct solder pads or IM lines to put it in SPI mode.

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CE0

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be

changed later.

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed

later as well.

Download the Fritzing Diagram

https://adafru.it/H7a

ST7789 and ST7735-based Displays

1.3", 1.54", and 2.0" IPS TFT Display

Vin connects to the Raspberry Pi's 3V pin

•

•

•

•

•

•

•

These larger displays are set to use 8-bit data lines by default and may need to

be modified to use SPI.

•

©Adafruit Industries Page 25 of 45

GND connects to the Raspberry Pi's ground

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CE0

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed

later.

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be

changed later as well.

Download the Fritzing Diagram

https://adafru.it/H7A

0.96", 1.14", and 1.44" Displays

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CE0

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed

later.

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be

changed later as well.

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 26 of 45

Download the Fritzing Diagram

https://adafru.it/H7B

1.8" Display

GND connects to the Raspberry Pi's ground

Vin connects to the Raspberry Pi's 3V pin

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed

later.

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be

changed later as well.

CS connects to our SPI Chip Select pin. We'll be using CE0

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

LITE connects to the Raspberry Pi's 3V pin. This can be used to separately

control the backlight.

•

•

•

•

•

•

•

•

©Adafruit Industries Page 27 of 45

Download the Fritzing Diagram

https://adafru.it/H8a

SSD1351-based Displays

1.27" and 1.5" OLED Displays

GND connects to the Raspberry Pi's ground

Vin connects to the Raspberry Pi's 3V pin

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CE0

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed

later.

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be

changed later as well.

•

•

•

•

•

•

•

©Adafruit Industries Page 28 of 45

Download the Fritzing Diagram

https://adafru.it/H8A

SSD1331-based Display

0.96" OLED Display

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be

changed later.

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed

later as well.

CS connects to our SPI Chip Select pin. We'll be using CE0

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

•

•

•

•

•

•

•

©Adafruit Industries Page 29 of 45

Download the Fritzing Diagram

https://adafru.it/OaF

Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling SPI on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready (https

://adafru.it/BSN)!

Python Installation of RGB Display Library

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-rgb-display

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

If you have previously installed the Kernel Driver with the PiTFT Easy Setup, you

will need to remove it first in order to run this example.

•

©Adafruit Industries Page 30 of 45

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

DejaVu TTF Font

Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't,

you can run the following to install it:

sudo apt-get install fonts-dejavu

This package was previously calls ttf-dejavu, so if you are running an older version of

Raspberry Pi OS, it may be called that.

Pillow Library

We also need PIL, the Python Imaging Library, to allow graphics and using text with

custom fonts. There are several system libraries that PIL relies on, so installing via a

package manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

That's it. You should be ready to go.

Python Usage

Now that you have everything setup, we're going to look over three different

examples. For the first, we'll take a look at automatically scaling and cropping an

image and then centering it on the display.

Turning on the Backlight

On some displays, the backlight is controlled by a separate pin such as the 1.3" TFT

Bonnet with Joystick. On such displays, running the below code will likely result in the

•

•

•

If you have previously installed the Kernel Driver with the PiTFT Easy Setup, you

will need to remove it first in order to run this example.

©Adafruit Industries Page 31 of 45

display remaining black. To turn on the backlight, you will need to add a small snippet

of code. If your backlight pin number differs, be sure to change it in the code:

Turn on the Backlight

backlight = DigitalInOut(board.D26)

backlight.switch_to_output()

backlight.value = True

Displaying an Image

Here's the full code to the example. We will go through it section by section to help

you better understand what is going on. Let's start by downloading an image of

Blinka. This image has enough border to allow resizing and cropping with a variety of

display sizes and rations to still look good.

Make sure you save it as blinka.jpg and place it in the same folder as your script.

Here's the code we'll be loading onto the Raspberry Pi. We'll go over the interesting

parts.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""

Be sure to check the learn guides for more usage information.

This example is for use on (Linux) computers that are using CPython with

Adafruit Blinka to support CircuitPython libraries. CircuitPython does

not support PIL/pillow (python imaging library)!

Author(s): Melissa LeBlanc-Williams for Adafruit Industries

"""

import digitalio

import board

from PIL import Image, ImageDraw

from adafruit_rgb_display import ili9341

from adafruit_rgb_display import st7789 # pylint: disable=unused-import

©Adafruit Industries Page 32 of 45

from adafruit_rgb_display import hx8357 # pylint: disable=unused-import

from adafruit_rgb_display import st7735 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1351 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1331 # pylint: disable=unused-import

Configuration for CS and DC pins (these are PiTFT defaults):

cs_pin = digitalio.DigitalInOut(board.CE0)

dc_pin = digitalio.DigitalInOut(board.D25)

reset_pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):

BAUDRATE = 24000000

Setup SPI bus using hardware SPI:

spi = board.SPI()

pylint: disable=line-too-long

Create the display:

disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54"

ST7789

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53,

y_offset=40, # 1.14" ST7789

disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, #

1.44" ST7735R

disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT

ST7735R

disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351

disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = ili9341.ILI9341(

 spi,

 rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

 cs=cs_pin,

 dc=dc_pin,

 rst=reset_pin,

 baudrate=BAUDRATE,

)

pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:

 height = disp.width # we swap height/width to rotate it to landscape!

 width = disp.height

else:

 width = disp.width # we swap height/width to rotate it to landscape!

 height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.

draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))

disp.image(image)

image = Image.open("blinka.jpg")

Scale the image to the smaller screen dimension

image_ratio = image.width / image.height

screen_ratio = width / height

if screen_ratio < image_ratio:

 scaled_width = image.width * height // image.height

 scaled_height = height

else:

 scaled_width = width

©Adafruit Industries Page 33 of 45

 scaled_height = image.height * width // image.width

image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Crop and center the image

x = scaled_width // 2 - width // 2

y = scaled_height // 2 - height // 2

image = image.crop((x, y, x + width, y + height))

Display image.

disp.image(image)

So we start with our usual imports including a couple of Pillow modules and the

display drivers. That is followed by defining a few pins here. The reason we chose

these is because they allow you to use the same code with the PiTFT if you chose to

do so.

import digitalio

import board

from PIL import Image, ImageDraw

import adafruit_rgb_display.ili9341 as ili9341

import adafruit_rgb_display.st7789 as st7789

import adafruit_rgb_display.hx8357 as hx8357

import adafruit_rgb_display.st7735 as st7735

import adafruit_rgb_display.ssd1351 as ssd1351

import adafruit_rgb_display.ssd1331 as ssd1331

Configuration for CS and DC pins

cs_pin = digitalio.DigitalInOut(board.CE0)

dc_pin = digitalio.DigitalInOut(board.D25)

reset_pin = digitalio.DigitalInOut(board.D24)

Next we'll set the baud rate from the default 24 MHz so that it works on a variety of

displays. The exception to this is the SSD1351 driver, which will automatically limit it to

16MHz even if you pass 24MHz. We'll set up out SPI bus and then initialize the display.

We wanted to make these examples work on as many displays as possible with very

few changes. The ILI9341 display is selected by default. For other displays, go ahead

and comment out the line that starts with:

disp = ili9341.ILI9341(spi,

and uncomment the line appropriate for your display. The displays have a rotation

property so that it can be set in just one place.

Config for display baudrate (default max is 24mhz):

BAUDRATE = 24000000

Setup SPI bus using hardware SPI:

spi = board.SPI()

#disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

#disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54"

ST7789

#disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53,

©Adafruit Industries Page 34 of 45

y_offset=40, # 1.14" ST7789

#disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

#disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

#disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, #

1.44" ST7735R

#disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT

ST7735R

#disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

#disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351

#disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = ili9341.ILI9341(spi, rotation=90, # 2.2", 2.4",

2.8", 3.2" ILI9341

 cs=cs_pin, dc=dc_pin, rst=reset_pin, baudrate=BAUDRATE)

Next we read the current rotation setting of the display and if it is 90 or 270 degrees,

we need to swap the width and height for our calculations, otherwise we just grab the

width and height. We will create an image with our dimensions and use that to create

a draw object. The draw object will have all of our drawing functions.

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:

 height = disp.width # we swap height/width to rotate it to landscape!

 width = disp.height

else:

 width = disp.width # we swap height/width to rotate it to landscape!

 height = disp.height

image = Image.new('RGB', (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Next we clear whatever is on the screen by drawing a black rectangle. This isn't

strictly necessary since it will be overwritten by the image, but it kind of sets the

stage.

Draw a black filled box to clear the image.

draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))

disp.image(image)

Next we open the Blinka image, which we've named blinka.jpg, which assumes it is in

the same directory that you are running the script from. Feel free to change it if it

doesn't match your configuration.

image = Image.open("blinka.jpg")

©Adafruit Industries Page 35 of 45

Here's where it starts to get interesting. We want to scale the image so that it matches

either the width or height of the display, depending on which is smaller, so that we

have some of the image to chop off when we crop it. So we start by calculating the

width to height ration of both the display and the image. If the height is the closer of

the dimensions, we want to match the image height to the display height and let it be

a bit wider than the display. Otherwise, we want to do the opposite.

Once we've figured out how we're going to scale it, we pass in the new dimensions

and using a Bicubic rescaling method, we reassign the newly rescaled image back to

image . Pillow has quite a few different methods to choose from, but Bicubic does a

great job and is reasonably fast.

Scale the image to the smaller screen dimension

image_ratio = image.width / image.height

screen_ratio = width / height

if screen_ratio < image_ratio:

 scaled_width = image.width * height // image.height

 scaled_height = height

else:

 scaled_width = width

 scaled_height = image.height * width // image.width

image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Next we want to figure the starting x and y points of the image where we want to

begin cropping it so that it ends up centered. We do that by using a standard

centering function, which is basically requesting the difference of the center of the

display and the center of the image. Just like with scaling, we replace the image

variable with the newly cropped image.

Crop and center the image

x = scaled_width // 2 - width // 2

y = scaled_height // 2 - height // 2

image = image.crop((x, y, x + width, y + height))

Finally, we take our image and display it. At this point, the image should have the

exact same dimensions at the display and fill it completely.

disp.image(image)

©Adafruit Industries Page 36 of 45

Drawing Shapes and Text

In the next example, we'll take a look at drawing shapes and text. This is very similar

to the displayio example, but it uses Pillow instead. Here's the code for that.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This demo will draw a few rectangles onto the screen along with some text

on top of that.

This example is for use on (Linux) computers that are using CPython with

Adafruit Blinka to support CircuitPython libraries. CircuitPython does

not support PIL/pillow (python imaging library)!

Author(s): Melissa LeBlanc-Williams for Adafruit Industries

"""

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

from adafruit_rgb_display import ili9341

from adafruit_rgb_display import st7789 # pylint: disable=unused-import

from adafruit_rgb_display import hx8357 # pylint: disable=unused-import

from adafruit_rgb_display import st7735 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1351 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1331 # pylint: disable=unused-import

First define some constants to allow easy resizing of shapes.

BORDER = 20

FONTSIZE = 24

Configuration for CS and DC pins (these are PiTFT defaults):

cs_pin = digitalio.DigitalInOut(board.CE0)

dc_pin = digitalio.DigitalInOut(board.D25)

reset_pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):

©Adafruit Industries Page 37 of 45

BAUDRATE = 24000000

Setup SPI bus using hardware SPI:

spi = board.SPI()

pylint: disable=line-too-long

Create the display:

disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54"

ST7789

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53,

y_offset=40, # 1.14" ST7789

disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, #

1.44" ST7735R

disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT

ST7735R

disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351

disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = ili9341.ILI9341(

 spi,

 rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

 cs=cs_pin,

 dc=dc_pin,

 rst=reset_pin,

 baudrate=BAUDRATE,

)

pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:

 height = disp.width # we swap height/width to rotate it to landscape!

 width = disp.height

else:

 width = disp.width # we swap height/width to rotate it to landscape!

 height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Draw a green filled box as the background

draw.rectangle((0, 0, width, height), fill=(0, 255, 0))

disp.image(image)

Draw a smaller inner purple rectangle

draw.rectangle(

 (BORDER, BORDER, width - BORDER - 1, height - BORDER - 1), fill=(170, 0, 136)

)

Load a TTF Font

font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf",

FONTSIZE)

Draw Some Text

text = "Hello World!"

(font_width, font_height) = font.getsize(text)

draw.text(

 (width // 2 - font_width // 2, height // 2 - font_height // 2),

 text,

 font=font,

 fill=(255, 255, 0),

)

©Adafruit Industries Page 38 of 45

Display image.

disp.image(image)

Just like in the last example, we'll do our imports, but this time we're including the Im

ageFont Pillow module because we'll be drawing some text this time.

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

import adafruit_rgb_display.ili9341 as ili9341

Next we'll define some parameters that we can tweak for various displays. The BORD

ER will be the size in pixels of the green border between the edge of the display and

the inner purple rectangle. The FONTSIZE will be the size of the font in points so that

we can adjust it easily for different displays.

BORDER = 20

FONTSIZE = 24

Next, just like in the previous example, we will set up the display, setup the rotation,

and create a draw object. If you have are using a different display than the ILI9341, go

ahead and adjust your initializer as explained in the previous example. After that, we

will setup the background with a green rectangle that takes up the full screen. To get

green, we pass in a tuple that has our Red, Green, and Blue color values in it in that

order which can be any integer from 0 to 255 .

draw.rectangle((0, 0, width, height), fill=(0, 255, 0))

disp.image(image)

Next we will draw an inner purple rectangle. This is the same color value as our

example in displayio quickstart, except the hexadecimal values have been converted

to decimal. We use the BORDER parameter to calculate the size and position that we

want to draw the rectangle.

draw.rectangle((BORDER, BORDER, width - BORDER - 1, height - BORDER - 1),

 fill=(170, 0, 136))

Next we'll load a TTF font. The DejaVuSans.ttf font should come preloaded on

your Pi in the location in the code. We also make use of the FONTSIZE parameter

that we discussed earlier.

Load a TTF Font

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf',

FONTSIZE)

©Adafruit Industries Page 39 of 45

Now we draw the text Hello World onto the center of the display. You may recognize

the centering calculation was the same one we used to center crop the image in the

previous example. In this example though, we get the font size values using the gets

ize() function of the font object.

Draw Some Text

text = "Hello World!"

(font_width, font_height) = font.getsize(text)

draw.text((width//2 - font_width//2, height//2 - font_height//2),

 text, font=font, fill=(255, 255, 0))

Finally, just like before, we display the image.

disp.image(image)

Displaying System Information

In this last example we'll take a look at getting the system information and displaying

it. This can be very handy for system monitoring. Here's the code for that example:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This will show some Linux Statistics on the attached display. Be sure to adjust

to the display you have connected. Be sure to check the learn guides for more

usage information.

This example is for use on (Linux) computers that are using CPython with

Adafruit Blinka to support CircuitPython libraries. CircuitPython does

not support PIL/pillow (python imaging library)!

©Adafruit Industries Page 40 of 45

"""

import time

import subprocess

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

from adafruit_rgb_display import ili9341

from adafruit_rgb_display import st7789 # pylint: disable=unused-import

from adafruit_rgb_display import hx8357 # pylint: disable=unused-import

from adafruit_rgb_display import st7735 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1351 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1331 # pylint: disable=unused-import

Configuration for CS and DC pins (these are PiTFT defaults):

cs_pin = digitalio.DigitalInOut(board.CE0)

dc_pin = digitalio.DigitalInOut(board.D25)

reset_pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):

BAUDRATE = 24000000

Setup SPI bus using hardware SPI:

spi = board.SPI()

pylint: disable=line-too-long

Create the display:

disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54"

ST7789

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53,

y_offset=40, # 1.14" ST7789

disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, #

1.44" ST7735R

disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT

ST7735R

disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351

disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = ili9341.ILI9341(

 spi,

 rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

 cs=cs_pin,

 dc=dc_pin,

 rst=reset_pin,

 baudrate=BAUDRATE,

)

pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:

 height = disp.width # we swap height/width to rotate it to landscape!

 width = disp.height

else:

 width = disp.width # we swap height/width to rotate it to landscape!

 height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.

draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))

disp.image(image)

©Adafruit Industries Page 41 of 45

First define some constants to allow easy positioning of text.

padding = -2

x = 0

Load a TTF font. Make sure the .ttf font file is in the

same directory as the python script!

Some other nice fonts to try: http://www.dafont.com/bitmap.php

font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 24)

while True:

 # Draw a black filled box to clear the image.

 draw.rectangle((0, 0, width, height), outline=0, fill=0)

 # Shell scripts for system monitoring from here:

 # https://unix.stackexchange.com/questions/119126/command-to-display-memory-

usage-disk-usage-and-cpu-load

 cmd = "hostname -I | cut -d' ' -f1"

 IP = "IP: " + subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"

 CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\",

$3,$2,$3*100/$2 }'"

 MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = 'df -h | awk \'$NF=="/"{printf "Disk: %d/%d GB %s", $3,$2,$5}\''

 Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = "cat /sys/class/thermal/thermal_zone0/temp | awk '{printf \"CPU Temp: %.

1f C\", $(NF-0) / 1000}'" # pylint: disable=line-too-long

 Temp = subprocess.check_output(cmd, shell=True).decode("utf-8")

 # Write four lines of text.

 y = padding

 draw.text((x, y), IP, font=font, fill="#FFFFFF")

 y += font.getsize(IP)[1]

 draw.text((x, y), CPU, font=font, fill="#FFFF00")

 y += font.getsize(CPU)[1]

 draw.text((x, y), MemUsage, font=font, fill="#00FF00")

 y += font.getsize(MemUsage)[1]

 draw.text((x, y), Disk, font=font, fill="#0000FF")

 y += font.getsize(Disk)[1]

 draw.text((x, y), Temp, font=font, fill="#FF00FF")

 # Display image.

 disp.image(image)

 time.sleep(0.1)

Just like the last example, we'll start by importing everything we imported, but we're

adding two more imports. The first one is time so that we can add a small delay and

the other is subprocess so we can gather some system information.

import time

import subprocess

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

import adafruit_rgb_display.ili9341 as ili9341

Next, just like in the first two examples, we will set up the display, setup the rotation,

and create a draw object. If you have are using a different display than the ILI9341, go

ahead and adjust your initializer as explained in the previous example.

©Adafruit Industries Page 42 of 45

Just like in the first example, we're going to draw a black rectangle to fill up the

screen. After that, we're going to set up a couple of constants to help with positioning

text. The first is the padding and that will be the Y-position of the top-most text and

the other is x which is the X-Position and represents the left side of the text.

First define some constants to allow easy positioning of text.

padding = -2

x = 0

Next, we load a font just like in the second example.

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', 24)

Now we get to the main loop and by using while True: , it will loop until Control+C

is pressed on the keyboard. The first item inside here, we clear the screen, but notice

that instead of giving it a tuple like before, we can just pass 0 and it will draw black.

draw.rectangle((0, 0, width, height), outline=0, fill=0)

Next, we run a few scripts using the subprocess function that get called to the

Operating System to get information. The in each command is passed through awk in

order to be formatted better for the display. By having the OS do the work, we don't

have to. These little scripts came from https://unix.stackexchange.com/

questions/119126/command-to-display-memory-usage-disk-usage-and-cpu-

load

cmd = "hostname -I | cut -d\' \' -f1"

IP = "IP: "+subprocess.check_output(cmd, shell=True).decode("utf-8")

cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"

CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")

cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\", $3,$2,$3*100/$2 }'"

MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")

cmd = "df -h | awk '$NF==\"/\"{printf \"Disk: %d/%d GB %s\", $3,$2,$5}'"

Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")

cmd = "cat /sys/class/thermal/thermal_zone0/temp | awk \'{printf \"CPU Temp: %.1f

C\", $(NF-0) / 1000}\'" # pylint: disable=line-too-long

Temp = subprocess.check_output(cmd, shell=True).decode("utf-8")

Now we display the information for the user. Here we use yet another way to pass

color information. We can pass it as a color string using the pound symbol, just like we

would with HTML. With each line, we take the height of the line using getsize()

and move the pointer down by that much.

y = padding

draw.text((x, y), IP, font=font, fill="#FFFFFF")

y += font.getsize(IP)[1]

draw.text((x, y), CPU, font=font, fill="#FFFF00")

©Adafruit Industries Page 43 of 45

y += font.getsize(CPU)[1]

draw.text((x, y), MemUsage, font=font, fill="#00FF00")

y += font.getsize(MemUsage)[1]

draw.text((x, y), Disk, font=font, fill="#0000FF")

y += font.getsize(Disk)[1]

draw.text((x, y), Temp, font=font, fill="#FF00FF")

Finally, we write all the information out to the display using disp.image() . Since we

are looping, we tell Python to sleep for 0.1 seconds so that the CPU never gets too

busy.

disp.image(image)

time.sleep(.1)

Downloads and Links

Data Sheets:

SSD1351 Display Controller Datasheet (https://adafru.it/sVb)

1.5" OLED Display Module datasheet (https://adafru.it/cBE)

Fritzing objects in the Adafruit Fritzing library (https://adafru.it/aP3)

EagleCAD PCB for 1.27" Color OLED (https://adafru.it/rqB)

EagleCAD PCB for the 1.5" Color OLED (https://adafru.it/rqC)

•

•

•

•

•

©Adafruit Industries Page 44 of 45

Schematic

Click to enlarge

For the level shifter we use the CD74HC4050 (https://adafru.it/Ekk) which has a

typical propagation delay of ~10ns

©Adafruit Industries Page 45 of 45

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Display Development Tools category:

Click to view products by Adafruit manufacturer:

Other Similar products are found below :

KIT 60121-3 S5U13U11P00C100 MAX14521EEVKIT KIT 60145-3 S5U13748P00C100 DFR0413 3248 DLPLCR90EVM

MAX20069EVKIT# KIT95000-3 LCD-16396 PIM370 UNIVERSAL BREAK OUT BOARD NHD-PCB0216CZ KIT-19297 EA 9781-

2USB 1109 MCIMX-LVDS1 MIKROE-2449 MIKROE-2453 BREAK OUT BOARD 20 BREAK OUT BOARD 36 131 DEV-13628 1590

MIKROE-2269 1601 1770 1947 1983 1987 2050 2218 2219 2260 2345 2418 2423 2454 2455 2478 2674 SK-220RD-PI FIT0477 333

1774 334 TE-M321-SDK DFR0428 cs-epapersk-03

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/optoelectronic-development-tools/display-development-tools
https://www.x-on.com.au/manufacturer/adafruit
https://www.x-on.com.au/mpn/digitalview/kit601213
https://www.x-on.com.au/mpn/epson/s5u13u11p00c100
https://www.x-on.com.au/mpn/maxim/max14521eevkit
https://www.x-on.com.au/mpn/digitalview/kit601453
https://www.x-on.com.au/mpn/epson/s5u13748p00c100
https://www.x-on.com.au/mpn/dfrobot/dfr0413
https://www.x-on.com.au/mpn/adafruit/3248
https://www.x-on.com.au/mpn/texasinstruments/dlplcr90evm
https://www.x-on.com.au/mpn/maxim/max20069evkit
https://www.x-on.com.au/mpn/digitalview/kit950003
https://www.x-on.com.au/mpn/sparkfun/lcd16396
https://www.x-on.com.au/mpn/pimoroni/pim370
https://www.x-on.com.au/mpn/riverdi/universalbreakoutboard
https://www.x-on.com.au/mpn/newhavendisplay/nhdpcb0216cz
https://www.x-on.com.au/mpn/sparkfun/kit19297
https://www.x-on.com.au/mpn/displayvisions/ea97812usb
https://www.x-on.com.au/mpn/displayvisions/ea97812usb
https://www.x-on.com.au/mpn/adafruit/1109
https://www.x-on.com.au/mpn/nxp/mcimxlvds1
https://www.x-on.com.au/mpn/mikroelektronika/mikroe2449
https://www.x-on.com.au/mpn/mikroelektronika/mikroe2453
https://www.x-on.com.au/mpn/riverdi/breakoutboard20
https://www.x-on.com.au/mpn/riverdi/breakoutboard36
https://www.x-on.com.au/mpn/adafruit/131
https://www.x-on.com.au/mpn/sparkfun/dev13628
https://www.x-on.com.au/mpn/adafruit/1590
https://www.x-on.com.au/mpn/mikroelektronika/mikroe2269
https://www.x-on.com.au/mpn/adafruit/1601
https://www.x-on.com.au/mpn/adafruit/1770
https://www.x-on.com.au/mpn/adafruit/1947
https://www.x-on.com.au/mpn/adafruit/1983
https://www.x-on.com.au/mpn/adafruit/1987
https://www.x-on.com.au/mpn/adafruit/2050
https://www.x-on.com.au/mpn/adafruit/2218
https://www.x-on.com.au/mpn/adafruit/2219
https://www.x-on.com.au/mpn/adafruit/2260
https://www.x-on.com.au/mpn/adafruit/2345
https://www.x-on.com.au/mpn/adafruit/2418
https://www.x-on.com.au/mpn/adafruit/2423
https://www.x-on.com.au/mpn/adafruit/2454
https://www.x-on.com.au/mpn/adafruit/2455
https://www.x-on.com.au/mpn/adafruit/2478
https://www.x-on.com.au/mpn/adafruit/2674
https://www.x-on.com.au/mpn/4dsystems/sk220rdpi
https://www.x-on.com.au/mpn/dfrobot/fit0477
https://www.x-on.com.au/mpn/adafruit/333
https://www.x-on.com.au/mpn/adafruit/1774
https://www.x-on.com.au/mpn/adafruit/334
https://www.x-on.com.au/mpn/grayhill/tem321sdk
https://www.x-on.com.au/mpn/dfrobot/dfr0428
https://www.x-on.com.au/mpn/crowdsupply/csepapersk03

