

Customer

LCD Module User Manual

MASS PRODUCTION CODE DRAWING NO.	-	TG12864H3-04MA0_A00 M-TG12864H3-04MA0_A00
Approved By Customer:		
		Date:

Approved By	Checked By	Prepared By

Vatronix Holdings Limited

ADD: 4/F,No.404 Blg,Shangbu Industrial Zone,Futian District,Shenzhen,China

TEL:+86-755-83234801 83233058 FAX:83225058

E-mail:sales@Vatronix.com <u>Http://www.vatronix.com</u>

Contents

1. Precautions in Use of LCM	P3
2. General Specification	P3
3. Absolute Maximum Ratings	P3
4. Electrical Characteristics	P4
5. Backlight Information	P4
6. Optical Characteristics	P5
7. Interface Description	P6
8. Contour Drawing & Block Diagram	P7
9. Application circuit	P8
10. LCM Function Description	P8
11. User instruction Definitions	P15
11.1 Instruction table	P15
11.2 Instruction description	P16
12. Timing Characteristics	P23
13. Initializing flow chart	P26
14. Display Data RAM Map	P30
15. Revision records	P31

1. Precautions in Use of LCD Module

- (1) Avoid applying excessive shocks to the module or making any alterations or modifications to it.
- (2) Don't make extra holes on the printed circuit board, modify its shape or change the components of LCD Module.
- (3) Don't disassemble the LCM.
- (4) Don't operate it above the absolute maximum rating.
- (5) Don't drop, bend or twist LCM.
- (6) Soldering: only to the I/O terminals.

Storage: please storage in anti-static electricity container and clean environment.

2. General Specification

ITEM	STANDARD VALUE	UNIT			
Number of dots	128X64 Dots	Dots			
Outline dimension	95.0(W)X55.0(H)X10.3MAX.(T)	mm			
View area	65.5(W)X38.0(H)	mm			
Active area	e area 60.775(W)X32.935(H)				
Dot size	0.45(W)X0.49(H)	mm			
Dot pitch	0.475(W)X0.515(H)	mm			
LCD type	FSTN,Positive,Transflec	tive			
View direction	6 o'clock				
Backlight	RGB LED				
Controller	Sitronix ST7565P				
Interface	Serial				

3. Absolute Maximum Ratings

ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT
Operating Temperature	T _{OP}	-20	-	+70	
Storage Temperature	T _{ST}	-30	-	+80	
Input Voltage	Vı	0	-	V_{DD}	V
Supply Voltage For Logic	V_{DD}	0	-	5.0	V
Supply Voltage For LCD	V _{DD} -V _{EE}	0	-	13.0	V

4. Electrical Characteristics

ITEM	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Logic Voltage	V_{DD} - V_{SS}	-	2.4	3.0	3.3	V
Supply Volt.For LCD	V_{DD} - V_{O}	Ta=25		10.0		V
Input High Volt.	V _{IH}	-	2.0	-	V_{DD}	V
Input Low Volt.	V_{IL}	-	-0.3	-	0.8	V
Output High Volt.	V_{OH}	I _{oH} =-0.2mA	2.4	-	V_{DD}	V
Output Low Volt.	V _{OL}	I _{oL} =1.6mA	0	-	0.4	V
Supply Current	I _{DD}	-			1.0	mA

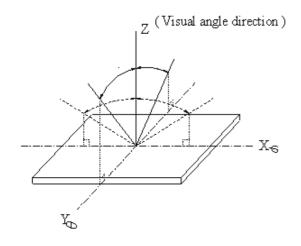
5. Backlight Information

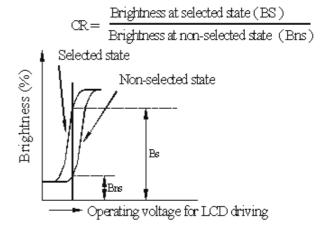
Absolute Maximum ratings (Ta=25)

Item	Symbol	Conditions	Rating	Unit
Reverse voltage	Vr	-	5.0	V
Reverse Current	l _r	-	20	uA
Absolute maximum forward Current	Ifm		500	mA
Peak forward current	Ifp	I msec plus 10% Duty Cycle	120	mA
Power dissipation	Pd		165	mW
Operating Temperature Range	Toper		-30~+70	
Storage Temperature Range	Tst		-40~+80	

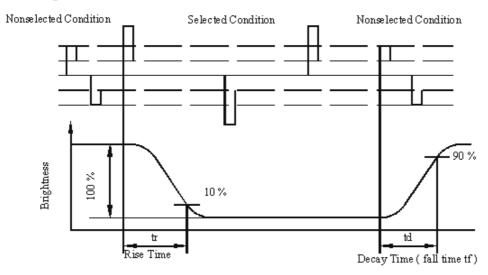
Electrical/Optical Characteristics (Ta=25°C,If=20*3mA)

Color	Wavelength p(nm)	Spectral line half width (nm)	Operating voltage(v) (± 0.15V)	Forward Current (mA)
R			2.0	18
G			3.1	18
В			3.1	18



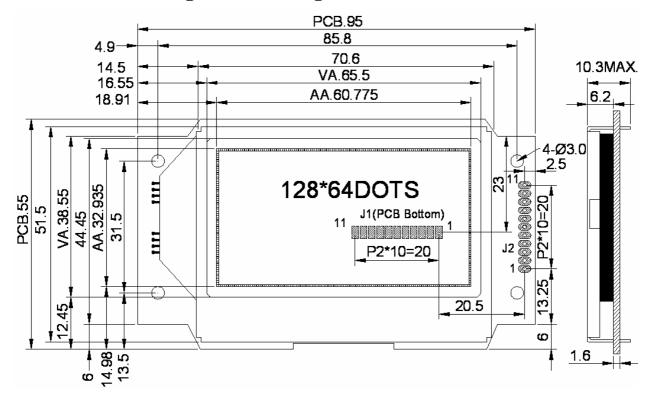

6. Optical Characteristics

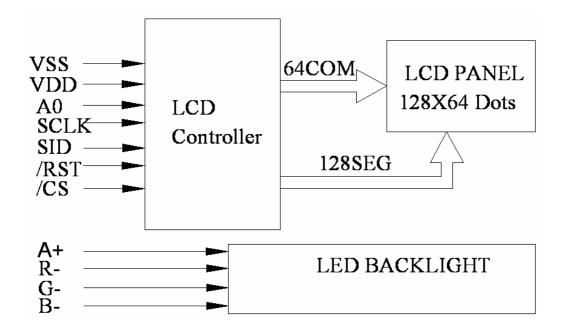
ITEM	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
View Angle	(V)	CR 2	10	-	120	deg.
	(H)	CR 2	-45	-	45	deg.
Contrast Ratio	CR	-	-	5	-	-
Response	T rise	-	-	200	300	ms
Time	T fall	-	-	150	200	ms


■ View Angles

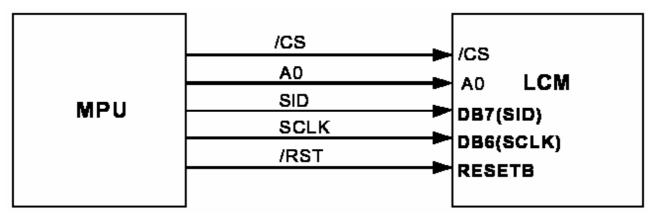
Contrast Ratio

■Response time




7.Interface Description

	Description	-			
Pin No.	Symbol	Level	Description		
1	/CS	L	Chip select input pins.Low active		
2	/RST	L	When /RST is "L", initialization is executed.		
			Register select input pin		
3	A0	H/L	A0 = "H": "A0" are display data		
			A0 = "L": "A0" are control data		
4	SCLK	H/L	Serial input clock(SCLK)		
5	SID	H/L	Serial input data (SID)		
6	V_{DD}	3.0V	Power supply for Logic		
7	V_{SS}	0V	Ground		
8	R(LED-)	0V	Cathode of Red LED Backlight		
9	A(LED+)	3.0V	Anode of LED Backlight		
10	G(LED-)	0V	Cathode of Green LED Backlight		
11	B(LED-)	0V	Cathode of Blue LED Backlight		


8. Contour Drawing & Block Diagram

9. Application circuit

10. LCM Function Description

The LCM built-in Sitronix ST7565P. ST7565P is a single chip driver & controller LSI for graphic dot-matrix liquid crystal display systems. This chip can be connected directly to a microprocessor, accepts serial or 8-bit parallel display data from the microprocessor, stores the display data in an on-chip display data RAM of 65 x 132 bits and generates a liquid crystal display drive signal independent of the microprocessor. It provides a high-flexible display section due to 1-to-1 correspondence between on-chip display data RAM bits and LCD panel pixels. It contains 65 common driver circuits and 132 segment driver circuits, so that a single chip can drive a 65 x 132 dot display. And the capacity of the display can be increased through the use of master/slave multi-chip structures.

These chip are able to minimize power consumption because it performs display data RAM read/write operation with no external operation clock. In addition, because it contains power supply circuits necessary to drive liquid crystal, which is a display clock oscillator circuit, high performance voltage converter circuit, high-accuracy voltage regulator circuit, low power consumption voltage divider resistors and OP-Amp for liquid crystal driver power voltage, it is possible to make the lowest power consumption display system with the fewest components for high performance portable systems.

On-chip Display Data RAM

- -Capacity: $65 \times 132 = 8,580$ bits
- -RAM bit data "1": a dot of display is illuminated.
- -RAM bit data "0": a dot of display is not illuminated.

Various Function Set

- -Display ON/OFF, set initial display line, set page address, set column address, read status, write/ read display data, select segment driver output, reverse display ON/OFF, entire display ON/OFF, select LCD bias, set/reset modify-read, select common driver output, control display power circuit, select internal regulator resistor ratio for V0 voltage regulation, electronic volume, set static indicator state.
- -H/W and S/W reset available
- -Static drive circuit equipped internally for indicators with 4 flashing modes

Built-in Analog Circuit

- -On-chip oscillator circuit for display clock (external clock can also be used)
- -High performance voltage converter (with booster ratios of x2, x3, x4 and x5, where the step-up reference voltage can be used externally)

- -High accuracy voltage regulator (temperature coefficient: -0.05%/°C or external input)
- -Electronic contrast control function (64 steps)
- -Vref = $2.1V \pm 3\%$ (V0 voltage adjustment voltage)
- -High performance voltage follower (V1 to V4 voltage divider resistors and OP-Amp for increasing drive capacity)

Operating Voltage Range

- Supply voltage (VDD): 2.4 to 3.6 V
- LCD driving voltage (VLCD = V0 VSS): 4.5 to 13.0 V

Low Power Consumption

- -Operating power: 400uA typical. (Condition: VDD = 3V, x 4 boosting(VCI is VDD),V0 = 11V, internal power supply ON, display OFF and normal mode is selected)
- -Standby power: 30uA maximum. (During power save [standby] mode)

Microprocessor interface

- -High-speed 8-bit parallel interface with 6800-series or 8080-series. (These LCM masked).
- -Serial interface (only write operation) available.

(These LCM available).

Chip Select Input

There are /CS1 pins for chip selection. The LCM can interface with an MPU only when /CS is "L" . When these pins are set to any other combination, RS, E_RDB, and RW_WRB inputs are disabled and DB0 to DB7 are to be high impedance. And, in case of serial interface, the internal shift register and the counter are reset.

Parallel / Serial Interface (These LCM use serial interface only)

LCM used ST7565P has three types of interface with an MPU, which are one serial and two parallel interfaces.

This parallel or serial interface is determined by PS pin as shown in following table.

PS	Туре	CS1B	CS2	C68	Interface mode
Н	Parallel	CS1B	C C C	Н	6800-series MPU mode
	Parallel	CSIB	CS2	L	8080-series MPU mode
L	Serial	CS1B	CS2	*	Serial-mode

^{*:} Don't care

Parallel interface (PS = "H")

The 8-bit bi-directional data bus is used in parallel interface and the type of MPU is selected by C68 as shown in following table.

Microprocessor Selection for Parallel Interface

C68	CS1B	CS2	RS	E_RDB	RW_WRB	DB0 to DB7	Interface mode
Н	CS1B	CS2	RS	Е	RW	DB0 to DB7	6800-series
L	CS1B	CS2	RS	/RDB	/WR	DB0 to DB7	8080-series

The type of data transfer is determined by signals at RS, E RDB and RW WRB as following Table.

Parallel Data Transfer

Common	6800)-series	8080)-series	Description
RS	E_RDB	RW_WRB	E_RDB	RW_WRB	Description
Н	Н	Н	L	Η	Display data read out
Н	Н	L	Н	L	Display data write
L	Н	Н	L	Η	Register status read
Ī	Н	ı	ы	ı	Writes to internal register
L	П	L	L H L		(instruction)

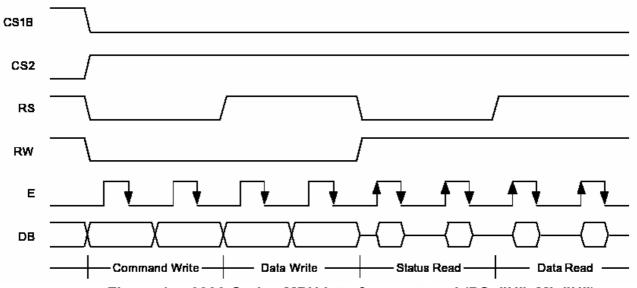


Figure 1. 6800-Series MPU Interface protocol (PS="H", MI="H")

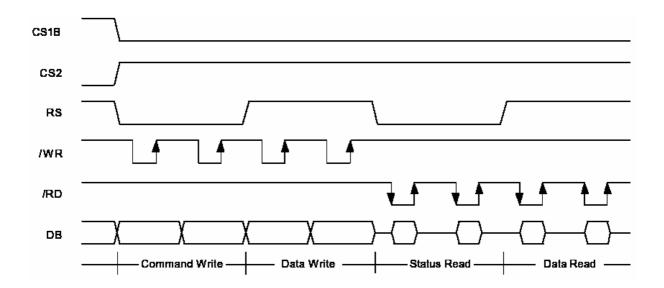


Figure 2. 8080-Series MPU Interface Protocol (PS="H", MI="L")

Serial Interface (PS = "L")

When the ST7565P is active, serial data (DB7) and serial clock (DB6) inputs are enabled. And not active, the internal 8-bit shift register and the 3-bit counter are reset. Serial data can be read on the rising edge of serial clock going into DB6 and processed as 8-bit parallel data on the eighth serial clock. Serial data input is display data when RS is high and control data when RS is low. Since the clock signal (DB6) is easy to be affected by the external noise caused by the line length, the operation check on the actual machine is recommended.

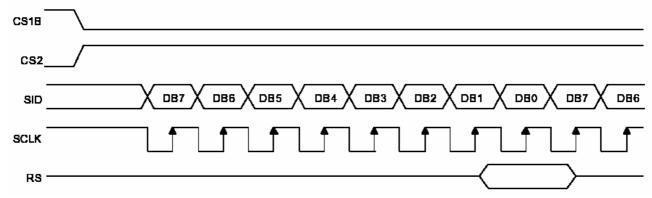


Figure 3. Serial Interface Protocol

Busy Flag (For parallel interface only)

The Busy Flag indicates whether the LCM is operating or not. When DB7 is "H" in read status operation, this device is in busy status and will accept only read status instruction. If the cycle time is correct, the microprocessor needs not to check this flag before each instruction, which improves the MPU performance.

DISPLAY DATA RAM (DDRAM)

The Display Data RAM stores pixel data for the LCD. It is 65-row by 132-column addressable array. Each pixel can be selected when the page and column addresses are specified. The 65 rows are divided into 8 pages of 8 lines and the 9th page with a single line (DB0 only). Data is read from or written to the 8 lines of each page directly through DB0 to DB7. The microprocessor can read from and write to RAM through the I/O buffer. Since the LCD controller operates independently, data can be written into RAM at the same time as data is being displayed without causing the LCD flicker.

Page Address Circuit

The LCM incorporates 4-bit Page A ddress register changed by only the "Set Page" instruction. Page Address 8 (DB3 is "H", but DB2, DB1 and DB0 are "L") is a special RAM area for the icons and display data DB0 is only valid. When Page Address is above 8, it is impossible to access to on-chip RAM. See in "Display Data RAM Map"

Line Address Circuit.

This circuit assigns DDRAM a Line Address corresponding to the first line (COM0) of the display. Therefore, by setting line address repeatedly, it is possible to realize the screen scrolling and page switching without changing the contents of on-chip RAM as shown in "Display Data RAM Map" It incorporates 6-bit line address register changed by only the initial display line instruction and 6-bit counter circuit. At the beginning of each LCD frame, the contents of register are copied to the line counter which is increased by CL signal and generates the Line Address for transferring the 132-bit RAM data to the display data latch circuit. However, display data of icons are not scrolled because the MPU can not access Line Address of icons.

Column Address Circuit

Column Address circuit has an 8-bit preset counter that provides column address to the Display Data RAM. When set Column Address MSB / LSB instruction is issued, 8-bit [Y7:Y0] is updated. And, since this address is increased by 1 each a read or write data instruction, microprocessor can access the display data continuously. However, the counter is not increased and locked if a non-existing address above 84H. It is unlocked if a column address is set again by set Column Address MSB / LSB instruction. And the Column Address counter is independent of page address register. ADC select instruction makes it possible to invert the relationship between the Column Address and the segment outputs. It is necessary to rewrite the display data on built-in RAM after issuing ADC Select instruction.

RESET CIRCUIT

Setting /RST to "L" or Reset instruction can initialize internal function.

When /RST becomes "L", following procedure is occurred.

Display ON / OFF: OFF

Entire display ON / OFF: OFF(normal)

ADC select: OFF(normal)

Reverse display ON / OFF: OFF(normal)
Power control register (VC, VR, VF) = (0, 0, 0)
Serial interface internal register data clear

LCD bias ratio: 1/9 (1/65 duty), 1/8 (1/55 duty), 1/8 (1/49duty), 1/6 (1/33 duty)

On-chip oscillator OFF
Power save release
Read-modify-write: OFF
SHL select:OFF (normal)
Static indicator mode: OFF

Static indicator register: (S1, S0) = (0, 0) Display start line: 0 (first) Column address: 0

Page address: 0

Regulator resistor select register: (R2, R1, R0) = (1, 0, 0)

Reference voltage set: OFF

Reference voltage control register: (SV5, SV4, SV3, SV2, SV1, SV0) = (1, 0, 0, 0, 0, 0)

While /RST is "L" or Reset instruction is executed, no instruction except read status could be accepted. Reset status appears at DB4. After DB4 becomes "L", any instruction can be accepted. RESETB must be connected to the reset pin of the MPU, and initialize the MPU and this LSI at the same time. The initialization by RESETB is essential before used.

POWER SUPPLY CIRCUITS

The Power Supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low power consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage follower circuits. They are valid only in master operation and controlled by power control instruction. For details, refers to "Instruction Description".

Voltage Converter Circuits

These circuits boost up the electric potential between VCI and VSS to 2, 3, 4 or 5 times toward positive side and boosted voltage is outputted from VOUT pin. These LCM fixed to 4 times.

Voltage Regulator Circuits

The function of the internal Voltage Regulator circuits is to determine liquid crystal operating voltage, V0, by adjusting resistors, Ra and Rb, within the range of |V0| < |VOUT|. Because VOUT is the operating voltage of operational-amplifier circuits, it is necessary to be applied internally or externally. For the Eq. 1, we determine V0 by Ra, Rb and VEV. The Ra and Rb are connected internally or externally by INTRS pin. And VEV called the voltage of electronic volume is determined by Eq. 2, where the parameter a is the value selected by instruction, "Set Reference Voltage Register", within the range 0 to 63. VREF voltage at Ta= 25°C is shown in table 1.

$$V0 = (1 + Rb/Ra) \times V_{EV} [V]$$
 ----- (Eq. 1)
 $V_{EV} = (1-(63-a)/162) \times V_{REF} [V]$ ----- (Eq. 2)

Table 1. VREF Voltage at Ta = 25 °C

REF	Temp. coefficient	VREF [V]
Н	-0.05% / °C	2.1
L	External input	VEXT

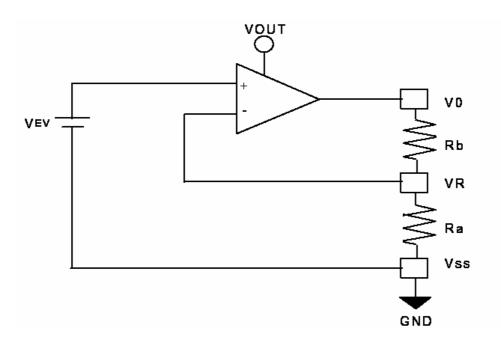


Figure 4. Internal Voltage Regulator Circuit

In Case of Using Internal Resistors, Ra and Rb. (INTRS = "H") (LCM fixed to "L")

When INTRS pin is "H", resistor Ra is connected internally between VR pin and VSS, and Rb is connected between V0 and VR. We determine V0 by two instructions, "Regulator Resistor Select" and "Set Reference Voltage".

The following figure shows V0 voltage measured by adjusting internal regulator resistor ratio (Rb / Ra) and 6-bit electronic volume registers for each temperature coefficient at $Ta = 25^{\circ}C$.

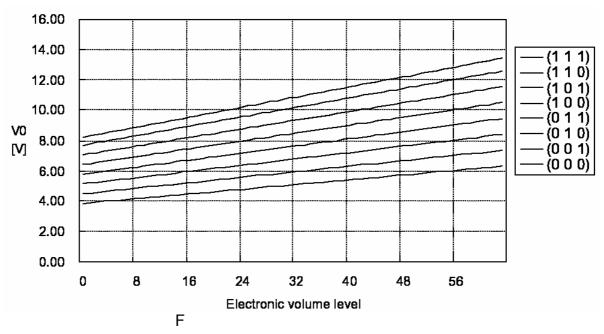


Figure 5. Electronic Volume Level

In Case of Using External Resistors, Ra and Rb. (INTRS = "L")

When INTRS pin is "L", it is necessary to connect external regulator resistor Ra between VR and VSS, and Rb between V0 and VR. Example: For the following requirements

- 1. LCD driver voltage, V0 = 10V
- 2. 6-bit reference voltage register = (1, 0, 0, 0, 0, 0)
- 3. Maximum current flowing Ra, Rb = 1uA From Eq. 1 10 = (1 + Rb/ Ra) x V_{EV} [V] ----- (Eq. 3)

From Eq. 2

 $V_{EV} = (1-(63-32)/162) \times 2.1 = 1.698 [V] -----(Eq. 4)$

From requirement 3.

10 / (Rb + Ra)=1 [uA] ----- (Eq. 5) From equations Eq.3, 4 and 5

Ra @ 1.69 [MW] Rb @ 8.31 [MW]

The following table shows the range of V0 depending on the above requirements.

Table 2. V0 Depending on Electronic Volume Level

		Elect	ronic volume	level	
	0		32		63
V0	7.57		10.00		12.43

Vatronix 11. User instruction Definitions 11.1 Instruction table

Command				Сог	nma	nd C	Code	•				- Function
Commend	A0	/RD	∕WR					D3		D1		1
(1) Display ON/OFF	0	1	0	1	0	1	0	1	1	1	0 1	LCD display ON/OFF 0: OFF, 1: ON
(2) Display start line set	0	1	0	0	1	Di	spla	ıy sta	art a	ıddr	288	Sets the display RAM display start line address
(3) Page address set	0	1	0	1	0	1	1	Pa	ıge :	addr	ess	Sets the display RAM page address
(4) Column address set upper bit Column address set	0	1	0	0	0	0	1	coli Lea	umn ist s	ado igni	icant dress ficant	Sets the most significant 4 bits of the display RAM column address. Sets the least significant 4 bits of
lower bit (5) Status read	0	0	1		St	atus		COL	umn O		dress 0	the display RAM column address. Reads the status data
(6) Display data write	1	1	0					e da				Writes to the display RAM
(7) Display data read	1	0	1			-	Rea	d da	ta			Reads from the display RAM
(8) ADC select	0	1	0	1	0	1	0	0	0	0	0	Sets the display RAM address SEG output correspondence 0: normal, 1: reverse
(9) Display normal/ reverse	0	1	0	1	0	1	0	0	1	1	0 1	Sets the LCD display normal/ reverse 0: normal, 1: reverse
(10) Display all points ON/OFF	0	1	0	1	0	1	0	0	1	0	0 1	Display all points 0: normal display 1: all points ON
(11) LCD bias set	0	1	0	1	0	1	0	0	0	1	0 1	Sets the LCD drive voltage bias ratio 0: 1/9 bias, 1: 1/7 bias (ST7565R)
(12) Read/modify/write	0	1	0	1	1	1	0	0	0	0	0	Column address increment At write: +1 At read: 0
(13) End	0	1	0	1	1	1	0	1	1	1	0	Clear read/modify/write
(14) Reset	0	1	0	1	1	1	0	0	0	1	0	Internal reset
(15) Common output mode select	0	1	0	1	1	0	0	0 1	*	*	*	Select COM output scan direction 0: normal direction 1: reverse direction
(16) Power control set	0	1	0	0	0	1	0	1		ode	ting	Select internal power supply operating mode
(17) Vo voltage regulator internal resistor ratio set	0	1	0	0	0	1	0	0		esist atio	юг	Select internal resistor ratio(Rb/Ra) mode
(18) Electronic volume mode set Electronic volume register set	0	1	0	1 0	0	0 Ele	0 ctro	0 піс v	0 olur		1 /alue	Set the Vo output voltage electronic volume register
(19) Static indicator ON/OFF Static indicator	0	1	0	1	0	1		1	1		0	0: OFF, 1: ON
register set				0	0	0	0	0	0	0	Mode	Set the flashing mode
(20) Booster ratio set	0	1	0	1 0	1 0	1 0	1 0	1 0	0	ste	0 p-up alue	select booster ratio 00: 2x,3x,4x 01: 5x 11: 6x
(21) Power saver												Display OFF and display all points ON compound command
(22) NOP	0	1	0	1	1	1	0	0	0	1	1	Command for non-operation
(23) Test	0	1	0	1	1	1	1	*	*	*	*	Command for IC test. Do not use this command

11.2 Instruction Description

1) Display ON / OFF Turns the Display ON or OFF

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	1	1	1	DON

DON = 1: display ON DON = 0: display OFF

2) Initial Display Line

Sets the line address of display RAM to determine the Initial Display Line. The top row (COM0 when SHL= L, COM63 when SHL = H) of LCD panel.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	ST5	ST4	ST3	ST2	ST1	ST0

ST5	ST4	ST3	ST2	ST1	ST0	Line address
0	0	0	0	0	0	0
0	0	0	0	0	1	1
:	:	:	:	:	:	:
1	1	1	1	1	0	62
1	1	1	1	1	1	63

3) Set Page Address

Sets the Page Address of display data RAM from the microprocessor into the Page Address register. Any RAM data bit can be accessed when its Page Address and column address are specified. Along with the column address, the Page Address defines the address of the display RAM to write or read display data. Changing the Page Address doesn't effect to the display status.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	1	P3	P2	P1	P0

P3	P2	P1	P0	Page address
0	0	0	0	0
0	0	0	1	1
:	• •	•	• •	:
0	1	1	1	7
1	0	0	0	8

4) Set Column Address

Sets the Column Address of display RAM from the microprocessor into the Column Address register. Along with the Column Address, the Column Address defines the address of the display RAM to write or read display data. When the microprocessor reads or writes display data to or from display RAM, Column Addresses are automatically increased.

Set Column Address MSB

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	Y7	Y6	Y5	Y4

Set Column Address LSB

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	Y3	Y2	Y1	Y0

Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0	Column ddress
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1
:	•			:	:	•		:
1	0	0	0	0	0	1	0	130
1	0	0	0	0	0	1	1	131

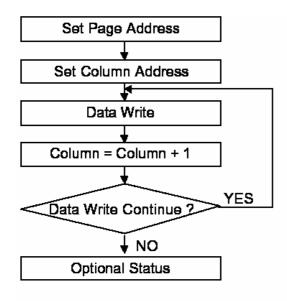
5) Read Status (For parallel interface only)

Indicates the internal status of the LCM

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	BUSY	ADC	ON/OFF	/RST	0	0	0	0

Flag	Description
BUSY	The device is busy when internal operation or reset. Any instruction is rejected until BUSY goes Low. 0: chip is active, 1: chip is being busy.
ADC	Indicates the relationship between RAM column address and segment driver 0: reverse direction (SEG131SEG0), 1: normal direction (SEG0SEG131)
ON/OFF	Indicates display ON/OFF status 0: display ON, 1: display OFF
/RST	Indicates the initialization is in progress by /RST signal 0: chip is active, 1: chip is being reset

6) Write Display Data


8-bit data of display data from the microprocessor can be written to the RAM location specified by the column address and page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data to the addressed page.

_	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
	1	0				Write	data				
	7) Bood Diopley Date										

7) Read Display Data

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1				Read	d data			

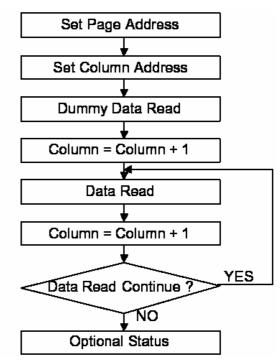


Figure 6. Sequence for Writing Display Data

Figure 7. Sequence for Reading Display Data

8) ADC Select (Segment Driver Direction Select)

Changes the relationship between RAM column address and segment driver. The direction of segment driver output pins can be reversed by software. This makes IC layout flexible in LCD module assembly.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	0	0	0	ADC

ADC = 0: normal direction (SEG0---SEG131)

ADC = 1: reverse direction (SEG131---SEG0)

9) Reverse Display ON / OFF

Reverses the display status on LCD panel without rewriting the contents of the display data RAM.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	0	1	1	REV

REV	RAM bit data = "1"	RAM bit data = "0"
0(normal)	LCD pixel is illuminated	LCD pixel is not illuminated
0(reverse)	LCD pixel is not illuminated	LCD pixel is illuminated

10) Entire Display ON / OFF

Forces the whole LCD points to be turned on regardless of the contents of the display data RAM. At this time, the contents of the display data RAM are held. This instruction has priority over the reverse display ON / OFF instruction.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	0	1	0	EON

EON = 0: normal display EON = 1: entire display ON

11) Select LCD Bias

Selects LCD bias ratio of the voltage required for driving the LCD.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	0	0	1	Bias

Bias = 0: 1/9 Duty Bias = 1: 1/7 Duty

12) Set Modify-Read

This instruction stops the automatic increment of the column address by the read display data instruction, but the column address is still increased by the write display data instruction. And it reduces the load of microprocessor when the data of a specific area is repeatedly changed during cursor blinking or others. This mode is canceled by the reset Modify-read instruction.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	0	0	0	0

13) Reset Modify-Read

This instruction cancels the Modify-read mode, and makes the column address return to its initial value just before the set Modify-read instruction is started.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	1	1	1	0

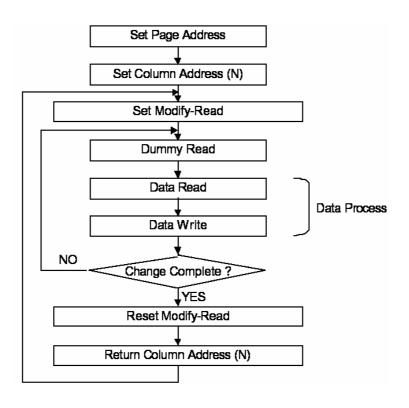


Figure 8. Sequence for Cursor Display

14) Reset

This instruction resets initial display line, column address, page address, and common output status select to their initial status, but dose not affect the contents of display data RAM. This instruction cannot initialize the LCD power supply, which is initialized by the /RST pin.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	0	0	1	0

15) SHL Select (Common Output Mode Select)

COM output scanning direction is selected by this instruction which determines the LCD driver output status. *: Don't care

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	0	0	SHL	*	*	*

SHL = 0: normal direction (COM0--- COM63)

SHL = 1: reverse direction (COM63---COM0)

16) Power Control

Selects one of eight power circuit functions by using 3-bit register. An external power supply and part of internal power supply functions can be used simultaneously.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	0	1	VC	VR	VF

VC	VR	VF	Page address
0			Internal voltage converter circuit is
U			OFF
1			Internal voltage converter circuit is ON
	0		Internal voltage regulator circuit is OFF
	1		Internal voltage regulator circuit is ON
		0	Internal voltage follower circuit is OFF
		1	Internal voltage follower circuit is ON

17) Regulator Resistor Select

Selects resistance ratio of the internal resistor used in the internal voltage regulator. See voltage regulator section in power supply circuit. Refer to the following table.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	0	0	R2	R1	R0

R2	R1	R0	(1 + Rb / Ra) ratio
0	0	0	3.0
0	0	1	3.5
0	1	0	4.0
0	1	1	4.5
1	0	0	5.0 (default)
1	0	1	5.5
1	1	0	6.0
1	1	1	6.4

18) Reference Voltage Select

Consists of 2-byte instruction. The 1st instruction sets reference voltage mode, the 2 one updates the contents of reference voltage register. After second instruction, reference voltage mode is released.

The 1st Instruction: Set Reference Voltage Select Mode

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	. 0	1	0	0	0	0	0	0	1

The 2nd Instruction: Set Reference Voltage Register

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	Х	Х	SV5	SV4	SV3	SV2	SV1	SV0

SV5	SV4	SV3	SV2	SV1	SV0	Reference voltage parameter (a)	V0	Contrast
0	0	0	0	0	0	0	Minimum	Low
0	0	0	0	0	1	1	:	:
:	••	:	:	:	••	• •	:	:
1	0	0	0	0	0	32 (default)	:	:
:	••	:	:	:	••	• •	:	:
1	1	1	1	1	0	62	:	:
1	1	1	1	1	1	63	Maximum	High

19) Set Static Indicator State

Consists of two bytes instruction. The first byte instruction (set Static Indicator mode) enables the second byte instruction (set Static Indicator register) to be valid. The first byte sets the Static Indicator ON / OFF. When it is ON, the second byte updates the contents of Static Indicator register without issuing any other instruction and this Static Indicator state is released after setting the data of indicator register.

The 1st Instruction: Set Static Indicator Mode (ON / OFF)

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	1	1	0	SM

SM = 0: static indicator OFF

SM = 1: static indicator ON

The 2nd Instruction: Set Static Indicator Register

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	Х	Х	Х	Х	Х	Х	S1	S0

S1	S0	Status of static indicator output
0	0	OFF
0	1	ON (about 1 second blinking)
1	0	ON (about 0.5 second blinking)
1	1	ON (always ON)

20)NOP No Operation Instruction

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	Х	Х	Х	Х	Х	Х	S1	S0

21) Power Save (Compound Instruction)

If the entire display ON/OFF instruction is issued during the display OFF state, ST7565P enters the Power Save status to reduce the power consumption to the static power consumption value. According to the status of static indicator mode, Power Save is entered to one mode of sleep and standby mode. When Static Indicator mode is ON, standby mode is issued. When OFF, sleep mode is issued. Power Save mode is released by the entire display OFF instruction.

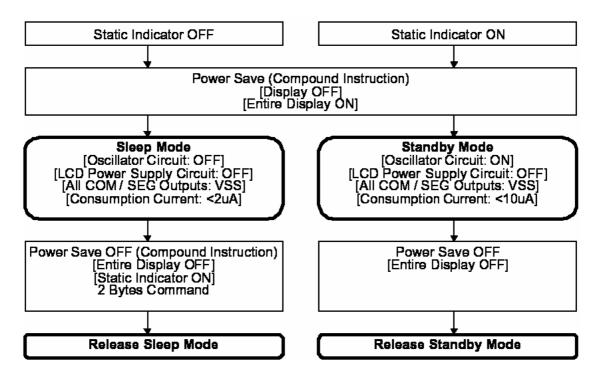


Figure 9. Power Save (Compound Instruction)

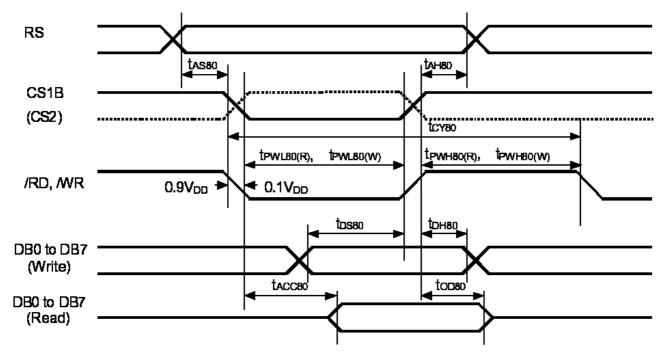
-Sleep Mode

This stops all operations in the LCD display system, and as long as there are no access from the MPU, the consumption current is reduced to a value near the static current. The internal modes during sleep mode are as follows:

- a. The oscillator circuit and the LCD power supply circuit are halted.VSS level.
- b. All liquid crystal drive circuits are halted, and the segment in common drive outputs output a VSS level.

- Standby Mode

The duty LCD display system operations are halted and only the static drive system for the indicator


continues to operate, providing the minimum required consumption current for the static drive. The internal modes are in the following states during standby mode.

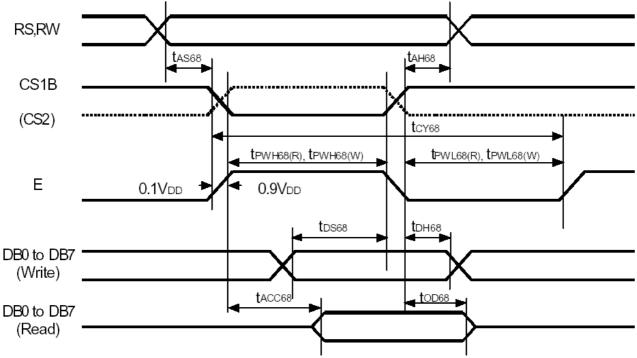
- a. The LCD power supply circuits are halted. The oscillator circuit continues to operate.
- b. The duty drive system liquid crystal drive circuits are halted and the segment and common driver outputs a VSS level. The static drive system does not operate.
 - When a reset command is performed while in standby mode, the system enters sleep mode.

12. Timing Characteristics

Read / Write Characteristics (8080-series MPU) (For parallel interface only)

^{**} tPWL80(W) and tPWL80(R) is specified in the overlapped period when CS1B is low (CS2 is high) and MR(/RD) is low.

Figure 10. Read / Write Characteristics (8080-series MPU)


 $(VDD = 2.4 \text{ to } 3.6V, Ta = -40 \text{ to } +85^{\circ}C)$

item		Signal	Symbol	Min.	Тур.	Max.	Unit	Remark
Address setup time Address hold time		RS	tas80 tah80	0	-	-	ns	
System cycle time		/WR, /RD	tCY80	300	-	-	ns	
Enable Pulse	Read	/RD	tPWL80 (R)	120	-	-	ns	
Low width	Write	/WR	tPWL80 (W)	60	-	•	ns	
Enable Pulse	Read	/RD	tPWH80 (R)	60	-	•	ns	
High width	Write	/WR	tPWH80 (W)	60	-	•	ns	
Data setup time Data hold time		DB7	tDS80 tDH80	40 15	-	-	ns	
Read access time		To DB0	tACC80	-		140	50	CL = 100 pF
Output disable time			tOD80	10	_	100	ns	CL = 100 PF

Read / Write Characteristics (6800-series Microprocessor)

(For parallel interface only)

 $^{^{**}}$ tPWH68(W) and tPWH68(R) is specified in the overlapped period when CS1B is low (CS2 is high) and E is high.

Figure 11. Read / Write Characteristics (6800-series Microprocessor)

 $(VDD = 2.4 \text{ to } 3.6V, Ta = -40 \text{ to } +85^{\circ}C)$

ltem		Signal	Symbol	Min.	Тур.	Max.	Unit	Remark
Address setup time Address hold time		RS,RW	tAS68 tAH68	0 0	1	1	ns	
System cycle time		E	tCY68	300	1	ı	ns	
Enable Pulse	Read	E	tPWH68 (R)	120			ns	
High Width	Write		tPWH68 (W)	60				
Enable Pulse	Read	Е	tPWL68 (R)	60			ns	
Low Width	Write		tPWL68 (W)	60				
Data setup time Data hold time		DB7 To	tDS68 tDH68	40 15	-	-	ns	
Access time Output disable time		DB0	tACC68 tOD68	- 10	-	140 100	ns	CL = 100 pF

Serial Interface Characteristics

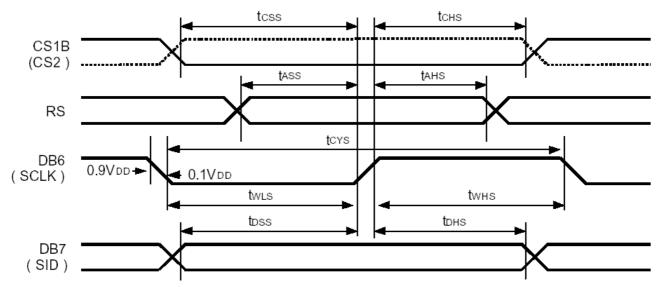


Figure 12. Serial Interface Characteristics

 $(VDD = 2.4 \text{ to } 3.6V, Ta = -40 \text{ to } +85^{\circ}C)$

Item	Signal	Symbol	Min.	Тур.	Max.	Unit	Remark
Serial clock cycle SCLK high pulse width SCLK low pulse width	DB6 (SCLK)	tCYS tWHS tWLS	250 100 100		1 1 1	ns	
Address setup time Address hold time	RS	tass tahs	150 150	-	-	ns	
Data setup time Data hold time	DB7 (SID)	tDSS tDHS	100 100	-	1 1	ns	
CS1B setup time CS1B hold time	CS1B	tCSS tCHS	150 150	-	-	ns	

Reset Input Timing

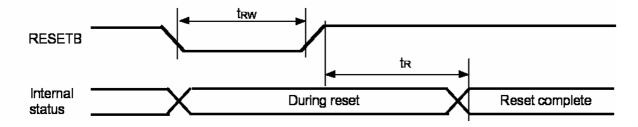


Figure 13. Reset Input Timing

(VDD = 2.4 to 3.6V, Ta = -40 to +85°C) Remark Symbol Max. Unit Item Signal Min. Тур. Reset low pulse width **RESETB** 1.0 trw μs 1.0 Reset time t₽ μS

13.Initializing flow chart

Referential Instruction Setup Flow (1)

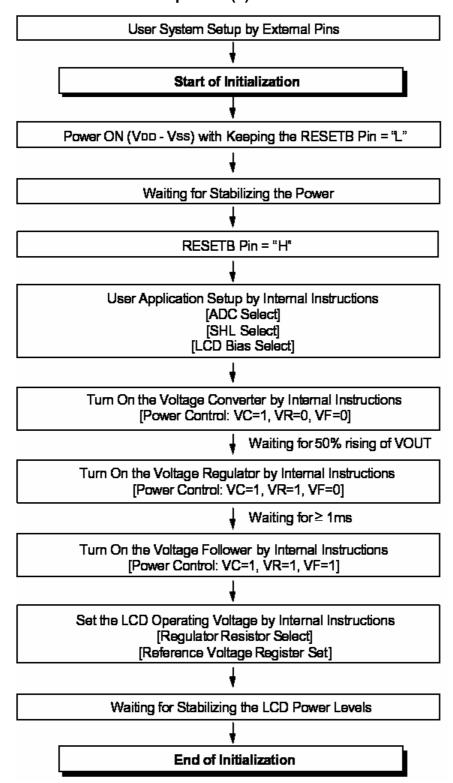


Figure 14. Initializing with the Built-in Power Supply Circuits interface mode

Referential Instruction Setup Flow (2)

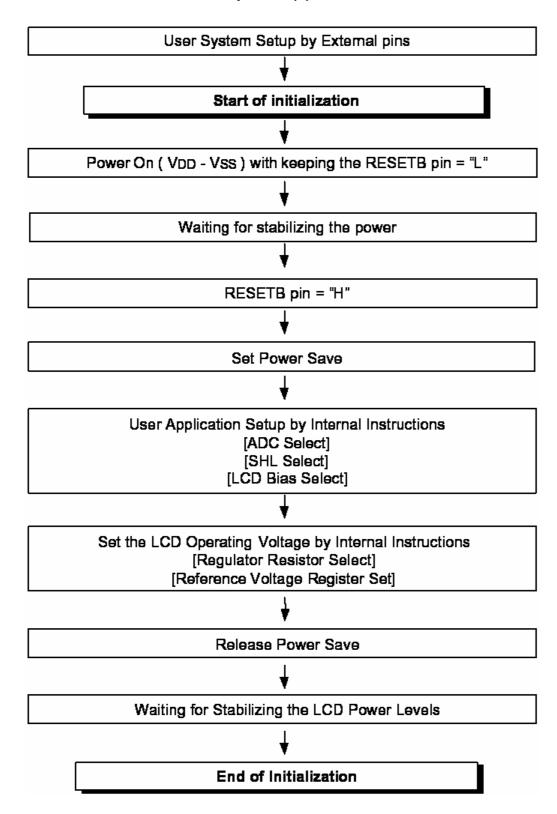


Figure 15. Initializing without the Built-in Power Supply Circuits

Referential Instruction Setup Flow (3)

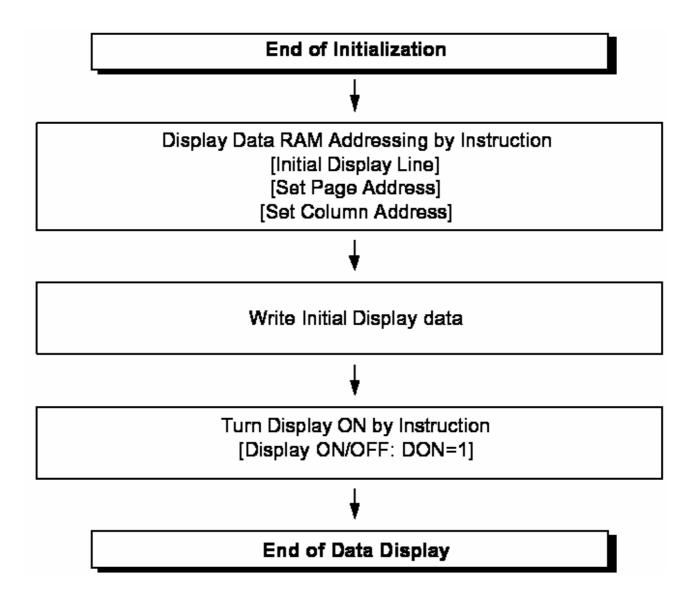


Figure 16. Data Displaying

Referential Instruction Setup Flow (4)

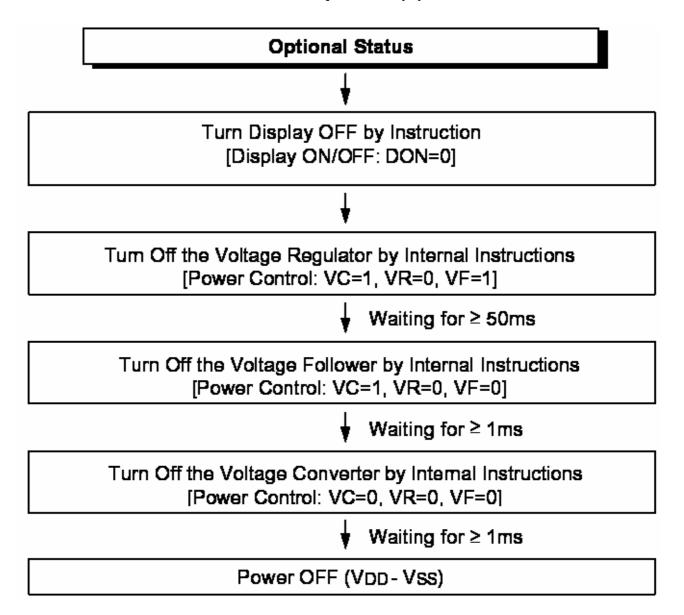
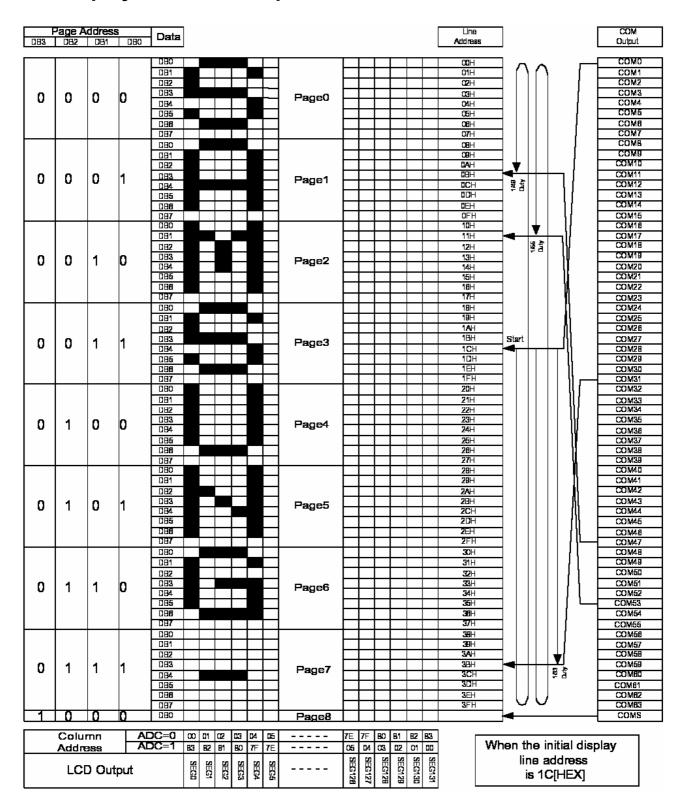



Figure 17. Power OFF

14. Display Data RAM Map

15. Revision records

Version	Ref.pages	Revision Items	Date
A00	All	New release	2007.03.06

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Display Development Tools category:

Click to view products by Adafruit manufacturer:

Other Similar products are found below:

KIT 60121-3 S5U13U11P00C100 MAX14521EEVKIT KIT 60145-3 S5U13748P00C100 DFR0413 3248 DLPLCR90EVM

MAX20069EVKIT# KIT95000-3 LCD-16396 PIM370 UNIVERSAL BREAK OUT BOARD NHD-PCB0216CZ KIT-19297 EA 9781
2USB 1109 MCIMX-LVDS1 MIKROE-2449 MIKROE-2453 BREAK OUT BOARD 20 BREAK OUT BOARD 36 131 DEV-13628 1590

MIKROE-2269 1601 1770 1947 1983 1987 2050 2218 2219 2260 2345 2418 2423 2454 2455 2478 2674 SK-220RD-PI FIT0477 333

1774 334 TE-M321-SDK DFR0428 cs-epapersk-03