

Pixy Pet Robot - Color vision follower

Created by Bill Earl

https://learn.adafruit.com/pixy-pet-robot-color-vision-follower-using-pixycam

©Adafruit Industries Page 1 of 38

Last updated on 2021-11-15 06:14:37 PM EST

©Adafruit Industries Page 2 of 38

5

6

6

7

8

9

10

11

12

13

13

14

14

15

15

21

22

23

24

25

25

25

26

26

26

27

27

31

31

33

35

35

35

36

36

36

37

37

37

Table of Contents

Overview and Materials

• Materials:

• Tools:

Assemble the Camera

• Preparing the Pan/Tlt Base

• Remove the Side Tabs

• Trim the remaining tabs flush

• Cut a notch for the cable connectors

• Attach the Camera

• Connect the Servo Cables

• Secure the Cables

Seeduino Assembly

• No Leonardo? No Problem!

• Parts Required:

• Assembly:

Final Assembly

• Attach the Camera to the Leonardo

• Connect the ribbon cable

• Attach the Camera and Processor to the Zumo

Playing with your Pixy Pet!

• Teach the Camera

• Find a toy!

• Connect the Camera

• Run PixyMon

• Upload the Code

• Play Ball!

The Code

Pixy Pet Code Design

• Tracking Objects

• Following Objects

Feedback Control Basics

• Measurements, Setpoints, Errors and Ouputs

• Types of Control

• On/Off Control

• PID Control

• Proportional Control

• Integral Control

• Derivative Control

Troubleshooting

©Adafruit Industries Page 3 of 38

©Adafruit Industries Page 4 of 38

Overview and Materials

This project pairs the super-awsome Pixy CMUCam-5 vision system with the high

performance Zumo robot platform, a pan/tilt mechanism and an Arduino Leonardo for

a brain.

The Pixy camera has powerful image processing capabilities that can track objects by

color. It can track dozens of objects simultaneously and report their locations to the

Arduino in real-time. The built-in pan/tilt servo control is fast enough to track a

bouncing ball.

The Zumo robot is a low-profile tracked robot platform designed for an Arduino

controller. It uses two 75:1 precision micro metal gearmotors to drive extra grippy

silicone rubber treads. Zumo has traction and torque to spare, with a top speed of

approximately 2 feet per second (60 cm/s). This makes it a nimble little bot that can

zip along at high speed and still turn on a dime.

Putting all this together with an Arduino Leonardo processor, you can build yourself a

fun and responsive little bot that will chase objects or follow you around like a playful

pet!

The Pixy Pet Robot is simple to build with no soldering required. With just a few

common tools, you can complete the assembly in under an hour!

Before embarking on this project, please follow the Pixy and Zumo tutorials,

getting those working with the Arduino seperately and then you can combine

them!

©Adafruit Industries Page 5 of 38

Materials:

Pixy CMUcam-5 (https://adafru.it/dSP)

Mini Pan/Tilt Kit - Assembled with Micro Servos (http://adafru.it/1967)*

Zumo Robot (https://adafru.it/dSQ)

Arduino Leonardo (http://adafru.it/849)** or Leonardo Compatible Processor (htt

p://adafru.it/3228)

Double-sided foam tape

Cable Ties

4x AA batteries

 * If you have some micro-servos already, we also have an unassembled pan/tilt kit (ht

tp://adafru.it/1968) in the store. Some modifications may be required to fit your servo

horns to the pan/tilt kit.

** The official Arduino Leonardo has been discontinued, but the Seeeduino Lite (http:

//adafru.it/3228) will work with some minor modifications.

Tools:

Wire Cutters

Scissors

USB A to Mini-B cable (for teaching the camera)

USB A to Micro-B cable (for uploading to the Leonardo)

•

•

•

•

•

•

•

•

•

•

•

Note: Due to the pin assignments of the Zumo robot shield, this project will not

work with an Uno or other Atmega 328-based processor.

©Adafruit Industries Page 6 of 38

Assemble the Camera

The Pixy Camera itself is fully assembled. We just need to attach it to the pan/tilt base

and connect the servos.

©Adafruit Industries Page 7 of 38

Preparing the Pan/Tlt Base

The pan/tilt base has mounting tabs for a different style of camera module. We'll

need to remove these before attaching to the Pixy CMU-Cam.

The pan/tilt kit is available with and without sevos. The mechanism is sized to fit

standard micro sevo cases. However, servo horns are not standardized. If using

other servos, you may need to trim or re-shape the horns to fit.

©Adafruit Industries Page 8 of 38

Remove the Side Tabs
Cut the side tabs so that they are flush

with the face of the camera mounting

bracket.

The bracket is made of a fairly soft nylon,

so these are easly removed with a pair of

wire cutters.

©Adafruit Industries Page 9 of 38

Trim the remaining tabs

flush
There are two smaller alignment tabs and

a cable guide that must be trimmed flush

also.

©Adafruit Industries Page 10 of 38

Cut a notch for the cable

connectors
We need to make room for the cable

connectors on the back of the camera

module. Two cuts, as shown in the

photos will remove the top left side of the

bracket.

©Adafruit Industries Page 11 of 38

Attach the Camera
Cut a 1"x1" piece of double-sided foam

tape and position on the back of the

camera module as shown.

Remove the backing paper and align the

camera bracket as shown. The

connector headers on the back of the

camera module will fit into the notch we

cut in the previous step.

Press down firmly to adhere the camera

to the mounting bracket. Your final

assembly should look like the last photo

to the left..

©Adafruit Industries Page 12 of 38

Connect the Servo Cables
The servo cables attach to the 2x6 pin

header on the back of the camera. The

cable for the pan servo (the bottom one)

should be on the left. The cable for the

tilt servo should be on the right. Make

sure that the brown wire is on the bottom

and the yellow wire is on top.

Tape the two connectors together. This

will make it easier to keep them from

getting mixed up if you have to

disconnect them later.

Secure the Cables
Route the servo cables as shown and

anchor to the pan/tilt base with cable

ties. Be sure to leave enough slack so

that the cables will not interfere with the

pan/tlt motion.

©Adafruit Industries Page 13 of 38

Seeduino Assembly

No Leonardo? No Problem!

The Leonardo was one of our favorite Arduinos. Unfortunately it has been

discontinued. But fear not! The folks at Seeed Studio have designed the 32U4-based

Seeeduino Lite as a worthy replacement.

There is one little problem though. The Zumo chassis has a couple of unfortunately

placed capacitors that interfere with the DC jack and capacitors on the Seeeduino.

 The good news is that the Seeeduino ships without headers installed. So all you

need to do is replace them with slightly longer headers. The Arduino R3 Stacking

Headers (http://adafru.it/85) are just the thing we need.

©Adafruit Industries Page 14 of 38

Parts Required:

1 Seeeduino Lite (http://adafru.it/3228)

1 set of Arduino R3 Stacking Headers (http://adafru.it/85)

1 piece of the packing foam that comes with the Seeeduino Lite.

Assembly:

Plug the headers upside-down into the

Zumo Chassis as shown.

•

•

•

©Adafruit Industries Page 15 of 38

Using a piece of the packing foam

from the Seeeduino kit, cut two

small squares roughly 1.5"x1.5"

(3.5cm x 3.5cm) - These

dimensions are not super critical!

•

©Adafruit Industries Page 16 of 38

Stack the foam squares between

the extended headers.

 Avoid placing them on any of the

taller components on the Zumo

chassis. They should lay fairly flat

on the PCB.

•

•

©Adafruit Industries Page 17 of 38

Place the Seeeduino Lite board

face down over the extended

headers and let it rest on the foam.

 There will be about 1/4" (6mm) of

the header pin showing below the

board.

Tack-solder the pins at the 4

corners of the board, adjusting to

keep it level if necessary.

Then solder the remaining pins.

•

•

•

©Adafruit Industries Page 18 of 38

Install the 6-pin ICSP header from the

Seeeduino kit from the top side and

solder in place.

©Adafruit Industries Page 19 of 38

Trim the pins on the back and you are

ready for the final assembly of your Pixy

Pet!

©Adafruit Industries Page 20 of 38

Final Assembly

The Zumo itself comes pre-assembled, minus the Leonardo processor. We just need

to attach the processor and camera assembly and connect the cables.

©Adafruit Industries Page 21 of 38

Attach the Camera to the

Leonardo

Cut a piece of foam tape to fit in the

recess in the bottom of the pan/tilt base.

 (If you are using narrower tape, you can

use multiple pieces.)

Position the camera as shown on the

bottom of the Leonardo and press firmly

to attach.

You can use the dotted line above the

FCC/CE logos for alignment!

©Adafruit Industries Page 22 of 38

Connect the ribbon cable
The gray ribbon cable that came with

your Pixy has one 6-pin connector and

one 8-pin connector.

Attach the 6-pin end to the ICSP header

on the Leonardo as shown. Make sure to

align the edge with the red-stripe so that

it is closest to the "LEONARDO" logo on

the board.

Attach the 8-pin end to the back of the

Pixy. This connection is keyed, so there

is only one way you can plug it in.

©Adafruit Industries Page 23 of 38

Attach the Camera and

Processor to the Zumo

Align the Leonardo with the header pins

on the Zumo. The camera should be

facing the front.

Press firmly to seat the board on the

headers. And you are done!

©Adafruit Industries Page 24 of 38

Playing with your Pixy Pet!

Teach the Camera

The first thing you need to do is teach Pixy the objects you want it to track. The best

way to do this is using the PixyMon software. With PixyMon, you can see exactly what

Pixy sees and how well it has learned.

Find a toy!
Brightly colored balls are good. Place it

in view of the Pixy camera.

©Adafruit Industries Page 25 of 38

Connect the Camera
Connect the camera to your computer

using a mini-B USB cable.

Hint: If the software has already been

loaded, it helps to disconnect the servos

during the teaching process.

Download PixyMon

https://adafru.it/dSR

Run PixyMon
Download PixyMon from the link

above. (There are several versions,

be sure to pick the right one for

your operating system.)

Launch the PixyMon application.

Select the "Cooked" view (click on

the icon with the chef's hat!) This

view will show you exactly what the

Pixy camera sees in real-time.

Click "Action->Set Signature1..."

Select an area on the ball to teach a

color to the camera.

Once learned, the camera will indicate

recognized objects with a rectangle and

signature number.

Upload the Code

Open the Arduino IDE and load the Pixy Code from the following page. Connect a

USB cable to the Leonardo on the Pixy Pet and upload the code.

Note: If the upload fails, try pressing the reseet button on the left side of the Zumo

board, shortly before the compile completes.

•

•

•

•

•

©Adafruit Industries Page 26 of 38

Play Ball!

Disconnect all the USB cables and make sure that the Servo cables are plugged

into the camera.

Make sure that the batteries are installed in the Zumo robot base.

Turn on the Zumo using the on/off switch located at the rear of the Zumo.

Once the bootloader has finished (the yellow led will stop flashing), Pixy will start

looking for the ball. Once it sees the ball it will move toward it and start to follow it

around.

The Code

Copy the code below into the Arduino IDE and upload. Make sure that you have

selected "Arduino Leonardo" in Tools->Board:

//==
//
// Pixy Pet Robot
//
// Adafruit invests time and resources providing this open source code,
// please support Adafruit and open-source hardware by purchasing
// products from Adafruit!
//
// Written by: Bill Earl for Adafruit Industries
//
//==
// begin license header
//
// All Pixy Pet source code is provided under the terms of the
// GNU General Public License v2 (http://www.gnu.org/licenses/gpl-2.0.html).
//
// end license header
//
//==
//
// Portions of this code are derived from the Pixy CMUcam5 pantilt example code.
//
//==
#include <SPI.h>
#include <Pixy.h>

#include <ZumoMotors.h>

#define X_CENTER 160L
#define Y_CENTER 100L
#define RCS_MIN_POS 0L
#define RCS_MAX_POS 1000L
#define RCS_CENTER_POS ((RCS_MAX_POS-RCS_MIN_POS)/2)

//---------------------------------------
// Servo Loop Class
// A Proportional/Derivative feedback
// loop for pan/tilt servo tracking of
// blocks.

•

•

•

©Adafruit Industries Page 27 of 38

// (Based on Pixy CMUcam5 example code)
//---------------------------------------
class ServoLoop
{
public:

ServoLoop(int32_t proportionalGain, int32_t derivativeGain);

void update(int32_t error);

int32_t m_pos;
int32_t m_prevError;
int32_t m_proportionalGain;
int32_t m_derivativeGain;

};

// ServoLoop Constructor
ServoLoop::ServoLoop(int32_t proportionalGain, int32_t derivativeGain)
{

m_pos = RCS_CENTER_POS;
m_proportionalGain = proportionalGain;
m_derivativeGain = derivativeGain;
m_prevError = 0x80000000L;

}

// ServoLoop Update
// Calculates new output based on the measured
// error and the current state.
void ServoLoop::update(int32_t error)
{

long int velocity;
char buf[32];
if (m_prevError!=0x80000000)
{

velocity = (error*m_proportionalGain + (error -
m_prevError)*m_derivativeGain)>>10;

m_pos += velocity;
if (m_pos>RCS_MAX_POS)
{

m_pos = RCS_MAX_POS;
}
else if (m_pos<RCS_MIN_POS)
{

m_pos = RCS_MIN_POS;
}

}
m_prevError = error;

}
// End Servo Loop Class
//---------------------------------------

Pixy pixy; // Declare the camera object

ServoLoop panLoop(200, 200); // Servo loop for pan
ServoLoop tiltLoop(150, 200); // Servo loop for tilt

ZumoMotors motors; // declare the motors on the zumo

//---------------------------------------
// Setup - runs once at startup
//---------------------------------------
void setup()
{

Serial.begin(9600);
Serial.print("Starting...\n");

pixy.init();
}

©Adafruit Industries Page 28 of 38

uint32_t lastBlockTime = 0;

//---------------------------------------
// Main loop - runs continuously after setup
//---------------------------------------
void loop()
{

uint16_t blocks;
blocks = pixy.getBlocks();

// If we have blocks in sight, track and follow them
if (blocks)
{

int trackedBlock = TrackBlock(blocks);
FollowBlock(trackedBlock);
lastBlockTime = millis();

}
else if (millis() - lastBlockTime > 100)
{

motors.setLeftSpeed(0);
motors.setRightSpeed(0);
ScanForBlocks();

}
}

int oldX, oldY, oldSignature;

//---------------------------------------
// Track blocks via the Pixy pan/tilt mech
// (based in part on Pixy CMUcam5 pantilt example)
//---------------------------------------
int TrackBlock(int blockCount)
{

int trackedBlock = 0;
long maxSize = 0;

Serial.print("blocks =");
Serial.println(blockCount);

for (int i = 0; i < blockCount; i++)
{

if ((oldSignature == 0) || (pixy.blocks[i].signature == oldSignature))
{

long newSize = pixy.blocks[i].height * pixy.blocks[i].width;
if (newSize > maxSize)
{

trackedBlock = i;
maxSize = newSize;

}
}

}

int32_t panError = X_CENTER - pixy.blocks[trackedBlock].x;
int32_t tiltError = pixy.blocks[trackedBlock].y - Y_CENTER;

panLoop.update(panError);
tiltLoop.update(tiltError);

pixy.setServos(panLoop.m_pos, tiltLoop.m_pos);

oldX = pixy.blocks[trackedBlock].x;
oldY = pixy.blocks[trackedBlock].y;
oldSignature = pixy.blocks[trackedBlock].signature;
return trackedBlock;

}

//---------------------------------------
// Follow blocks via the Zumo robot drive
//

©Adafruit Industries Page 29 of 38

// This code makes the robot base turn
// and move to follow the pan/tilt tracking
// of the head.
//---------------------------------------
int32_t size = 400;
void FollowBlock(int trackedBlock)
{

int32_t followError = RCS_CENTER_POS - panLoop.m_pos; // How far off-center
are we looking now?

// Size is the area of the object.
// We keep a running average of the last 8.
size += pixy.blocks[trackedBlock].width * pixy.blocks[trackedBlock].height;
size -= size >> 3;

// Forward speed decreases as we approach the object (size is larger)
int forwardSpeed = constrain(400 - (size/256), -100, 400);

// Steering differential is proportional to the error times the forward speed
int32_t differential = (followError + (followError * forwardSpeed))>>8;

// Adjust the left and right speeds by the steering differential.
int leftSpeed = constrain(forwardSpeed + differential, -400, 400);
int rightSpeed = constrain(forwardSpeed - differential, -400, 400);

// And set the motor speeds
motors.setLeftSpeed(leftSpeed);
motors.setRightSpeed(rightSpeed);

}

//---------------------------------------
// Random search for blocks
//
// This code pans back and forth at random
// until a block is detected
//---------------------------------------
int scanIncrement = (RCS_MAX_POS - RCS_MIN_POS) / 150;
uint32_t lastMove = 0;

void ScanForBlocks()
{

if (millis() - lastMove > 20)
{

lastMove = millis();
panLoop.m_pos += scanIncrement;
if ((panLoop.m_pos >= RCS_MAX_POS)||(panLoop.m_pos <= RCS_MIN_POS))
{

tiltLoop.m_pos = random(RCS_MAX_POS * 0.6, RCS_MAX_POS);
scanIncrement = -scanIncrement;
if (scanIncrement < 0)
{

motors.setLeftSpeed(-250);
motors.setRightSpeed(250);

}
else
{

motors.setLeftSpeed(+180);
motors.setRightSpeed(-180);

}
delay(random(250, 500));

}

pixy.setServos(panLoop.m_pos, tiltLoop.m_pos);
}

}

©Adafruit Industries Page 30 of 38

Pixy Pet Code Design

OK. That was fun, but how does it work?

The Pixy Robot code consists of two main control systems: Object Tracking with the

Pixy Camera and the pan/tilt mechanism and Object Following with the Zumo robot

base.

Together these two systems produce a very natural looking response where the

'head' turns in response to motion and the 'body' follows.

Both control systems are based on Feedback Control Loops. For a detailed

explanation of how Feedback Control works, see the Feedback Control Basics page

in this guide.

Tracking Objects

Object tracking is implemented in the TrackBlock function. The hard work of object

detection and location is handled by the image processing system inside the Pixy

camera. It analyzes the image and identifies objects matching the color characteristics

of the object being tracked. It then reports the position size and colors of all the

detected objects back to the Arduino.

In the Arduino, we use this information to adjust the pan and tilt servos to try to keep

the tracked object in the center of the field of view.

//---------------------------------------
// Track blocks via the Pixy pan/tilt mech
// (based in part on Pixy CMUcam5 pantilt example)
//---------------------------------------
int TrackBlock(int blockCount)
{

int trackedBlock = 0;
long maxSize = 0;

Serial.print("blocks =");
Serial.println(blockCount);

for (int i = 0; i < blockCount; i++)
{

if ((oldSignature == 0) || (pixy.blocks[i].signature == oldSignature))
{

long newSize = pixy.blocks[i].height * pixy.blocks[i].width;
if (newSize > maxSize)
{

trackedBlock = i;
maxSize = newSize;

}
}

©Adafruit Industries Page 31 of 38

}

int32_t panError = X_CENTER - pixy.blocks[trackedBlock].x;
int32_t tiltError = pixy.blocks[trackedBlock].y - Y_CENTER;

panLoop.update(panError);
tiltLoop.update(tiltError);

pixy.setServos(panLoop.m_pos, tiltLoop.m_pos);

oldX = pixy.blocks[trackedBlock].x;
oldY = pixy.blocks[trackedBlock].y;
oldSignature = pixy.blocks[trackedBlock].signature;
return trackedBlock;

}

The Pan/Tilt control is implemented using 2 instances of the ServoLoop class - one for

the pan and one for the tilt. ServoLoop is a feedback control loop using both

Proportional + Derivative (PD) control. The measurements are the x (for pan) and y (for

tilt) positions of the blocks reported by the Pixy Camera. The setpoints are the x, y

position of the center of the camera's view. And the outputs are the servo positions.

On each pass through the main loop, we calculate the errors for the pan and tilt

controls as the difference between the measurements and the setpoints. Then we

invoke the ServoLoop control algorithms to calculate the outputs.

//---------------------------------------
// Servo Loop Class
// A Proportional/Derivative feedback
// loop for pan/tilt servo tracking of
// blocks.
// (Based on Pixy CMUcam5 example code)
//---------------------------------------
class ServoLoop
{
public:

©Adafruit Industries Page 32 of 38

ServoLoop(int32_t proportionalGain, int32_t derivativeGain);

void update(int32_t error);

int32_t m_pos;
int32_t m_prevError;
int32_t m_proportionalGain;
int32_t m_derivativeGain;

};

// ServoLoop Constructor
ServoLoop::ServoLoop(int32_t proportionalGain, int32_t derivativeGain)
{

m_pos = RCS_CENTER_POS;
m_proportionalGain = proportionalGain;
m_derivativeGain = derivativeGain;
m_prevError = 0x80000000L;

}

// ServoLoop Update
// Calculates new output based on the measured
// error and the current state.
void ServoLoop::update(int32_t error)
{

long int velocity;
char buf[32];
if (m_prevError!=0x80000000)
{

velocity = (error*m_proportionalGain + (error -
m_prevError)*m_derivativeGain)>>10;

m_pos += velocity;
if (m_pos>RCS_MAX_POS)
{

m_pos = RCS_MAX_POS;
}
else if (m_pos<RCS_MIN_POS)
{

m_pos = RCS_MIN_POS;
}

}
m_prevError = error;

}
// End Servo Loop Class
//---------------------------------------

Following Objects

The object following behavior is implemented in the FollowBlock function.

FollowBlock uses just proportional control. But we have two measurements (size and

pan position) and two outputs (left and right drive motors).

The size (block height times width) gives us a rough idea of how far away the object is

and we use that to calculate the 'forwardSpeed'. This makes the robot slow down as it

approaches the object. If the object appears larger than the setpoint value,

forwardSpeed will become negative and the robot will back up.

//---------------------------------------
// Follow blocks via the Zumo robot drive

©Adafruit Industries Page 33 of 38

//
// This code makes the robot base turn
// and move to follow the pan/tilt tracking
// of the head.
//---------------------------------------
int32_t size = 400;
void FollowBlock(int trackedBlock)
{

int32_t followError = RCS_CENTER_POS - panLoop.m_pos; // How far off-center
are we looking now?

// Size is the area of the object.
// We keep a running average of the last 8.
size += pixy.blocks[trackedBlock].width * pixy.blocks[trackedBlock].height;
size -= size >> 3;

// Forward speed decreases as we approach the object (size is larger)
int forwardSpeed = constrain(400 - (size/256), -100, 400);

// Steering differential is proportional to the error times the forward speed
int32_t differential = (followError + (followError * forwardSpeed))>>8;

// Adjust the left and right speeds by the steering differential.
int leftSpeed = constrain(forwardSpeed + differential, -400, 400);
int rightSpeed = constrain(forwardSpeed - differential, -400, 400);

// And set the motor speeds
motors.setLeftSpeed(leftSpeed);
motors.setRightSpeed(rightSpeed);

}

The pan position (one of the outputs of the tracking control) tells us how far the head

is turned away from the setpoint (straight-ahead). This value is used to control the

speed differential between the left and right motors - causing the robot to turn toward

the object it is following.

©Adafruit Industries Page 34 of 38

Feedback Control Basics

Measurements, Setpoints, Errors and

Ouputs

To start with, let's define some terms commonly used to describe control systems:

Measurement - This is typically the value of the parameter you are trying to

control. It could be temperature, pressure, speed, position or any other

parameter. Before you can control anything, you have to be able to measure it.

Setpoint - This is the desired value for the parameter you are trying to control.

Error - This is the difference between the desired value and the measured value.

Output - This is a value calculated based on the error. It is fed back into the

system to 'correct' the error and bring the measurement closer to the setpoint.

There are many ways in which the output value can be calculated. We'll discuss a few

of the more common ones.

Types of Control

There are many ways in which the output value can be calculated. We'll discuss a few

of the more common ones.

•

•

•

•

©Adafruit Industries Page 35 of 38

On/Off Control

In this type of control, the only values for the output are ON or OFF. This is how the

thermostat in your house works. If the measured temperature is below the setpoint

temperature, it turns on the heat. If the measured temperature is above the setpoint, it

turns it off. To prevent rapid cycling which could damage the system, there is typically

some gap between the 'on' threshold and the 'off' threshold. This is called 'hysteresis'.

An On/Off controller with hysteresis s sometimes called a "Differential Gap

Controller". That sounds pretty sophisticated, but it is still a very primitive type of

controller.

On/Off control works well for controlling the temperature of your house, but it is not

very good for applications like robot motion control.

PID Control

You have probably heard of PID controllers. PID stands for Proportional, Integral and

Derivative control. So a PID controller is actually 3 types of controller in one.

 Because of this, PID control is fairly versatile. But not all applications require all three

forms of control.

Many so-called PID controllers are actually just operated as PI, PD or even just P type

controllers. Motion Control applications like the Pixy Pet generally use mostly P or PD

control.

Proportional Control

Proportional control allows for a much smoother response than simple on/off control.

 Proportional control calculates an output value that is proportional to the magnitude

of the error. Small errors yeild a small response. Larger errors result in a more

aggressive response.

Proportional control can be used alone, or augmented with Integral or Derivative

control as needed. The Pixy object following code uses only proportional control.

The object tracking code uses both proportional and derivative control.

©Adafruit Industries Page 36 of 38

Integral Control

Integral control integrates the error over time. If the measurement is not converging

on the setpoint, the integral output keeps increasing to drive the system toward the

setpoint.

Integral control is good for nudging steady, predictable processes closer to

perfection. Since Pixy Pet needs to always respond quickly to random unpredictable

movements, integral control is not appropriate.

Derivative Control

Derivative control looks at the rate of change in the error. If the error is rapidly

approaching zero, the output of the derivative calculation attempts to slow things

down to avoid overshooting the setpoint.

The Pixy object tracking algorithm uses derivative control in conjunction with the

proportional control to help prevent over-correction when tracking objects.

Troubleshooting

Pixy Pet wont track an object

Pixy Pet tracks best if the object is a bright saturated color. It also helps if there are

not a lot of similarly colored things in the environment to distract your Pixy.

Pixy Pet loses the tracked object - even when it is right in

front of it.

Pixy Pet performs best in a brightly lit area. Check with PixyMon to make sure that

Pixy recognizes the object well and re-teach that color signature if necessary.

Sometimes, moving to an area with different lighting (e.g. daylight vs. flourescent)

can change the color appearance and confuse Pixy.

©Adafruit Industries Page 37 of 38

Pixy Pet is easily distracted by other objects

Other objects of the same color can distract Pixy Pet if they are in view. Pixy Pet

will tend to favor the largest recognized object. Teaching Pixy Pet too many

different color signatures increases the chances for confusion. It is better to stick

to one color at a time.

Pixy Pet moves erratically when the object is in view, but

doesn't track it

Make sure your batteries are fresh. Make sure you don't have the pan and tilt servo

plugs reversed.

Pixy Pet's pan/tilt head oscillates - even when the object

is still

Reduce the proportional gain in the ServoLoops.

Pixy Pet seems sluggish and the pan/tilt tracking keeps

glitching.

Your Pixy Pet is getting tired. Feed it some fresh batteries.

©Adafruit Industries Page 38 of 38

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Adafruit manufacturer:

Other Similar products are found below :

EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-

0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5-

EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3-

EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-

EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM

BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM

NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL-

1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/analog-digital-ic-development-tools/power-management-ic-development-tools
https://www.x-on.com.au/manufacturer/adafruit
https://www.x-on.com.au/mpn/analogdevices/evaladm1168lqebz
https://www.x-on.com.au/mpn/enpirion/evbep5348ui
https://www.x-on.com.au/mpn/micrel/mic23451aaayflev
https://www.x-on.com.au/mpn/micrel/mic5281ymmeev
https://www.x-on.com.au/mpn/dialogsemiconductor/da9063eval
https://www.x-on.com.au/mpn/analogdevices/adp12233evalz
https://www.x-on.com.au/mpn/analogdevices/adp13008evalz
https://www.x-on.com.au/mpn/analogdevices/adp13008evalz
https://www.x-on.com.au/mpn/analogdevices/adp13012evalz
https://www.x-on.com.au/mpn/analogdevices/adp13015evalz
https://www.x-on.com.au/mpn/analogdevices/adp13018evalz
https://www.x-on.com.au/mpn/analogdevices/adp171433evalz
https://www.x-on.com.au/mpn/analogdevices/adp171625evalz
https://www.x-on.com.au/mpn/analogdevices/adp174015evalz
https://www.x-on.com.au/mpn/analogdevices/adp174015evalz
https://www.x-on.com.au/mpn/analogdevices/adp175215evalz
https://www.x-on.com.au/mpn/analogdevices/adp1828lcevalz
https://www.x-on.com.au/mpn/analogdevices/adp187003evalz
https://www.x-on.com.au/mpn/analogdevices/adp187106evalz
https://www.x-on.com.au/mpn/analogdevices/adp187306evalz
https://www.x-on.com.au/mpn/analogdevices/adp187403evalz
https://www.x-on.com.au/mpn/analogdevices/adp187403evalz
https://www.x-on.com.au/mpn/analogdevices/adp188210evalz
https://www.x-on.com.au/mpn/analogdevices/adp199cbevalz
https://www.x-on.com.au/mpn/analogdevices/adp2102125evalz
https://www.x-on.com.au/mpn/analogdevices/adp21021875evalz
https://www.x-on.com.au/mpn/analogdevices/adp210218evalz
https://www.x-on.com.au/mpn/analogdevices/adp21022evalz
https://www.x-on.com.au/mpn/analogdevices/adp21022evalz
https://www.x-on.com.au/mpn/analogdevices/adp21023evalz
https://www.x-on.com.au/mpn/analogdevices/adp21024evalz
https://www.x-on.com.au/mpn/analogdevices/adp210618evalz
https://www.x-on.com.au/mpn/analogdevices/adp2147cb110evalz
https://www.x-on.com.au/mpn/ams/as3606db
https://www.x-on.com.au/mpn/texasinstruments/bq24010evm
https://www.x-on.com.au/mpn/texasinstruments/bq24075tevm
https://www.x-on.com.au/mpn/texasinstruments/bq24155evm
https://www.x-on.com.au/mpn/texasinstruments/bq24157evm697
https://www.x-on.com.au/mpn/texasinstruments/bq24160evm742
https://www.x-on.com.au/mpn/texasinstruments/bq24296mevm655
https://www.x-on.com.au/mpn/texasinstruments/bq25010evm
https://www.x-on.com.au/mpn/texasinstruments/bq3055evm
https://www.x-on.com.au/mpn/onsemiconductor/ncv891330pd50gevb
https://www.x-on.com.au/mpn/renesas/islusbi2ckit1z
https://www.x-on.com.au/mpn/texasinstruments/lm2744eval
https://www.x-on.com.au/mpn/texasinstruments/lm2854eval
https://www.x-on.com.au/mpn/texasinstruments/lm3658sdaevnopb
https://www.x-on.com.au/mpn/texasinstruments/lm3658sdevnopb
https://www.x-on.com.au/mpn/texasinstruments/lm3691tl18evnopb
https://www.x-on.com.au/mpn/texasinstruments/lm3691tl18evnopb
https://www.x-on.com.au/mpn/texasinstruments/lm4510sdevnopb
https://www.x-on.com.au/mpn/texasinstruments/lm5033sdeval
https://www.x-on.com.au/mpn/texasinstruments/lp38512ts18ev
https://www.x-on.com.au/mpn/analogdevices/evaladm11861mbz
https://www.x-on.com.au/mpn/analogdevices/evaladm11862mbz

