12 Segment Light Bars Displays Technical Data Sheet

Model No.: KWL-R1230XDUGB

Features:

\diamond Industrial standard size.
\diamond Low power consumption.
\diamond Categorized for luminous intensity.
\diamond The product itself will remain within RoHS compliant Version.

Descriptions:

\diamond The KWL-R1230 series is 12 Segment light bar display, designed for viewing distances up to 7 meters.
\diamond These devices are available with green offering a wide possibility in design.
\diamond These devices are made with white segments and black surface.

Applications:
\diamond Audio equipment.
\diamond Instrument panels.
\diamond Digital read out display.

Device Selection Guide:

Model No.	Chip Material		Source Color	Descriptions
KWL-R1230ADUGB	D	GaAIAs	Super Red	Common Anode
	UG	AlGaInP	Super Yellow Green	
	D	GaAIAs	Super Red	Common Cathode
	UG	AlGaInP	Super Yellow Green	

Spec No.: W123010A/BEG Approved: JoJo
Lucky Light Electronics Co., Ltd.

Rev No.: V. 2
Checked: Sun

Date: April/15/2009
Drawn: Liu
http://www.luckylightled.com

Luckylight

Package Dimension:

Notes:

1. All dimensions are in millimeters (inches).
2. Tolerance is $\pm 0.25 \mathrm{~mm}\left(.010^{\prime \prime}\right)$ unless otherwise noted.
3. Specifications are subject to change without notice.

Spec No.: W123010A/BEG Approved: JoJo
Lucky Light Electronics Co., Ltd.

Rev No.: V. 2
Checked: Sun

Date: April/15/2009
Drawn: Liu http://www.luckylightled.com

Luckylight

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameters	Symbol	Red	Green	Unit
Power Dissipation	PD	60	70	mW
Peak Forward Current $(1 / 10$ Duty Cycle, $0.1 \mathrm{~ms} \mathrm{Pulse} \mathrm{Width)}$	IFP	100	100	mA
Forward Current	IF	25	25	mA
Derating Linear From $25^{\circ} \mathrm{C}$		0.4	0.4	$\mathrm{~mA} /{ }^{\circ} \mathrm{C}$
Reverse Voltage	VR	5	5	V
Operating Temperature Range	Topr	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$		
Storage Temperature Range	Tstg	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
Soldering Temperature	Tsld	$260^{\circ} \mathrm{C}$ for 5 Seconds		

Electrical Optical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameters	Symbol	Color	Min.	Typ.	Max.	Unit	Test Condition
Luminous Intensity	Iv	Red	7.0	14.0	---	mcd	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} A \\ & (\text { Note } 1) \end{aligned}$
		Green	6.5	13.0	---		
Peak Emission Wavelength	λp	Red	---	660	---	nm	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
		Green	---	575	---		
Dominant Wavelength	λd	Red	---	640	---	nm	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & (\text { Note } 2) \end{aligned}$
		Green	---	572	---		
Spectral Line Half-Width	$\triangle \lambda$	Red	---	20	---	nm	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
		Green	---	20	---		
Forward Voltage	V_{F}	Red	---	1.8	2.4	V	$\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$
		Green	---	2.2	2.8		
Reverse Current	I_{R}	Red	---	---	50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$

Notes:

1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.
2. The dominant wavelength ($\lambda \mathrm{d}$) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Typical Electrical / Optical Characteristics Curves

 ($25^{\circ} \mathrm{C}$ Ambient Temperature Unless Otherwise Noted) Red

Forward Current \& Forward Voltage

Luminous Intensity \&
Ambient Temperature

Forward Current Derating Curve

Luminous Intensity \& Forward Current

Spec No.: W123010A/BEG
Approved: JoJo
Lucky Light Electronics Co., Ltd.

Rev No.: V. 2
Checked: Sun

Date: April/15/2009
Drawn: Liu
http://www.luckylightled.com

Typical Electrical / Optical Characteristics Curves
($25^{\circ} \mathrm{C}$ Ambient Temperature Unless Otherwise Noted)
Green

Forward Current \& Forward Voltage

Luminous Intensity \&

Luminous Intensity \& Forward Current

Forward Current Derating Curve

Luckylight

Please read the following notes before using the datasheets:

1. Over-current-proof

Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (Burn out will happen).
2. Storage
2.1 If the package contains a moisture proof bag inside, please don't open the package before using.
2.2 Before opening the package, the LEDs should be kept at $30^{\circ} \mathrm{C}$ or less and 80% RH or less.
2.3 The LEDs should be used within a year.
2.4 After opening the package, the LEDs should be kept at $30^{\circ} \mathrm{C}$ or less and 60% RH or less.
3. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than $260^{\circ} \mathrm{C}$ for 5 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

4. Soldering

When soldering, for Lamp without stopper type and must be leave a minimum of 3 mm clearance from the base of the lens to the soldering point.
To avoided the Epoxy climb up on lead frame and was impact to non-soldering problem, dipping the lens into the solder must be avoided.
Do not apply any external stress to the lead frame during soldering while the LED is at high temperature.
Recommended soldering conditions:

Soldering Iron		Wave Soldering	
Temperature	$300^{\circ} \mathrm{C}$ Max.	Pre-heat	$100^{\circ} \mathrm{C} \mathrm{Max}$.
Soldering Time	3 sec. Max.	Pre-heat Time	60 sec. Max.
	(one time only)	Solder Wave	$260^{\circ} \mathrm{C} \mathrm{Max}$.
		Soldering Time	5 sec. Max.

Note: Excessive soldering temperature and / or time might result in deformation of the LED lens or catastrophic failure of the LED.

5. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Development Tools category:
Click to view products by Adafruit manufacturer:
Other Similar products are found below :
MIC2870YFT EV ADP8860DBCP-EVALZ LM3404MREVAL ADM8843EB-EVALZ TDGL014 ISL97682IRTZEVALZ LM3508TLEV EA6358NH MAX16826EVKIT MAX16839EVKIT+ TPS92315EVM-516 MAX1698EVKIT MAX6956EVKIT+ OM13321,598 DC986A DC909A DC824A STEVAL-LLL006V1 IS31LT3948-GRLS4-EB 104PW03F PIM526 PIM527 MAX6946EVKIT+ MAX20070EVKIT\# MAX21610EVKIT\# MAX20090BEVKIT\# MAX20092EVSYS\# PIM498 AP8800EV1 ZXLD1370/1EV4 MAX6964EVKIT MAX25240EVKIT\# MAX25500TEVKITC\# MAX77961BEVKIT06\# 1216.1013 TPS61176EVM-566 TPS61197EVM TPS92001EVM-628 $\underline{1270} \underline{1271.2004} \underline{1272.1030} \underline{1273.1010} \underline{1278.1010} \underline{1279.1002} \underline{1279.1001} \underline{1282.1000} \underline{1293.1900} \underline{1293.1800} \underline{1293.1700} \underline{1293.1500}$

