10 Segment Light Bars Displays Technical Data Sheet

Part No.: KWL-R1025BB

Luckylight

Features:

\diamond Industrial standard size.
\diamond Low power consumption.
\diamond Categorized for luminous intensity.
\diamond The product itself will remain within RoHS compliant Version.

Descriptions:

\diamond The KWL-R1025 series is 10 Segment light bar display, designed for viewing distances up to 7 meters.

Applications:

\diamond Audio equipment.
\diamond Instrument panels.
\diamond Digital read out display.

Device Selection Guide:

Part No.	Chip Material	Face Color	Source Color
KWL-R1025BB	InGaN	Black Diffused	Blue

Package Dimension:

$\begin{array}{llllllllll}20 & 19 & 18 & 17 & 16 & 15 & 14 & 13 & 12 & 11\end{array}$

$$
\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array}
$$

Notes:

1. All dimensions are in millimeters (inches).
2. Tolerance is $\pm 0.25 \mathrm{~mm}\left(.010^{\prime \prime}\right)$ unless otherwise noted.
3. Specifications are subject to change without notice.

Luckylight

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameters	Symbol	Max.	Unit
Power Dissipation (Per Segment)	PD	100	mW
Peak Forward Current (Per Segment) (1/10 Duty Cycle, 0.1ms Pulse Width)	IFP	100	mA
Forward Current (Per Segment)	IF	25	mA
Dating Linear From $50^{\circ} \mathrm{C}$		0.4	$\mathrm{~mA} /{ }^{\circ} \mathrm{C}$
Reverse Voltage	VR	5	V
Operating Temperature Range	Topr	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	
Storage Temperature Range	Tsld	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Soldering Temperature	$260^{\circ} \mathrm{C}$ for 5 Seconds		

Electrical Optical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameters	Symbol	Min.	Typ.	Max.	Unit	Test Condition
Luminous Intensity	Iv	7.5	15.0	---	mcd	IF=20mA (Note 1)
Peak Emission Wavelength	λp	---	468	---	nm	IF=20mA
Dominant Wavelength	λd	---	470	---	nm	$\mathrm{IF}=20 \mathrm{~mA}($ Note 2)
Spectral Line Half-Width	$\triangle \lambda$	---	25	---	nm	$\mathrm{IF}=20 \mathrm{~mA}$
Forward Voltage	VF	---	3.2	4.0	V	$\mathrm{IF}=20 \mathrm{~mA}$
Reverse Current	IR	---	---	50	$\mu \mathrm{~A}$	$\mathrm{VR}=5 \mathrm{~V}$

Notes:

1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.
2. The dominant wavelength ($\lambda \mathrm{d}$) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Typical Electrical / Optical Characteristics Curves ($25^{\circ} \mathrm{C}$ Ambient Temperature Unless Otherwise Noted)

Forward Current Derating Curve

Please read the following notes before using the datasheets:

1. Over-current-proof

Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (Burn out will happen).
2. Storage
2.1 If the package contains a moisture proof bag inside, please don't open the package before using.
2.2 Before opening the package, the LEDs should be kept at $30^{\circ} \mathrm{C}$ or less and 80% RH or less.
2.3 The LEDs should be used within a year.
2.4 After opening the package, the LEDs should be kept at $30^{\circ} \mathrm{C}$ or less and $60 \% \mathrm{RH}$ or less.
3. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than $260^{\circ} \mathrm{C}$ for 5 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

4. Soldering

When soldering, for Lamp without stopper type and must be leave a minimum of 3 mm clearance from the base of the lens to the soldering point.
To avoided the Epoxy climb up on lead frame and was impact to non-soldering problem, dipping the lens into the solder must be avoided.
Do not apply any external stress to the lead frame during soldering while the LED is at high temperature.
Recommended soldering conditions:

Soldering Iron		Wave Soldering	
Temperature	$300^{\circ} \mathrm{C}$ Max.	Pre-heat	$100^{\circ} \mathrm{C} \mathrm{Max}$.
Soldering Time	3 sec. Max.	Pre-heat Time	60 sec. Max.
	(one time only)	Solder Wave	$260^{\circ} \mathrm{C} \mathrm{Max}$.
		Soldering Time	5 sec. Max.

Note: Excessive soldering temperature and / or time might result in deformation of the LED lens or catastrophic failure of the LED.

5. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

6. Caution in ESD

Static Electricity and surge damages the LED. It is recommended to use a wrist band or anti-electrostatic glove when handling the LED. All devices equipment and machinery must be properly grounded.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Adafruit Accessories category:
Click to view products by Adafruit manufacturer:
Other Similar products are found below :

$33482499 \underline{2878} 2963 \underline{3219} 30052882$ PGM1202 02-LDR1 02-LDR12 02-LDR13 02-LDR14 02-LDR15 02-LDR2 02-LDR3 02-LDR4
$\underline{2194} 862 \underline{460} 905 \underline{02-L D R 20} \underline{02-L D R 21}$ 02-LDR22 02-LDR23 $1008 \underline{1020} \underline{1031}$

