

Adafruit 16-Channel PWM/Servo HAT &

Bonnet for Raspberry Pi

Created by lady ada

https://learn.adafruit.com/adafruit-16-channel-pwm-servo-hat-for-raspberry-pi

Last updated on 2021-11-15 06:23:03 PM EST

©Adafruit Industries Page 1 of 26

3

5

5

6

6

7

8

8

9

10

10

10

11

12

12

13

13

15

15

16

17

17

17

17

17

18

18

18

18

18

19

19

20

21

22

23

23

23

24

25

Table of Contents

Overview

Powering Servos

• Powering Servos / PWM

• OR

• Current Draw Requirements

• Adding a Capacitor to the thru-hole capacitor slot

Connecting Servos

• Connecting a Servo

• Adding More Servos

Attach & Test HAT/Bonnet

• Step 1 - Plug in HAT

• Step 2. Configure your Pi to use I2C devices

Python Usage

• Python Wiring

• Python Installation of ServoKit Library

• Python Usage

• Dimming LEDs

• Controlling Servos

• Standard Servos

• Continuous Rotation Servos

• Full Example Code

Library Reference

• Initialize Object

• setPWMFreq(self, freq)

• Description

• Arguments

• Example

• setPWM(self, channel, on, off)

• Description

• Arguments

• Example

Stacking HATs

• Extra Parts

• Addressing the HATs

FAQ

Downloads

• Files & Downloads

• Schematics

• Fabrication Print

• Schematics and Fab Print for Pi Servo Bonnet

©Adafruit Industries Page 2 of 26

Overview

The Raspberry Pi is a wonderful little computer, but one thing it isn't very good at is

controlling DC Servo Motors - these motors need very specific and repetitive timing

pulses to set the position. Instead of asking the Pi Linux kernel to send these signals,

pop on our handy HAT or Bonnet.

These boards add the capability to control 16 Servos with perfect timing. They can

also do PWM up to 1.6 KHz with 12 bit precision, all completely free-running.

Works with any servo that can be powered by 5V and take 3.3V logic level signals.

©Adafruit Industries Page 3 of 26

The Adafruit 16-Channel 12-bit PWM/Servo HAT or Bonnet will drive up to 16 servos or

PWM outputs over I2C with only 2 pins. The on-board PWM controller will drive all 16

channels simultaneously with no additional Raspberry Pi processing overhead. What's

more, you can stack up to 62 of them to control up to 992 servos - all with the same 2

pins!

Best of all, we even have a Python library you can use, so you'll be up and running

instantly, to make your robotic creation com to life. The Adafruit PWM/Servo Driver is

the perfect solution for any project that requires a lot of servos!

©Adafruit Industries Page 4 of 26

Powering Servos

The power input section of the HAT and

Bonnet are both on the left hand side.

The HAT has both 2.1mm DC jack and a

terminal block

The Bonnet has a spot for either DC jack

or terminal block

Powering Servos / PWM

The drivers have two power supplies. One is VCC - that is the 3.3V power from the

Raspberry Pi, it is used to power the PWM chip and determines the I2C logic level and

the PWM signal logic level. This supply will always be on if the Pi is plugged in and

working, check the PWR LED on the Pi (it's the red LED on the Pi 2, 3. Pi Zero does

not have a PWR LED, look for a blinking activity LED)

To power servos you will need to also connect the 5-6V V+ power supply - this is the

power supply for the servos. (If you are lighting up single 20mA standard draw LEDs

you may not need this power supply, but I'm assuming you want to use servos here.)

This power supply should be 5 or 6VDC, most servos work well at 5V and if you give

them 6V will be a little stronger.

You can connect this power through the terminal block or the 2.1mm DC jack. There is

reverse-polarity protection in case you hook up power backwards, however you

should use either the DC jack or the terminal block, not BOTH!

©Adafruit Industries Page 5 of 26

Use either a 5V wall adapter, 2 Amp+ is

recommended

OR

Or, for portable use, a 4 or 5 x AA battery

pack can be connected to the terminal

block.

Current Draw Requirements

Nearly all servos are designed to run on about 5 or 6v. Keep in mind that a lot of

servos moving at the same time (particularly large powerful ones) will need a lot of

current. Even micro servos will draw several hundred mA when moving. Some High-

torque servos will draw more than 1A each under load.

Good power choices are:

5v 2A switching power supply (http://adafru.it/276) (up to perhaps 4 servos)

5v 4A switching power supplies (https://adafru.it/e50) (up to perhaps 8 servos)

5v 10A switching power supply (http://adafru.it/658) (up to perhaps 16 servos)

4xAA Battery Holder (http://adafru.it/830) - 6v with Alkaline cells. 4.8v with NiMH

rechargeable cells, portable!

4.8 or 6v Rechargeable RC battery packs from a hobby store.

•

•

•

•

•

©Adafruit Industries Page 6 of 26

Adding a Capacitor to the thru-hole capacitor slot

We have a spot on the PCB for soldering in an electrolytic capacitor. Based on your

usage, you may or may not need a capacitor. If you are driving a lot of servos from a

power supply that dips a lot when the servos move, n * 100uF where n is the number

of servos is a good place to start - eg 470uF or more for 5 servos. Since its so

dependent on servo current draw, the torque on each motor, and what power supply,

there is no "one magic capacitor value" we can suggest which is why we don't include

a capacitor in the kit.

There are slots on both the bonnet and

HAT for an optional capacitor. You may

not need the capacitor, it's only if you find

that you servo power supply is drooping

enough to affect functionality

SERVOS CAN USE A LOT OF POWER! It is not a good idea to use the Raspberry

Pi's 5v pin to power your servos! Electrical noise and 'brownouts' from excess

current draw could cause your Pi to act erratically, reset and/or overheat.

Seriously, keep the Pi power supply and the Servo power supply completely

seperate!

©Adafruit Industries Page 7 of 26

Connecting Servos

Connecting a Servo

Most servos come with a standard 3-pin female connector that will plug directly into

the headers on the Servo HAT headers. Be sure to align the plug with the ground wire

(usually black or brown) with the bottom row and the signal wire (usually yellow or

white) on the top.

Works with any servo that can be powered by 5V and take 3.3V logic level signals.

©Adafruit Industries Page 8 of 26

Adding More Servos

Up to 16 servos can be attached to one board. If you need to control more than 16

servos, additional boards can be stacked as described on the next page.

©Adafruit Industries Page 9 of 26

Attach & Test HAT/Bonnet

Step 1 - Plug in HAT

Now you have soldered the HAT up and you know how to power the servos, we can

install the HAT

Begin by having the Pi shutdown and not powered, plug the HAT on top to match the

2x20 headers, and power up the Pi

Step 2. Configure your Pi to use I2C

devices

To learn more about how to setup I2C with either Raspbian or Occidentalis, please

take a minor diversion to this Adafruit Tutorial: http://learn.adafruit.com/adafruits-

raspberry-pi-lesson-4-gpio-setup/configuring-i2c (https://adafru.it/aTI)

When you are ready to continue, enter the following commands to add SMBus

support (which includes I2C) to Python:

sudo apt-get install python-smbus

sudo apt-get install i2c-tools

©Adafruit Industries Page 10 of 26

i2c-tools isn't strictly required, but it's a useful package since you can use it to scan

for any I2C or SMBus devices connected to your board. If you know something is

connected, but you don't know it's 7-bit I2C address, this library has a great little tool

to help you find it. python-smbus is required, it adds the I2C support for python!

Don't forget you must add kernel support for I2C by following this tutorial! (https://

adafru.it/dEO)

You can then detect if the HAT is found on the #1 I2C port with:

sudo i2cdetect -y 1

This will search /dev/i2c-1 for all address, and if an Adafruit PWM/Servo HAT is

properly connected and it's set to its default address -- meaning none of the 6

address solder jumpers at the top of the board have been soldered shut -- it should

show up at 0x40 (binary 1000000) as follows:

Once both of these packages have been installed, and i2cdetect finds the 0x40 I2C

address, you have everything you need to get started accessing I2C and SMBus

devices in Python.

Python Usage

It's easy to control PWM or servos with the Adafruit 16-channel PWM/Servo HAT and

Bonnet. There are multiple CircuitPython libraries available to work with the different

features of these boards including Adafruit CircuitPython PCA9685 (https://adafru.it/

tZF), and Adafruit CircuitPython ServoKit (https://adafru.it/Dpu). These libraries make it

easy to write Python code to control PWM and servo motors.

©Adafruit Industries Page 11 of 26

Python Wiring

First assemble the HAT or Bonnet exactly as shown in the previous pages. There's no

wiring needed to connect the HAT or Bonnet to the Pi. The example below shows the

HAT attached to a Pi.

To dim an LED, wire it to the board as follows. Note: you don't need to use a resistor

to limit current through the LED as the HAT and Bonnet will limit the current to around

10mA.

Connect LED cathode / shorter

leg to HAT or Bonnet channel GND

/ ground.

Connect LED anode / longer leg to

HAT or Bonnet channel PWM.

External power is not necessary to PWM

an LED.

To control a servo, wire it to the board as shown in the previous pages, including a

barrel jack to the power terminal to attach an appropriate external power source to

the HAT or Bonnet. The HAT and Bonnet will not power servos without an external

power source!

Python Installation of ServoKit Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready (https

://adafru.it/BSN)!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-servokit

•

•

•

©Adafruit Industries Page 12 of 26

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

Python Usage

To demonstrate the usage, we'll use Python code to control PWM to dim an LED and

to control servo motors from the Python REPL.

Dimming LEDs

This HAT and Bonnet use the PCA9685. Each channel of the HAT and Bonnet can be

used to control the brightness of an LED. The PCA9685 generates a high-speed

PWM signal which turns the LED on and off very quickly. If the LED is turned on

longer than turned off it will appear brighter to your eyes.

First you'll need to import the necessary modules, initialize the I2C bus for your

board, and create an instance of the class.

import board

import busio

import adafruit_pca9685

i2c = busio.I2C(board.SCL, board.SDA)

hat = adafruit_pca9685.PCA9685(i2c)

The PCA9685 class provides control of the PWM frequency and each channel's duty

cycle. Check out the PCA9685 class documentation (https://adafru.it/C5n) for more

details.

For dimming LEDs you typically don't need to use a fast PWM signal frequency and

can set the board's PWM frequency to 60hz by setting the frequency attribute:

hat.frequency = 60

The HAT and Bonnet support 16 separate channels that share a frequency but can

have independent duty cycles. That way you could dim 16 LEDs separately!

The PCA9685 object has a channels attribute which has an object for each channel

that can control the duty cycle. To get the individual channel use the [] to index into

channels .

©Adafruit Industries Page 13 of 26

led_channel = hat.channels[0]

Now control the LED brightness by controlling the duty cycle of the channel

connected to the LED. The duty cycle value should be a 16-bit value, i.e. 0 to

0xffff (65535), which represents what percent of the time the signal is on vs. off. A

value of 0xffff is 100% brightness, 0 is 0% brightness, and in-between values go

from 0% to 100% brightness.

For example set the LED completely on with a duty_cycle of 0xffff :

led_channel.duty_cycle = 0xffff

After running the command above you should see the LED light up at full brightness!

Now turn the LED off with a duty_cycle of 0 :

led_channel.duty_cycle = 0

Try an in-between value like 1000 :

led_channel.duty_cycle = 1000

You should see the LED dimly lit. Try experimenting with other duty cycle values to

see how the LED changes brightness!

For example make the LED glow on and off by setting duty_cycle in a loop:

Increase brightness:

for i in range(0xffff):

 led_channel.duty_cycle = i

Decrease brightness:

for i in range(0xffff, 0, -1):

 led_channel.duty_cycle = i

These for loops take a while because 16-bits is a lot of numbers. CTRL-C to stop the

loop from running and return to the REPL.

That's all there is to dimming LEDs using CircuitPython and the PWM/Servo HAT and

Bonnet!

©Adafruit Industries Page 14 of 26

Controlling Servos

We've written a handy CircuitPython library for the various PWM/Servo kits called Ada

fruit CircuitPython ServoKit (https://adafru.it/Dpu) that handles all the complicated

setup for you. All you need to do is import the appropriate class from the library, and

then all the features of that class are available for use. We're going to show you how

to import the ServoKit class and use it to control servo motors with the Adafruit

PWM/Servo HAT or Bonnet.

First you'll need to import and initialize the ServoKit class. You must specify the

number of channels available on your board. The HAT and Bonnet have 16 channels,

so when you create the class object, you will specify 16 .

from adafruit_servokit import ServoKit

kit = ServoKit(channels=16)

Now you're ready to control both standard and continuous rotation servos.

Standard Servos

To control a standard servo, you need to specify the channel the servo is connected

to. You can then control movement by setting angle to the number of degrees.

For example to move the servo connected to channel 0 to 180 degrees:

kit.servo[0].angle = 180

To return the servo to 0 degrees:

kit.servo[0].angle = 0

With a standard servo, you specify the position as an angle. The angle will always be

between 0 and the actuation range. The default is 180 degrees but your servo may

have a smaller sweep. You can change the total angle by setting actuation_range .

For example, to set the actuation range to 160 degrees:

kit.servo[0].actuation_range = 160

©Adafruit Industries Page 15 of 26

Often the range an individual servo recognises varies a bit from other servos. If the

servo didn't sweep the full expected range, then try adjusting the minimum and

maximum pulse widths using set_pulse_width_range(min_pulse, max_pulse) .

To set the pulse width range to a minimum of 1000 and a maximum of 2000:

kit.servo[0].set_pulse_width_range(1000, 2000)

That's all there is to controlling standard servos with the PWM/Servo HAT or Bonnet,

Python and ServoKit !

Continuous Rotation Servos

To control a continuous rotation servo, you must specify the channel the servo is on.

Then you can control movement using throttle .

For example, to start the continuous rotation servo connected to channel 1 to full

throttle forwards:

kit.continuous_servo[1].throttle = 1

To start the continuous rotation servo connected to channel 1 to full reverse throttle:

kit.continuous_servo[1].throttle = -1

To set half throttle, use a decimal:

kit.continuous_servo[1].throttle = 0.5

And, to stop continuous rotation servo movement set throttle to 0 :

kit.continuous_servo[1].throttle = 0

That's all there is to controlling continuous rotation servos with the PWM/Servo HAT

or Bonnet, Python and ServoKit !

©Adafruit Industries Page 16 of 26

Full Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""Simple test for a standard servo on channel 0 and a continuous rotation servo on

channel 1."""

import time

from adafruit_servokit import ServoKit

Set channels to the number of servo channels on your kit.

8 for FeatherWing, 16 for Shield/HAT/Bonnet.

kit = ServoKit(channels=8)

kit.servo[0].angle = 180

kit.continuous_servo[1].throttle = 1

time.sleep(1)

kit.continuous_servo[1].throttle = -1

time.sleep(1)

kit.servo[0].angle = 0

kit.continuous_servo[1].throttle = 0

Library Reference

The driver consists of the following functions, which you can use to drive the

underlying hardware when writing your own application in Python:

Initialize Object

 You can create a new object for each HAT with

pwm = PWM(0x40)

 In this case, pwm (lowercase) is the object created, and PWM(0x40) is the creation

call. By default, all HATs are address 0x40, but by changing the address jumpers, you

can create objects that use other addresses such as 0x60, 0x42, etc.

setPWMFreq(self, freq)

Description

This function can be used to adjust the PWM frequency, which determines how many

full 'pulses' per second are generated by the IC. Stated differently, the frequency

©Adafruit Industries Page 17 of 26

determines how 'long' each pulse is in duration from start to finish, taking into account

both the high and low segments of the pulse.

Frequency is important in PWM, since setting the frequency too high with a very small

duty cycle can cause problems, since the 'rise time' of the signal (the time it takes to

go from 0V to VCC) may be longer than the time the signal is active, and the PWM

output will appear smoothed out and may not even reach VCC, potentially causing a

number of problems.

Arguments

freq: A number representing the frequency in Hz, between 40 and 1000

Example

The following code will set the PWM frequency to the maximum value of 1000Hz:

pwm.setPWMFreq(1000)

setPWM(self, channel, on, off)

Description

This function sets the start (on) and end (off) of the high segment of the PWM pulse on

a specific channel. You specify the 'tick' value between 0..4095 when the signal will

turn on, and when it will turn of. Channel indicates which of the 16 PWM outputs

should be updated with the new values.

Arguments

channel: The channel that should be updated with the new values (0..15)

on: The tick (between 0..4095) when the signal should transition from low to

high

off:the tick (between 0..4095) when the signal should transition from high to low

•

•

•

•

©Adafruit Industries Page 18 of 26

Example

The following example will cause channel 15 to start low, go high around 25% into the

pulse (tick 1024 out of 4096), transition back to low 75% into the pulse (tick 3072), and

remain low for the last 25% of the pulse:

pwm.setPWM(15, 1024, 3072)

If you need to calculate pulse-width in microseconds, you can do that by first figuring

out how long each cycle is. That would be 1/freq where freq is the PWM frequency

you set above. For 1000 Hz, that would be 1 millisecond. Then divide by 4096 to get

the time per tick, eg 1 millisecond / 4096 = ~0.25 microseconds. If you want a pulse

that is 10 microseconds long, divide the time by time-per-tick (10us / 0.25 us = 40)

then turn on at tick 0 and turn off at tick 40.

Stacking HATs

Even though HATs are not intended to be stacked, you can stack up to 62 HATs and

not have an address collision, for up to 992 PWM outputs! You'll still need to provide

power and write code for all those outputs but they can all share the same SDA/SCL

pins no problem.

You will need to have installed stacking headers & right angle 3x4 connections for it

to physically connect.

©Adafruit Industries Page 19 of 26

Extra Parts

If you want to stack HATs on top of this one, make sure you pick up a HAT-stacking

header (https://adafru.it/ejT) and solder them instead of the plain 2x20 header that

comes in the kit

You'll also need a set of right-angle 3x4 headers, since you will have to have the

servo connections stick out instead of up

©Adafruit Industries Page 20 of 26

Addressing the HATs

Each HAT in the stack must be assigned a unique address. This is done with the

address jumpers on the middle right of the board. The I2C base address for each

board is 0x40. The binary address that you program with the address jumpers is

added to the base I2C address.

To program the address offset, use a drop of solder to bridge the corresponding

address jumper for each binary '1' in the address.

©Adafruit Industries Page 21 of 26

This photo is from the Arduino Shield version of this driver but its the same setup

Board 0: Address = 0x40 Offset = binary 00000 (no jumpers required)

Board 1: Address = 0x41 Offset = binary 00001 (bridge A0 as in the photo above)

Board 2: Address = 0x42 Offset = binary 00010 (bridge A1)

Board 3: Address = 0x43 Offset = binary 00011 (bridge A0 & A1)

Board 4: Address = 0x44 Offset = binary 00100 (bridge A2)

etc.

FAQ

Can this HAT be used for LEDs or just servos?

It can be used for LEDs as well as any other PWM-able device! Use the Signal and

Ground pins if you dont mind the LEDs powered by 3.3V and 220ohm series

resistor. Or V+ and your own resistor & LED, if you want up to 5V power for the

LEDs

I am having strange problems when combining this shield

with the Adafruit LED Matrix/7Seg Backpacks

We are not sure why this occurs but there is an address collision even though the

address are different! Set the backpacks to address 0x71 or anything other than the

default 0x70 to make the issue go away.

©Adafruit Industries Page 22 of 26

If I'm using it with LEDs I cant quite get the PWM to be

totally off?

If you want to turn the LEDs totally off use setPWM(pin, 4096, 0); not setPWM(pin,

4095, 0);

Downloads

Files & Downloads

Datasheet for servo/PWM control chip PCA9685 (https://adafru.it/emJ)

Full Official Specifications for Pi HAT dimensions (https://adafru.it/oNf)

EagleCAD PCB files on GitHub (https://adafru.it/oNA)

Fritzing object in Adafruit Frizting Library (https://adafru.it/aP3)

Schematics

Pi HAT and GPIO Breakout:

Motor Control Section:

•

•

•

•

©Adafruit Industries Page 23 of 26

Fabrication Print

Dimensions in Inches. For more dimensional details, see the official Pi HAT

mechanical specification (https://adafru.it/oNf).

©Adafruit Industries Page 24 of 26

Schematics and Fab Print for Pi Servo

Bonnet

©Adafruit Industries Page 25 of 26

©Adafruit Industries Page 26 of 26

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Adafruit Accessories category:

Click to view products by Adafruit manufacturer:

Other Similar products are found below :

3209 3561 3560 3562 2503 3011 3048 2973 2868 2958 2836 2968 3610 3568 3551 2858 3353 3584 3484 2865 3556 3559 3262

3348 2499 2878 2963 3219 3005 2882 PGM1202 02-LDR1 02-LDR12 02-LDR13 02-LDR14 02-LDR15 02-LDR2 02-LDR3 02-LDR4

2194 862 460 905 02-LDR20 02-LDR21 02-LDR22 02-LDR23 1008 1020 1031

https://www.x-on.com.au/category/tools-supplies/accessories/adafruit-accessories
https://www.x-on.com.au/manufacturer/adafruit
https://www.x-on.com.au/mpn/adafruit/3209
https://www.x-on.com.au/mpn/adafruit/3561
https://www.x-on.com.au/mpn/adafruit/3560
https://www.x-on.com.au/mpn/adafruit/3562
https://www.x-on.com.au/mpn/adafruit/2503
https://www.x-on.com.au/mpn/adafruit/3011
https://www.x-on.com.au/mpn/adafruit/3048
https://www.x-on.com.au/mpn/adafruit/2973
https://www.x-on.com.au/mpn/adafruit/2868
https://www.x-on.com.au/mpn/adafruit/2958
https://www.x-on.com.au/mpn/adafruit/2836
https://www.x-on.com.au/mpn/adafruit/2968
https://www.x-on.com.au/mpn/adafruit/3610
https://www.x-on.com.au/mpn/adafruit/3568
https://www.x-on.com.au/mpn/adafruit/3551
https://www.x-on.com.au/mpn/adafruit/2858
https://www.x-on.com.au/mpn/adafruit/3353
https://www.x-on.com.au/mpn/adafruit/3584
https://www.x-on.com.au/mpn/adafruit/3484
https://www.x-on.com.au/mpn/adafruit/2865
https://www.x-on.com.au/mpn/adafruit/3556
https://www.x-on.com.au/mpn/adafruit/3559
https://www.x-on.com.au/mpn/adafruit/3262
https://www.x-on.com.au/mpn/adafruit/3348
https://www.x-on.com.au/mpn/adafruit/2499
https://www.x-on.com.au/mpn/adafruit/2878
https://www.x-on.com.au/mpn/adafruit/2963
https://www.x-on.com.au/mpn/adafruit/3219
https://www.x-on.com.au/mpn/adafruit/3005
https://www.x-on.com.au/mpn/adafruit/2882
https://www.x-on.com.au/mpn/token/pgm1202
https://www.x-on.com.au/mpn/nte/02ldr1
https://www.x-on.com.au/mpn/nte/02ldr12
https://www.x-on.com.au/mpn/nte/02ldr13
https://www.x-on.com.au/mpn/nte/02ldr14
https://www.x-on.com.au/mpn/nte/02ldr15
https://www.x-on.com.au/mpn/nte/02ldr2
https://www.x-on.com.au/mpn/nte/02ldr3
https://www.x-on.com.au/mpn/nte/02ldr4
https://www.x-on.com.au/mpn/adafruit/2194
https://www.x-on.com.au/mpn/adafruit/862
https://www.x-on.com.au/mpn/adafruit/460
https://www.x-on.com.au/mpn/adafruit/905
https://www.x-on.com.au/mpn/nte/02ldr20
https://www.x-on.com.au/mpn/nte/02ldr21
https://www.x-on.com.au/mpn/nte/02ldr22
https://www.x-on.com.au/mpn/nte/02ldr23
https://www.x-on.com.au/mpn/adafruit/1008
https://www.x-on.com.au/mpn/adafruit/1020
https://www.x-on.com.au/mpn/adafruit/1031

