

Radio FeatherWing

Created by lady ada

https://learn.adafruit.com/radio-featherwing

Last updated on 2021-11-15 06:46:12 PM EST

©Adafruit Industries Page 1 of 66

5

6

7

8

8

8

9

10

11

11

12

12

12

12

12

13

13

16

18

19

19

19

20

20

21

23

23

24

25

26

27

28

28

31

31

32

33

34

35

39

41

41

42

42

42

46

Table of Contents

Overview

• RFM69 Specs

• RFM9x Specs

Pinouts

• SPI Data Pins (Fixed)

• SPI Control Pins (Flexible)

• RFM GPIO

• Antenna

Wiring

• ESP8266 Wiring

• Feather 32u4

• Feather M0

• Other Boards

Assembly

• Antenna Options

• Wire Antenna

• uFL Connector

• SMA Edge-Mount Connector

Using the RFM69 Radio

• "Raw" vs Packetized

• Arduino Libraries

• RadioHead Library example

• Basic RX & TX example

• Basic Transmitter example code

• Basic receiver example code

• Radio Freq. Config

• Configuring Radio Pinout

• Setup

• Initializing Radio

• Basic Transmission Code

• Basic Receiver Code

• Basic Receiver/Transmitter Demo w/OLED

• Addressed RX and TX Demo

CircuitPython for RFM69

• Design Considerations

• Wiring With Breakout

• Usage with All-In-One Feather M0

• Module Install

• Usage

• Beyond RX & TX

Using the RFM9X Radio

• Arduino Library

• RadioHead RFM9x Library example

• Basic RX & TX example

• Transmitter example code

• Receiver example code

©Adafruit Industries Page 2 of 66

50

50

51

51

52

52

53

54

55

56

56

57

61

63

65

65

65

66

• Feather Radio Pinout

• Frequency

• Setup

• Initializing Radio

• Transmission Code

• Receiver Code

CircuitPython for RFM9x LoRa

• Design Considerations

• Wiring With Breakout

• Usage with All-In-One Feather M0

• Module Install

• Usage

• Beyond RX & TX

Radio Range F.A.Q.

Downloads

• Datasheets & Files

• Schematic

• Fabrication Print

©Adafruit Industries Page 3 of 66

©Adafruit Industries Page 4 of 66

Overview

Add short-hop wireless to your Feather with these Radio Featherwings. These add-

ons for any Feather board will let you integrate packetized radio (with the RFM69

radio) or LoRa radio (with the RFM9x's). These radios are good options for kilometer-

range radio, and paired with one of our WiFi, cellular or Bluetooth Feathers, will let

you bridge from 433/900 MHz to the Internet or your mobile device.

These radio modules come in four variants (two modulation types and two

frequencies) The RFM69's are easiest to work with, and are well known and

©Adafruit Industries Page 5 of 66

understood. The LoRa radios are exciting, longer-range and more powerful but also

more expensive.

RFM69 @ 433 MHz - basic packetized FSK/GFSK/MSK/GMSK/OOK radio at 433

MHz for use in Europe ITU 1 license-free ISM, or for amateur use with restrictions

(check your local amateur regulations!)

RFM69 @ 900 MHz - basic packetized FSK/GFSK/MSK/GMSK/OOK radio at 868

or 915 MHz for use in Americas ITU 2 license-free ISM, or for amateur use with

restrictions (check your amateur regulations!)

RFM98 @ 433 MHz - LoRa capable radio at 433 MHz for use in Europe ITU 1

license-free ISM, or for amateur use with restrictions (check your local amateur

regulations!)

RFM95 @ 900 MHz - LoRa capable radio at 868 or 915 MHz for use in Americas

ITU 2 license-free ISM, or for amateur use with restrictions (check your local

amateur regulations!)

The radio modules themselves have the same pinout so the PCB is the same, but the

library usage and wiring may vary. All use SPI for interfacing, and there are great

Arduino libraries available for both.

RFM69 Specs

SX1231 based module with SPI interface

Packet radio with ready-to-go Arduino libraries

Uses the license-free ISM bands

•

•

•

•

•

•

•

©Adafruit Industries Page 6 of 66

+13 to +20 dBm up to 100 mW Power Output Capability (power output selectable

in software)

50mA (+13 dBm) to 150mA (+20dBm) current draw for transmissions

Range of approx. 350 meters, depending on obstructions, frequency, antenna

and power output

Create multipoint networks with individual node addresses

Encrypted packet engine with AES-128

RFM9x Specs

SX127x LoRa® based module with SPI interface

Packet radio with ready-to-go Arduino libraries

Uses the license-free ISM bands

+5 to +20 dBm up to 100 mW Power Output Capability (power output selectable

in software)

~300uA during full sleep, ~120mA peak during +20dBm transmit, ~40mA during

active radio listening.

Our initial tests with default library settings: over 1.2mi/2Km line-of-sight with

wire quarter-wave antennas. (With setting tweaking and directional antennas,

20Km is possible (https://adafru.it/mGa)).

Currently tested to work with the Feather ESP8266, Feather 32u4, Feather M0,

WICED Feather (RFM69 library only) and Teensy 3 Feather series, some wiring is

required to configure the FeatherWing for the chipset you plan to use.

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 7 of 66

All radios are sold individually and can only talk to radios of the same part number.

E.g. RFM69 900 MHz can only talk to RFM69 900 MHz, LoRa 433 MHz can only talk to

LoRa 433, etc.

Each radio 'Wing comes with some header. Some soldering is required to attach the

header. You will need to cut and solder on a small piece of wire (any solid or stranded

core is fine) in order to create your antenna. Optionally you can pick up a uFL or SMA

edge-mount connector and attach an external duck.

Pinouts

SPI Data Pins (Fixed)

The three SPI data pins (MOSI/MISO/SCK) are hardwired to these three pads, which

are use for the default SPI interface on all Feathers:

SPI Control Pins (Flexible)

You also need three more pins to control the radio: CS, RST and IRQ

©Adafruit Industries Page 8 of 66

Since there is no guaranteed Feather pin that is interrupt-capable, we set it up so you

can fly-wire these three to any three pins available. For the non-Serial/IC pins on the

right, we name them A thru F. We also indicate the RX/TX/SDA/SCL pins if you need

to use those:

Wire them with three short jumpers like so:

RFM GPIO

There's some other GPIO pins that you may want to use - they can be configured to

give you notice of things like packet completion or incoming data. They're all on the

left. DIO0 is also known as IRQ so we don't have that duplicated on the left breakouts

©Adafruit Industries Page 9 of 66

Antenna

For an antenna, you have three options:

Plain wire antenna (cut a quarter-wavelength piece and solder it into the pad/

hole

uFL connector (not included) (http://adafru.it/1661), which can be soldered and

then used to attach a uFL antenna or adapter

SMA edge-launch (not included) (http://adafru.it/1865), for use with any SMA

connector

•

•

•

©Adafruit Industries Page 10 of 66

Wiring

Because each Feather uses a different processor, there is some light wiring that

needs to be done to configure the radio pins. In particular, an interrupt-capable pin is

required for IRQ but there is no one irq pin that is the same on all the Feathers!

So, while MOSI/MISO/SCK are fixed, you will want to solder three short wires for CS,

RST and IRQ

Here is our tested/suggested wiring configurations and code snippets for defining the

pins

ESP8266 Wiring

The ESP does not have a lot of spare pins, and the SPI pins are taken, so here's what

we've tested that works:

#define RFM95_CS 2 // "E"
#define RFM95_RST 16 // "D"
#define RFM95_INT 15 // "B"

#define RFM69_CS 2
#define RFM69_RST 16
#define RFM69_IRQ 15
#define RFM69_IRQN digitalPinToInterrupt(RFM69_IRQ)

This leaves the I2C default pins (4 and 5) available

©Adafruit Industries Page 11 of 66

Feather 32u4

 The 32u4 doesn't have a lot of IRQs and the only ones available are on pins 0, 1, 2, 3

which are also the Serial RX/TX and I2C pins. So it's not great because you have to

give up one of those pins.

#define RFM95_CS 10 // "B"
#define RFM95_RST 11 // "A"
#define RFM95_INT 2 // "SDA" (only SDA/SCL/RX/TX have IRQ!)

#define RFM69_CS 10 // "B"
#define RFM69_RST 11 // "A"
#define RFM69_IRQ 2 // "SDA" (only SDA/SCL/RX/TX have IRQ!)
#define RFM69_IRQN digitalPinToInterrupt(RFM69_IRQ)

Feather M0

The Feather M0 is really easy to use, a ton of interrupts so wiring is easy

#define RFM95_CS 10 // "B"
#define RFM95_RST 11 // "A"
#define RFM95_INT 6 // "D"

#define RFM69_CS 10 // "B"
#define RFM69_RST 11 // "A"
#define RFM69_IRQ 6 // "D"
#define RFM69_IRQN digitalPinToInterrupt(RFM69_IRQ)

Other Boards

For other boards like the ESP32 or nRF52, any pin can be an interrupt, so feel free to

use any wiring setup you like!

Assembly

Antenna Options

These radio Wings do not have a built-in antenna. Instead, you have three options for

attaching an antenna. For most low cost radio nodes, a wire works great. If you need

to put the radio into an enclosure, soldering in uFL and using a uFL to SMA adapter

©Adafruit Industries Page 12 of 66

will let you attach an external antenna. You can also solder an SMA edge-mount

connector directly

Wire Antenna

A wire antenna, aka "quarter wave whip antenna" is low cost and works very well! You

just have to cut the wire down to the right length.

Cut a stranded or solid core wire the the

proper length for the module/frequency

433 MHz - 6.5 inches, or 16.5 cm

868 MHz - 3.25 inches or 8.2 cm

915 MHz - 3 inches or 7.8 cm

Strip a mm or two off the end of the wire,

tin and solder into the ANT pad.

uFL Connector

If you want an external antenna that is a few inches away from the radio, you need to

do a tiny bit more work but its not too difficult.

You'll need to get an SMT uFL connector, these are fairly standard (http://adafru.it/

1661)

You'll also need a uFL to SMA adapter (http://adafru.it/851) (or whatever adapter you

need for the antenna you'll be using, SMA is the most common

Of course, you will also need an antenna of some sort, that matches your radio

frequency

•

•

•

uFL connectors are rated for 30 connection cycles, but be careful when

connecting/disconnecting to not rip the pads off the PCB. Once a uFL/SMA

adapter is connected, use strain relief!

©Adafruit Industries Page 13 of 66

Start by melting solder onto the center

signal pad

Check the bottom of the uFL connector,

note that there's two large side pads

(ground) and a little inlet pad. The other

small pad is not used!

©Adafruit Industries Page 14 of 66

Solder in the first pad while holding the

uFL steady

Solder in the two side pads, they are

used for signal and mechanical

connectivity so make sure there's plenty

of solder

©Adafruit Industries Page 15 of 66

Once done, check your work visually

SMA Edge-Mount Connector

These strong edge connectors are used for many 'duck' antennas, and can also be

panel mounted

You'll need an SMA (or, if you need RP-

SMA for some reason) Edge-Mount

connector with 1.6mm spacing

The SMA connector 'slides on' the top of

the PCB

©Adafruit Industries Page 16 of 66

Solder all 5 connections (4 ground/

mechanical and 1 signal)

Use plenty of solder to make sure you

have a good strong mechanical

connection. The duck antennas are long

and make great levers, so they could pry

apart the solder joints if not soldered well

©Adafruit Industries Page 17 of 66

Using the RFM69 Radio

This page is shared between the RFM69

breakout and the all-in-one Feather

RFM69's. The example code and overall

functionality is the same, only the pinouts

used may differ! Just make sure the

example code is using the pins you have

wired up.

Before beginning make sure you have your Arduino or Feather working smoothly, it

will make this part a lot easier. Once you have the basic functionality going - you can

upload code, blink an LED, use the serial output, etc. you can then upgrade to using

the radio itself.

Note that the sub-GHz radio is not designed for streaming audio or video! It's best

used for small packets of data. The data rate is adjustable but its common to stick to

around 19.2 Kbps (thats bits per second). Lower data rates will be more successful in

their transmissions

You will, of course, need at least two paired radios to do any testing! The radios must

be matched in frequency (e.g. 900 MHz & 900 MHz are ok, 900 MHz & 433 MHz are

not). They also must use the same encoding schemes, you cannot have a 900 MHz

RFM69 packet radio talk to a 900 MHz RFM9x LoRa radio.

©Adafruit Industries Page 18 of 66

"Raw" vs Packetized

The SX1231 can be used in a 'raw rx/tx' mode where it just modulates incoming bits

from pin #2 and sends them on the radio, however there's no error correction or

addressing so we wont be covering that technique.

Instead, 99% of cases are best off using packetized mode. This means you can set up

a recipient for your data, error correction so you can be sure the whole data set was

transmitted correctly, automatic re-transmit retries and return-receipt when the packet

was delivered. Basically, you get the transparency of a data pipe without the

annoyances of radio transmission unreliability

Arduino Libraries

These radios have really great libraries already written, so rather than coming up with

a new standard we suggest using existing libraries such as LowPowerLab's RFM69

Library (https://adafru.it/mCz) and AirSpayce's Radiohead library (https://adafru.it/mCA)

which also suppors a vast number of other radios

These are really great Arduino Libraries, so please support both companies in thanks

for their efforts!

We recommend using the Radiohead library - it is very cross-platform friendly and

used a lot in the community!

RadioHead Library example

To begin talking to the radio, you will need to download our small fork of the

Radiohead from our github repository (https://adafru.it/vgE). You can do that by

visiting the github repo and manually downloading or, easier, just click this button to

download the zip

Download RadioHead Library

https://adafru.it/vgF

Rename the uncompressed folder RadioHead and check that the RadioHead folder

contains files like RH_RFM69.cpp and RH_RFM69.h (and many others!)

©Adafruit Industries Page 19 of 66

Place the RadioHead library folder in your arduinosketchfolder/libraries/ folder.

You may need to create the libraries subfolder if it's your first library. Restart the IDE.

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://

adafru.it/aYM)

Basic RX & TX example

Lets get a basic demo going, where one radio transmits and the other receives. We'll

start by setting up the transmitter

Basic Transmitter example code

This code will send a small packet of data once a second to another RFM69 radio,

without any addressing.

Open up the example RadioHead -> feather -> RadioHead69_RawDemo_TX

Load this code into your Transmitter Arduino or Feather!

Before uploading, check for the #define FREQUENCY RF69_915MHZ line and

comment that out (and uncomment the line above) to match the frequency of the

hardware you're using

©Adafruit Industries Page 20 of 66

Once uploaded you should see the following on the serial console

Now open up another instance of the Arduino IDE - this is so you can see the serial

console output from the TX device while you set up the RX device.

Basic receiver example code

This code will receive and reply with a small packet of data.

Open up the example RadioHead -> feather -> RadioHead69_RawDemo_RX

Load this code into your Receiver Arduino/Feather!

These examples are optimized for the Feather 32u4/M0. If you're using differnet

wiring, uncomment/comment/edit the sections defining the pins depending on

which chipset and wiring you are using! The pins used will vary depending on

your setup!

©Adafruit Industries Page 21 of 66

Now open up the Serial console on the receiver, while also checking in on the

transmitter's serial console. You should see the receiver is...well, receiving packets

And, on the transmitter side, it is now printing Got Reply after each transmisssion

because it got a reply from the receiver

Before uploading, check for the #define FREQUENCY RF69_915MHZ line and

comment that out (and uncomment the line above) to match the frequency of the

hardware you're using

These examples are optimized for the Feather 32u4/M0. If you're using differnet

wiring, uncomment/comment/edit the sections defining the pins depending on

which chipset and wiring you are using! The pins used will vary depending on

your setup!

©Adafruit Industries Page 22 of 66

That's pretty much the basics of it! Lets take a look at the examples so you know how

to adapt to your own radio network

Radio Freq. Config

Each radio has a frequency that is configurable in software. You can actually tune

outside the recommended frequency, but the range won't be good. 900 MHz can be

tuned from about 850-950MHz with good performance. 433 MHz radios can be tuned

from 400-460 MHz or so.

// Change to 434.0 or other frequency, must match RX's freq!
#define RF69_FREQ 915.0

For all radios they will need to be on the same frequency. If you have a 433MHz radio

you will want to stick to 433. If you have a 900 Mhz radio, go with 868 or 915MHz, just

make sure all radios are on the same frequency

Configuring Radio Pinout

At the top of the sketch you can also set the pinout. The radios will use hardware SPI,

but you can select any pins for RFM69_CS (an output), RFM_IRQ (an input) and RFM_

RST (an output). RFM_RST is manually used to reset the radio at the beginning of the

©Adafruit Industries Page 23 of 66

sketch. RFM_IRQ must be an interrupt-capable pin. Check your board to determine

which pins you can use!

Also, an LED is defined.

For example, here is the Feather 32u4 pinout

#if defined (__AVR_ATmega32U4__) // Feather 32u4 w/Radio
 #define RFM69_CS 8
 #define RFM69_INT 7
 #define RFM69_RST 4
 #define LED 13
#endif

If you're using a Feather M0, the pinout is slightly different:

#if defined(ARDUINO_SAMD_FEATHER_M0) // Feather M0 w/Radio
 #define RFM69_CS 8
 #define RFM69_INT 3
 #define RFM69_RST 4
 #define LED 13
#endif

If you're using an Arduino UNO or compatible, we recommend:

#if defined (__AVR_ATmega328P__) // UNO or Feather 328P w/wing
 #define RFM69_INT 3 //
 #define RFM69_CS 4 //
 #define RFM69_RST 2 // "A"
 #define LED 13
#endif

If you're using a FeatherWing or different setup, you'll have to set up the #define

statements to match your wiring

You can then instantiate the radio object with our custom pin numbers. Note that the

IRQ is defined by the IRQ pin not number (sometimes they differ).

// Singleton instance of the radio driver
RH_RF69 rf69(RFM69_CS, RFM69_INT);

Setup

We begin by setting up the serial console and hard-resetting the RFM69

void setup()
{
 Serial.begin(115200);

©Adafruit Industries Page 24 of 66

 //while (!Serial) { delay(1); } // wait until serial console is open, remove if
not tethered to computer

 pinMode(LED, OUTPUT);
 pinMode(RFM69_RST, OUTPUT);
 digitalWrite(RFM69_RST, LOW);

 Serial.println("Feather RFM69 RX Test!");
 Serial.println();

 // manual reset
 digitalWrite(RFM69_RST, HIGH);
 delay(10);
 digitalWrite(RFM69_RST, LOW);
 delay(10);

If you are using a board with 'native USB' make sure the while (!Serial) line is

commented out if you are not tethering to a computer, as it will cause the

microcontroller to halt until a USB connection is made!

Initializing Radio

Once initialized, you can set up the frequency, transmission power, radio type and

encryption key.

For the frequency, we set it already at the top of the sketch

For transmission power you can select from 14 to 20 dBi. Lower numbers use less

power, but have less range. The second argument to the function is whether it is an

HCW type radio, with extra amplifier. This should always be set to true!

Finally, if you are encrypting data transmission, set up the encryption key

©Adafruit Industries Page 25 of 66

 if (!rf69.init()) {
 Serial.println("RFM69 radio init failed");
 while (1);
 }
 Serial.println("RFM69 radio init OK!");

 // Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM (for low
power module)
 // No encryption
 if (!rf69.setFrequency(RF69_FREQ)) {
 Serial.println("setFrequency failed");
 }

 // If you are using a high power RF69 eg RFM69HW, you *must* set a Tx power with
the
 // ishighpowermodule flag set like this:
 rf69.setTxPower(20, true); // range from 14-20 for power, 2nd arg must be true
for 69HCW

 // The encryption key has to be the same as the one in the server
 uint8_t key[] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08};
 rf69.setEncryptionKey(key);

Basic Transmission Code

If you are using the transmitter, this code will wait 1 second, then transmit a packet

with "Hello World #" and an incrementing packet number, then check for a reply

void loop() {
 delay(1000); // Wait 1 second between transmits, could also 'sleep' here!

 char radiopacket[20] = "Hello World #";
 itoa(packetnum++, radiopacket+13, 10);
 Serial.print("Sending "); Serial.println(radiopacket);

 // Send a message!
 rf69.send((uint8_t *)radiopacket, strlen(radiopacket));
 rf69.waitPacketSent();

 // Now wait for a reply
 uint8_t buf[RH_RF69_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);

 if (rf69.waitAvailableTimeout(500)) {
 // Should be a reply message for us now
 if (rf69.recv(buf, &len)) {
 Serial.print("Got a reply: ");
 Serial.println((char*)buf);
 Blink(LED, 50, 3); //blink LED 3 times, 50ms between blinks
 } else {
 Serial.println("Receive failed");
 }
 } else {
 Serial.println("No reply, is another RFM69 listening?");
 }
}

Its pretty simple, the delay does the waiting, you can replace that with low power

sleep code. Then it generates the packet and appends a number that increases every

©Adafruit Industries Page 26 of 66

tx. Then it simply calls send() waitPacketSent() to wait until is is done

transmitting.

It will then wait up to 500 milliseconds for a reply from the receiver with waitAvaila

bleTimeout(500) . If there is a reply, it will print it out. If not, it will complain nothing

was received. Either way the transmitter will continue the loop and sleep for a second

until the next TX.

Basic Receiver Code

The Receiver has the same exact setup code, but the loop is different

void loop() {
 if (rf69.available()) {
 // Should be a message for us now
 uint8_t buf[RH_RF69_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);
 if (rf69.recv(buf, &len)) {
 if (!len) return;
 buf[len] = 0;
 Serial.print("Received [");
 Serial.print(len);
 Serial.print("]: ");
 Serial.println((char*)buf);
 Serial.print("RSSI: ");
 Serial.println(rf69.lastRssi(), DEC);

 if (strstr((char *)buf, "Hello World")) {
 // Send a reply!
 uint8_t data[] = "And hello back to you";
 rf69.send(data, sizeof(data));
 rf69.waitPacketSent();
 Serial.println("Sent a reply");
 Blink(LED, 40, 3); //blink LED 3 times, 40ms between blinks
 }
 } else {
 Serial.println("Receive failed");
 }
 }
}

Instead of transmitting, it is constantly checking if there's any data packets that have

been received. available() will return true if a packet with the proper encryption

has been received. If so, the receiver prints it out.

It also prints out the RSSI which is the receiver signal strength indicator. This number

will range from about -15 to -80. The larger the number (-15 being the highest you'll

likely see) the stronger the signal.

If the data contains the text "Hello World" it will also reply to the packet.

Once done it will continue waiting for a new packet

©Adafruit Industries Page 27 of 66

Basic Receiver/Transmitter Demo w/OLED

OK once you have that going you can try this example, RadioHead69_RawDemoTXR

X_OLED. We're using the Feather with an OLED wing but in theory you can run the

code without the OLED and connect three buttons to GPIO #9, 6, and 5 on the

Feathers. Upload the same code to each Feather. When you press buttons on one

Feather they will be printed out on the other one, and vice versa. Very handy for

testing bi-directional communication!

This demo code shows how you can listen for packets and also check for button

presses (or sensor data or whatever you like) and send them back and forth between

the two radios!

Addressed RX and TX Demo

OK so the basic demo is well and good but you have to do a lot of management of the

connection to make sure packets were received. Instead of manually sending

acknowledgements, you can have the RFM69 and library do it for you! Thus the Relia

ble Datagram part of the RadioHead library.

Load up the RadioHead69_AddrDemo_RX and RadioHead69_AddrDemo_TX

sketches to each of your boards

This example lets you have many 'client' RFM69's all sending data to one 'server'

Don't forget to check the frequency set in the example, and that the pinouts

match your wiring!!!

©Adafruit Industries Page 28 of 66

Each client can have its own address set, as well as the server address. See this code

at the beginning:

// Where to send packets to!
#define DEST_ADDRESS 1
// change addresses for each client board, any number :)
#define MY_ADDRESS 2

For each client, have a unique MY_ADDRESS. Then pick one server that will be

address #1

Once you upload the code to a client, you'll see the following in the serial console:

Because the data is being sent to address #1, but #1 is not acknowledging that data.

If you have the server running, with no clients, it will sit quietly:

©Adafruit Industries Page 29 of 66

Turn on the client and you'll see acknowledged packets!

And the server is also pretty happy

The secret sauce is the addition of this new object:

// Class to manage message delivery and receipt, using the driver declared above
RHReliableDatagram rf69_manager(rf69, MY_ADDRESS);

Which as you can see, is the manager for the RFM69. In setup() you'll need to init it,

although you still configure the underlying rfm69 like before:

 if (!rf69_manager.init()) {
 Serial.println("RFM69 radio init failed");
 while (1);
 }

©Adafruit Industries Page 30 of 66

And when transmitting, use sendToWait which will wait for an ack from the recepient

(at DEST_ADDRESS)

 if (rf69_manager.sendtoWait((uint8_t *)radiopacket, strlen(radiopacket),
DEST_ADDRESS)) {

on the 'other side' use the recvFromAck which will receive and acknowledge a packet

 // Wait for a message addressed to us from the client
 uint8_t len = sizeof(buf);
 uint8_t from;
 if (rf69_manager.recvfromAck(buf, &len, &from)) {

That function will wait forever. If you'd like to timeout while waiting for a packet, use r

ecvfromAckTimeout which will wait an indicated # of milliseconds

if (rf69_manager.recvfromAckTimeout(buf, &len, 2000, &from))

CircuitPython for RFM69

It's easy to use the RFM69HCW radio with CircuitPython and the Adafruit

CircuitPython RFM69 (https://adafru.it/BjE) module. This module allows you to easily

write Python code that sends and receives packets of data with the radio. Be careful

to note this library is for the RFM69 radio only and will not work with the RFM9X LoRa

radios!

Design Considerations

One thing to be aware of before you use the RFM69 series of radios with

CircuitPython are some of the limitations and design considerations for its module.

 Keep these in mind as you think about projects using the RFM69 and CircuitPython:

You can only send and receive packets up to 60 bytes in length at a time. The

size of the radio's internal buffer dictates this limit so if you want to send longer

messages you'll need to break them into a series of smaller send calls in your

application code.

Receiving packets is a 'best effort' in pure Python code. Unlike the Arduino

versions of the RFM69 library there is no interrupt support which means when a

packet is received it must be immediately processed by the Python code or it

could be lost. For your application it will work best to only receive small, single

packet messages at a time. Don't try to receive kilobytes of data or else you'll

•

•

©Adafruit Industries Page 31 of 66

lose packets. This module is really intended for simple single packet messages

like 'ON', 'OFF', etc.

Sending and receiving packets will 'block' your Python code until the packet is

fully processed. This means you can't do a lot of other things while sending and

waiting for packets to be received. Design your application so the radio usage

is the primary scenario and very little other tasks need to happen in the

background.

The module is written to be compatible with the RadioHead RFM69 Arduino

library. This means by default the module will setup the radio with the same

GFSK, 250kbit/s, 250khz deviation, and bit whitening radio configuration so it

can send and receive data with itself and other RadioHead-driven modules. In

addition the CircuitPython module uses the same sync word and packet

preamble (4 bytes) as RadioHead. If you want to use different modulations or

settings you'll need to configure the radio yourself (see the initialization code (h

ttps://adafru.it/BjF) for the registers and bits to access, however you will need to

consult the datasheet for the necessary values).

You can enable encryption and set an AES encryption key.

The CircuitPython module supports advanced RadioHead features like node

addressing and "reliable DataGram". "Reliable DataGram" mode in CircuitPython

has some additional parameters to control timing that are not available with the

RadioHead library. It may be difficult to get reliable transmission to work

between the RadioHead library and CircuitPython.

Wiring With Breakout

First wire up a RFM69 breakout to your board as shown on the previous pages for

Arduino. Note that the G0/interrupt line is not used by the CircuitPython module and

can remain unconnected. Here's an example of wiring a Feather M0 to the radio with

a SPI connection:

•

•

•

•

©Adafruit Industries Page 32 of 66

Board 3V to radio VIN

Board GND to radio GND

Board SCK to radio SCK

Board MOSI to radio MOSI

Board MISO to radio MISO

Board D5 to radio CS (or any other digital I/O pin)

Board D6 to radio RST (or any other digital I/O pin)

Usage with All-In-One Feather M0

Alternatively you can use the Feather M0 RFM69 board but be sure you've loaded the

adafruit-circuitpython-feather_m0_rfm69-*.bin (https://adafru.it/tBa) version of

CircuitPython on your board! This is very important as the RFM69 build has special

pins added to the board module which are used to access the radio's control lines!

For details on how to load a binary circuitpython build, check out our Non-UF2-Install

guide (https://adafru.it/Bed)

•

•

•

•

•

•

•

©Adafruit Industries Page 33 of 66

Adafruit Feather M0 RFM69HCW Packet

Radio - 868 or 915 MHz

This is the Adafruit Feather M0 RFM69

Packet Radio (868 or 915 MHz). We call

these RadioFruits, our take on an...

https://www.adafruit.com/product/3176

Adafruit Feather M0 RFM69HCW Packet

Radio - 433MHz

This is the Adafruit Feather M0 RFM69

Packet Radio (433 MHz). We call these

RadioFruits, our take on an...

https://www.adafruit.com/product/3177

Module Install

If you have the Feather M0 RFM69 and have installed CircuitPython 6.0 or later, it is

not necessary to install the library modules. They are "frozen into" the Circuitpython

build. Skip to the "Usage" section below.

If you are using an older version of CircuitPython you will need to install the modules

as described.

Next you'll need to install the Adafruit CircuitPython RFM69 (https://adafru.it/BjE) mod

ule on your CircuitPython board. Before you do that make sure you are running the la

test version of Adafruit CircuitPython (https://adafru.it/Amd) for your board too (again

be sure to the load the Feather M0 RFM69 version if you're using that board and want

to use its built-in radio module).

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(https://adafru.it/zdx). Our introduction guide has a great page on how to install the

library bundle (https://adafru.it/ABU) for both express and non-express boards.

©Adafruit Industries Page 34 of 66

Remember for non-express boards like the Adafruit Feather M0, you'll need to

manually install the necessary libraries from the bundle:

adafruit_rfm69.mpy

adafruit_bus_device

You can also download the adafruit_rfm69.mpy from its releases page on Github (http

s://adafru.it/Bl2).

Before continuing make sure your board's lib folder or root filesystem has the adafrui

t_rfm69.mpy, and adafruit_bus_device files and folders copied over.

Usage

To demonstrate the usage of the radio we'll initialize it and send and receive data

from the board's Python REPL.

Connect to the board's serial REPL (https://adafru.it/Awz)so you are at the

CircuitPython >>> prompt.

Run the following code to import the necessary modules and initialize the

SPI connection with the sensor:

import board
import busio
import digitalio
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

Now define a few of the pins connected to the RFM69, specifically the CS and RST

pins:

cs = digitalio.DigitalInOut(board.D5)
reset = digitalio.DigitalInOut(board.D6)

However if you're using the Feather M0 RFM69 board with a built-in RFM69 radio

(and you've loaded the special version of CircuitPython just for this board as

mentioned above), you instead want to use these pins for the CS and RST lines:

•

•

©Adafruit Industries Page 35 of 66

cs = digitalio.DigitalInOut(board.RFM69_CS)
reset = digitalio.DigitalInOut(board.RFM69_RST)

You're ready to import the RFM69 module and create an instance of the RFM69 class

inside it. Before you create the radio module instance you'll need to check if you're

using a 433mhz or 915mhz radio module as the initializer requires the frequency to be

specified--confirm which frequency your module uses and run one of the following

lines.

For a 915mhz radio use:

import adafruit_rfm69
rfm69 = adafruit_rfm69.RFM69(spi, cs, reset, 915.0)

Or for a 433mhz radio use:

import adafruit_rfm69
rfm69 = adafruit_rfm69.RFM69(spi, cs, reset, 433.0)

Notice the initializer takes the following required parameters:

spi - The SPI bus connected to the board.

cs - The DigitalInOut instance connected to the CS line of the radio.

reset - The DigitalInOut instance connected to the RST or reset line of the radio.

frequency - The frequency in megahertz of the radio module. Remember this

frequency depends on which type of radio you're using and the frequency you

desire to use!

In addition there are some optional parameters you might specify:

baudrate - The baud rate to use for the SPI connection to the radio. By default

this is 10mhz which is as fast as the radio can handle, but in some cases it might

be too fast if you're wiring up a breakout to a breadboard (breadboards can be

notorious for not working well with high speed signals). If you run into odd

errors like being unable to find the RFM69 radio try lowering the baudrate by

specifying a baudrate=1000000 keyword (which sets the speed to a lower 1mhz

value).

Once the RFM69 class is created and initialized you're ready to start sending and

receiving data.

•

•

•

•

•

©Adafruit Industries Page 36 of 66

Remember by default the module will be configured to interface with the "RadioHead"

RFM69 setup so you can also send and receive packets with an Arduino running the

'raw' TX/RX examples!

To send a message simply call the send function and provide a string or byte string of

data:

rfm69.send('Hello world!')

Remember you can only send a message up to 60 bytes in length at a time!

Attempting to send a message longer than 60 bytes will fail with an exception error. If

you need to send a longer message it will have to be broken up into multiple send

calls and reconstructed on the receiving side.

If you have another RFM69 on the same frequency and modulation waiting to receive

messages (like another CircuitPython module running receive code below) you should

see it receive the message.

You can even have an Arduino running the RadioHead library's raw RX example see

the message that was sent (be sure this receiving side has an encryption key setup

exactly the same way as the sending side, see the encryption_key property

discussion further below):

To receive a message simply call the receive function. This function will wait for

half a second for any packet to be received. If a packet is found it will be returned as

©Adafruit Industries Page 37 of 66

a byte string (remember packets are at most 60 bytes long), or if no packet was found

a result of None is returned.

rfm69.receive()

You can increase the amount of time the module waits for a packet to be received by

specifying the time in seconds as a parameter to the receive call:

rfm69.receive(timeout=5.0) # Wait 5 seconds instead of 0.5 seconds.

Notice this waits longer at the REPL for a packet to be received before returning. If

you have another RFM69 setup try having it send a message while the other is

waiting to receive it. You should see a byte string returned. You can also have an

Arduino running the RadioHead library's raw TX example send messages that are

received by your code (again it must be setup with the same encryption key):

One thing to note in Python byte strings aren't exactly like text strings and you might

not be able to do all the text processing (like find, replace, etc.) as you expect.

 However you can convert a byte string into text by assuming a specific text encoding

like ASCII. For example to receive a packet and convert the contents to an ASCII text

string you can run code like:

packet = rfm69.receive() # Wait for a packet to be received (up to 0.5 seconds)
if packet is not None:
 packet_text = str(packet, 'ascii')
 print('Received: {0}'.format(packet_text))

Notice this code first receives a packet, then checks if one was actually found (the

packet is not None check--if no packet is received a value of None is returned), and

then converts the packet data to a string assuming an ASCII text encoding.

©Adafruit Industries Page 38 of 66

Beyond RX & TX

Beyond basic sending and receiving there are a few properties of the RFM69 class

you might want to interact with:

encryption_key - This is an optional 16 byte string that defines the AES

encryption key used by the radio for sending and receiving packets. Both the

sending and receiving code must have the exact same encryption key set or

they'll be unable to see each other's packets! See the simpletest.py example (h

ttps://adafru.it/Bl3) below for an example of setting the encryption_key to

match the default key from RadioHead library raw examples. By default the

RFM69 class assumes no encryption key is set, and you can set this property to

the value None to disable encryption.

rssi - The received signal strength indicator is a property you can read to see

the strength of the radio signal being received. This is updated when packets

are received and returns a value in decibels (typically negative, so the smaller

the number and closer to 0, the higher the strength / better the signal).

That's all there is to the basic RFM69 radio usage! Remember the CircuitPython

module is designed for sending and receiving small up to 60 byte control messages

and not large or high bandwidth amounts of data.

Here's a complete example of sending a message and waiting to receive and print

any received messages. Save this as main.py on your board and open the serial REPL

to see it print data and any received messages. If you have two boards and radios

setup to run this code at the same time they'll send each other a message on start up!

SPDX-FileCopyrightText: 2018 Tony DiCola for Adafruit Industries
SPDX-License-Identifier: MIT

Simple example to send a message and then wait indefinitely for messages
to be received. This uses the default RadioHead compatible GFSK_Rb250_Fd250
modulation and packet format for the radio.
import board
import busio
import digitalio

import adafruit_rfm69

•

•

©Adafruit Industries Page 39 of 66

Define radio parameters.
RADIO_FREQ_MHZ = 915.0 # Frequency of the radio in Mhz. Must match your
module! Can be a value like 915.0, 433.0, etc.

Define pins connected to the chip, use these if wiring up the breakout according
to the guide:
CS = digitalio.DigitalInOut(board.D5)
RESET = digitalio.DigitalInOut(board.D6)
Or uncomment and instead use these if using a Feather M0 RFM69 board
and the appropriate CircuitPython build:
CS = digitalio.DigitalInOut(board.RFM69_CS)
RESET = digitalio.DigitalInOut(board.RFM69_RST)

Define the onboard LED
LED = digitalio.DigitalInOut(board.D13)
LED.direction = digitalio.Direction.OUTPUT

Initialize SPI bus.
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

Initialze RFM radio
rfm69 = adafruit_rfm69.RFM69(spi, CS, RESET, RADIO_FREQ_MHZ)

Optionally set an encryption key (16 byte AES key). MUST match both
on the transmitter and receiver (or be set to None to disable/the default).
rfm69.encryption_key = (
 b"\x01\x02\x03\x04\x05\x06\x07\x08\x01\x02\x03\x04\x05\x06\x07\x08"
)

Print out some chip state:
print("Temperature: {0}C".format(rfm69.temperature))
print("Frequency: {0}mhz".format(rfm69.frequency_mhz))
print("Bit rate: {0}kbit/s".format(rfm69.bitrate / 1000))
print("Frequency deviation: {0}hz".format(rfm69.frequency_deviation))

Send a packet. Note you can only send a packet up to 60 bytes in length.
This is a limitation of the radio packet size, so if you need to send larger
amounts of data you will need to break it into smaller send calls. Each send
call will wait for the previous one to finish before continuing.
rfm69.send(bytes("Hello world!\r\n", "utf-8"))
print("Sent hello world message!")

Wait to receive packets. Note that this library can't receive data at a fast
rate, in fact it can only receive and process one 60 byte packet at a time.
This means you should only use this for low bandwidth scenarios, like sending
and receiving a single message at a time.
print("Waiting for packets...")
while True:
 packet = rfm69.receive()
 # Optionally change the receive timeout from its default of 0.5 seconds:
 # packet = rfm69.receive(timeout=5.0)
 # If no packet was received during the timeout then None is returned.
 if packet is None:
 # Packet has not been received
 LED.value = False
 print("Received nothing! Listening again...")
 else:
 # Received a packet!
 LED.value = True
 # Print out the raw bytes of the packet:
 print("Received (raw bytes): {0}".format(packet))
 # And decode to ASCII text and print it too. Note that you always
 # receive raw bytes and need to convert to a text format like ASCII
 # if you intend to do string processing on your data. Make sure the
 # sending side is sending ASCII data before you try to decode!
 packet_text = str(packet, "ascii")
 print("Received (ASCII): {0}".format(packet_text))

©Adafruit Industries Page 40 of 66

Using the RFM9X Radio

Before beginning make sure you have your Feather working smoothly, it will make this

part a lot easier. Once you have the basic Feather functionality going - you can

upload code, blink an LED, use the serial output, etc. you can then upgrade to using

the radio itself.

Note that the sub-GHz radio is not designed for streaming audio or video! It's best

used for small packets of data. The data rate is adjustbale but its common to stick to

around 19.2 Kbps (thats bits per second). Lower data rates will be more successful in

their transmissions

You will, of course, need at least two paired radios to do any testing! The radios must

be matched in frequency (e.g. 900 MHz & 900 MHz are ok, 900 MHz & 433 MHz are

not). They also must use the same encoding schemes, you cannot have a 900 MHz

RFM69 packet radio talk to a 900 MHz RFM96 LoRa radio.

Arduino Library

These radios have really excellent code already written, so rather than coming up

with a new standard we suggest using existing libraries such as AirSpayce's

Radiohead library (https://adafru.it/mCA) which also supports a vast number of other

radios

©Adafruit Industries Page 41 of 66

This is a really great Arduino Library, so please support them in thanks for their

efforts!

RadioHead RFM9x Library example

To begin talking to the radio, you will need to download the RadioHead library (https:/

/adafru.it/mCA). You can do that by visiting the github repo and manually downloading

or, easier, just click this button to download the zip corresponding to version 1.62

Note that while all the code in the examples below are based on this version you can

visit the RadioHead documentation page to get the most recent version which may

have bug-fixes or more functionality (https://adafru.it/mCA)

RadioHead-1.62.zip

https://adafru.it/q6f

Uncompress the zip and find the folder named RadioHead and check that the RadioH

ead folder contains RH_RF95.cpp and RH_RF95.h (as well as a few dozen other files

for radios that are supported)

Place the RadioHead library folder your arduinosketchfolder/libraries/ folder.

You may need to create the libraries subfolder if its your first library. Restart the IDE.

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://

adafru.it/aYM)

Basic RX & TX example

Lets get a basic demo going, where one Feather transmits and the other receives.

We'll start by setting up the transmitter

Transmitter example code

This code will send a small packet of data once a second to node address #1

Load this code into your Transmitter Arduino/Feather!

©Adafruit Industries Page 42 of 66

// Feather9x_TX
// -*- mode: C++ -*-
// Example sketch showing how to create a simple messaging client (transmitter)
// with the RH_RF95 class. RH_RF95 class does not provide for addressing or
// reliability, so you should only use RH_RF95 if you do not need the higher
// level messaging abilities.
// It is designed to work with the other example Feather9x_RX

#include <SPI.h>

#include <RH_RF95.h>

/* for feather32u4
#define RFM95_CS 8
#define RFM95_RST 4
#define RFM95_INT 7
*/

/* for feather m0
#define RFM95_CS 8
#define RFM95_RST 4
#define RFM95_INT 3
*/

/* for shield
#define RFM95_CS 10
#define RFM95_RST 9
#define RFM95_INT 7
*/

/* Feather 32u4 w/wing
#define RFM95_RST 11 // "A"
#define RFM95_CS 10 // "B"
#define RFM95_INT 2 // "SDA" (only SDA/SCL/RX/TX have IRQ!)
*/

/* Feather m0 w/wing
#define RFM95_RST 11 // "A"
#define RFM95_CS 10 // "B"
#define RFM95_INT 6 // "D"
*/

#if defined(ESP8266)

 /* for ESP w/featherwing */
 #define RFM95_CS 2 // "E"
 #define RFM95_RST 16 // "D"
 #define RFM95_INT 15 // "B"

#elif defined(ARDUINO_ADAFRUIT_FEATHER_ESP32S2)

 #define RFM95_INT 9 // "A"
 #define RFM95_CS 10 // "B"
 #define RFM95_RST 11 // "C"
 #define LED 13

#elif defined(ESP32)

 /* ESP32 feather w/wing */

Before uploading, check for the #define RF95_FREQ 915.0 line and change that

to 433.0 if you are using the 433MHz version of the LoRa radio!

Uncomment/comment the sections defining the pins for Feather 32u4, Feather

M0, etc depending on which chipset and wiring you are using! The pins used will

vary depending on your setup!

©Adafruit Industries Page 43 of 66

 #define RFM95_RST 27 // "A"
 #define RFM95_CS 33 // "B"
 #define RFM95_INT 12 // next to A

#elif defined(NRF52)

 /* nRF52832 feather w/wing */
 #define RFM95_RST 7 // "A"
 #define RFM95_CS 11 // "B"
 #define RFM95_INT 31 // "C"

#elif defined(TEENSYDUINO)

 /* Teensy 3.x w/wing */
 #define RFM95_RST 9 // "A"
 #define RFM95_CS 10 // "B"
 #define RFM95_INT 4 // "C"
#endif

// Change to 434.0 or other frequency, must match RX's freq!
#define RF95_FREQ 915.0

// Singleton instance of the radio driver
RH_RF95 rf95(RFM95_CS, RFM95_INT);

void setup()
{
 pinMode(RFM95_RST, OUTPUT);
 digitalWrite(RFM95_RST, HIGH);

 Serial.begin(115200);
 while (!Serial) {
 delay(1);
 }

 delay(100);

 Serial.println("Feather LoRa TX Test!");

 // manual reset
 digitalWrite(RFM95_RST, LOW);
 delay(10);
 digitalWrite(RFM95_RST, HIGH);
 delay(10);

 while (!rf95.init()) {
 Serial.println("LoRa radio init failed");
 Serial.println("Uncomment '#define SERIAL_DEBUG' in RH_RF95.cpp for detailed
debug info");
 while (1);
 }
 Serial.println("LoRa radio init OK!");

 // Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM
 if (!rf95.setFrequency(RF95_FREQ)) {
 Serial.println("setFrequency failed");
 while (1);
 }
 Serial.print("Set Freq to: "); Serial.println(RF95_FREQ);

 // Defaults after init are 434.0MHz, 13dBm, Bw = 125 kHz, Cr = 4/5, Sf = 128chips/
symbol, CRC on

 // The default transmitter power is 13dBm, using PA_BOOST.
 // If you are using RFM95/96/97/98 modules which uses the PA_BOOST transmitter
pin, then
 // you can set transmitter powers from 5 to 23 dBm:
 rf95.setTxPower(23, false);
}

int16_t packetnum = 0; // packet counter, we increment per xmission

©Adafruit Industries Page 44 of 66

void loop()
{
 delay(1000); // Wait 1 second between transmits, could also 'sleep' here!
 Serial.println("Transmitting..."); // Send a message to rf95_server

 char radiopacket[20] = "Hello World # ";
 itoa(packetnum++, radiopacket+13, 10);
 Serial.print("Sending "); Serial.println(radiopacket);
 radiopacket[19] = 0;

 Serial.println("Sending...");
 delay(10);
 rf95.send((uint8_t *)radiopacket, 20);

 Serial.println("Waiting for packet to complete...");
 delay(10);
 rf95.waitPacketSent();
 // Now wait for a reply
 uint8_t buf[RH_RF95_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);

 Serial.println("Waiting for reply...");
 if (rf95.waitAvailableTimeout(1000))
 {
 // Should be a reply message for us now
 if (rf95.recv(buf, &len))
 {
 Serial.print("Got reply: ");
 Serial.println((char*)buf);
 Serial.print("RSSI: ");
 Serial.println(rf95.lastRssi(), DEC);
 }
 else
 {
 Serial.println("Receive failed");
 }
 }
 else
 {
 Serial.println("No reply, is there a listener around?");
 }

}

Once uploaded you should see the following on the serial console

©Adafruit Industries Page 45 of 66

Now open up another instance of the Arduino IDE - this is so you can see the serial

console output from the TX Feather while you set up the RX Feather.

Receiver example code

This code will receive and acknowledge a small packet of data.

Load this code into your Receiver Arduino/Feather!

// Feather9x_RX
// -*- mode: C++ -*-
// Example sketch showing how to create a simple messaging client (receiver)
// with the RH_RF95 class. RH_RF95 class does not provide for addressing or
// reliability, so you should only use RH_RF95 if you do not need the higher
// level messaging abilities.
// It is designed to work with the other example Feather9x_TX

#include <SPI.h>

#include <RH_RF95.h>

/* for Feather32u4 RFM9x
#define RFM95_CS 8
#define RFM95_RST 4
#define RFM95_INT 7
*/

Make sure the #define RF95_FREQ 915.0 matches your transmitter Feather!

Uncomment/comment the sections defining the pins for Feather 32u4, Feather

M0, etc depending on which chipset and wiring you are using! The pins used will

vary depending on your setup!

©Adafruit Industries Page 46 of 66

/* for feather m0 RFM9x
#define RFM95_CS 8
#define RFM95_RST 4
#define RFM95_INT 3
*/

/* for shield
#define RFM95_CS 10
#define RFM95_RST 9
#define RFM95_INT 7
*/

/* Feather 32u4 w/wing
#define RFM95_RST 11 // "A"
#define RFM95_CS 10 // "B"
#define RFM95_INT 2 // "SDA" (only SDA/SCL/RX/TX have IRQ!)
*/

/* Feather m0 w/wing
#define RFM95_RST 11 // "A"
#define RFM95_CS 10 // "B"
#define RFM95_INT 6 // "D"
*/

#if defined(ESP8266)

 /* for ESP w/featherwing */
 #define RFM95_CS 2 // "E"
 #define RFM95_RST 16 // "D"
 #define RFM95_INT 15 // "B"

#elif defined(ARDUINO_ADAFRUIT_FEATHER_ESP32S2)

 #define RFM95_INT 9 // "A"
 #define RFM95_CS 10 // "B"
 #define RFM95_RST 11 // "C"
 #define LED

#elif defined(ESP32)

 /* ESP32 feather w/wing */
 #define RFM95_RST 27 // "A"
 #define RFM95_CS 33 // "B"
 #define RFM95_INT 12 // next to A

#elif defined(NRF52)

 /* nRF52832 feather w/wing */
 #define RFM95_RST 7 // "A"
 #define RFM95_CS 11 // "B"
 #define RFM95_INT 31 // "C"

#elif defined(TEENSYDUINO)

 /* Teensy 3.x w/wing */
 #define RFM95_RST 9 // "A"
 #define RFM95_CS 10 // "B"
 #define RFM95_INT 4 // "C"
#endif

// Change to 434.0 or other frequency, must match RX's freq!
#define RF95_FREQ 915.0

// Singleton instance of the radio driver
RH_RF95 rf95(RFM95_CS, RFM95_INT);

// Blinky on receipt
#define LED 13

void setup()
{
 pinMode(LED, OUTPUT);
 pinMode(RFM95_RST, OUTPUT);

©Adafruit Industries Page 47 of 66

 digitalWrite(RFM95_RST, HIGH);

 Serial.begin(115200);
 while (!Serial) {
 delay(1);
 }
 delay(100);

 Serial.println("Feather LoRa RX Test!");

 // manual reset
 digitalWrite(RFM95_RST, LOW);
 delay(10);
 digitalWrite(RFM95_RST, HIGH);
 delay(10);

 while (!rf95.init()) {
 Serial.println("LoRa radio init failed");
 Serial.println("Uncomment '#define SERIAL_DEBUG' in RH_RF95.cpp for detailed
debug info");
 while (1);
 }
 Serial.println("LoRa radio init OK!");

 // Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM
 if (!rf95.setFrequency(RF95_FREQ)) {
 Serial.println("setFrequency failed");
 while (1);
 }
 Serial.print("Set Freq to: "); Serial.println(RF95_FREQ);

 // Defaults after init are 434.0MHz, 13dBm, Bw = 125 kHz, Cr = 4/5, Sf = 128chips/
symbol, CRC on

 // The default transmitter power is 13dBm, using PA_BOOST.
 // If you are using RFM95/96/97/98 modules which uses the PA_BOOST transmitter
pin, then
 // you can set transmitter powers from 5 to 23 dBm:
 rf95.setTxPower(23, false);
}

void loop()
{
 if (rf95.available())
 {
 // Should be a message for us now
 uint8_t buf[RH_RF95_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);

 if (rf95.recv(buf, &len))
 {
 digitalWrite(LED, HIGH);
 RH_RF95::printBuffer("Received: ", buf, len);
 Serial.print("Got: ");
 Serial.println((char*)buf);
 Serial.print("RSSI: ");
 Serial.println(rf95.lastRssi(), DEC);

 // Send a reply
 uint8_t data[] = "And hello back to you";
 rf95.send(data, sizeof(data));
 rf95.waitPacketSent();
 Serial.println("Sent a reply");
 digitalWrite(LED, LOW);
 }
 else
 {
 Serial.println("Receive failed");
 }

©Adafruit Industries Page 48 of 66

 }
}

Now open up the Serial console on the receiver, while also checking in on the

transmitter's serial console. You should see the receiver is...well, receiving packets

You can see that the library example prints out the hex-bytes received 48 65 6C 6C

6F 20 57 6F 72 6C 64 20 23 30 0 20 20 20 20 0 , as well as the ASCII 'string'

Hello World . Then it will send a reply.

And, on the transmitter side, it is now printing that it got a reply after each

transmisssion And hello back to you because it got a reply from the receiver

©Adafruit Industries Page 49 of 66

That's pretty much the basics of it! Lets take a look at the examples so you know how

to adapt to your own radio setup

Feather Radio Pinout

 This is the pinout setup for all Feather 32u4 RFM9X's:

/* for feather32u4 */
#define RFM95_CS 8
#define RFM95_RST 4
#define RFM95_INT 7

This is the pinout for all Feather M0 RFM9X's:

/* for feather m0 */
#define RFM95_CS 8
#define RFM95_RST 4
#define RFM95_INT 3

Frequency

You can dial in the frequency you want the radio to communicate on, such as 915.0,

434.0 or 868.0 or any number really. Different countries/ITU Zones have different ISM

bands so make sure you're using those or if you are licensed, those frequencies you

may use

©Adafruit Industries Page 50 of 66

// Change to 434.0 or other frequency, must match RX's freq!
#define RF95_FREQ 915.0

You can then instantiate the radio object with our custom pin numbers.

// Singleton instance of the radio driver
RH_RF95 rf95(RFM95_CS, RFM95_INT);

Setup

We begin by setting up the serial console and hard-resetting the Radio

void setup()
{
 pinMode(LED, OUTPUT);
 pinMode(RFM95_RST, OUTPUT);
 digitalWrite(RFM95_RST, HIGH);

 while (!Serial); // wait until serial console is open, remove if not tethered to
computer
 Serial.begin(9600);
 delay(100);
 Serial.println("Feather LoRa RX Test!");

 // manual reset
 digitalWrite(RFM95_RST, LOW);
 delay(10);
 digitalWrite(RFM95_RST, HIGH);
 delay(10);

Remove the while (!Serial); line if you are not tethering to a computer, as it will cause

the Feather to halt until a USB connection is made!

Initializing Radio

The library gets initialized with a call to init(). Once initialized, you can set the

frequency. You can also configure the output power level, the number ranges from 5

to 23. Start with the highest power level (23) and then scale down as necessary

 while (!rf95.init()) {
 Serial.println("LoRa radio init failed");
 while (1);
 }
 Serial.println("LoRa radio init OK!");

 // Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM
 if (!rf95.setFrequency(RF95_FREQ)) {
 Serial.println("setFrequency failed");
 while (1);
 }
 Serial.print("Set Freq to: "); Serial.println(RF95_FREQ);

©Adafruit Industries Page 51 of 66

 // Defaults after init are 434.0MHz, 13dBm, Bw = 125 kHz, Cr = 4/5, Sf = 128chips/
symbol, CRC on

 // The default transmitter power is 13dBm, using PA_BOOST.
 // If you are using RFM95/96/97/98 modules which uses the PA_BOOST transmitter
pin, then
 // you can set transmitter powers from 5 to 23 dBm:
 rf95.setTxPower(23, false);

Transmission Code

If you are using the transmitter, this code will wait 1 second, then transmit a packet

with "Hello World #" and an incrementing packet number

void loop()
{
 delay(1000); // Wait 1 second between transmits, could also 'sleep' here!
 Serial.println("Transmitting..."); // Send a message to rf95_server

 char radiopacket[20] = "Hello World # ";
 itoa(packetnum++, radiopacket+13, 10);
 Serial.print("Sending "); Serial.println(radiopacket);
 radiopacket[19] = 0;

 Serial.println("Sending..."); delay(10);
 rf95.send((uint8_t *)radiopacket, 20);

 Serial.println("Waiting for packet to complete..."); delay(10);
 rf95.waitPacketSent();

Its pretty simple, the delay does the waiting, you can replace that with low power

sleep code. Then it generates the packet and appends a number that increases every

tx. Then it simply calls send to transmit the data, and passes in the array of data and

the length of the data.

Note that this does not any addressing or subnetworking - if you want to make sure

the packet goes to a particular radio, you may have to add an identifier/address byte

on your own!

Then you call waitPacketSent() to wait until the radio is done transmitting. You will not

get an automatic acknowledgement, from the other radio unless it knows to send

back a packet. Think of it like the 'UDP' of radio - the data is sent, but its not certain it

was received! Also, there will not be any automatic retries.

Receiver Code

The Receiver has the same exact setup code, but the loop is different

©Adafruit Industries Page 52 of 66

void loop()
{
 if (rf95.available())
 {
 // Should be a message for us now
 uint8_t buf[RH_RF95_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);

 if (rf95.recv(buf, &len))
 {
 digitalWrite(LED, HIGH);
 RH_RF95::printBuffer("Received: ", buf, len);
 Serial.print("Got: ");
 Serial.println((char*)buf);
 Serial.print("RSSI: ");
 Serial.println(rf95.lastRssi(), DEC);

Instead of transmitting, it is constantly checking if there's any data packets that have

been received. available() will return true if a packet with proper error-correction was

received. If so, the receiver prints it out in hex and also as a 'character string'

It also prints out the RSSI which is the receiver signal strength indicator. This number

will range from about -15 to about -100. The larger the number (-15 being the highest

you'll likely see) the stronger the signal.

Once done it will automatically reply, which is a way for the radios to know that there

was an acknowledgement

// Send a reply
 uint8_t data[] = "And hello back to you";
 delay(200);
 rf95.send(data, sizeof(data));
 rf95.waitPacketSent();
 Serial.println("Sent a reply");

It simply sends back a string and waits till the reply is completely sent

CircuitPython for RFM9x LoRa

It's easy to use the RFM9x LoRa radio with CircuitPython and the Adafruit

CircuitPython RFM9x (https://adafru.it/BjD) module. This module allows you to easily

write Python code that sends and receives packets of data with the radio. Be careful

to note this library is for the RFM95/96/97/98 LoRa radio only and will not work with

the simper RFM69 packet radio.

©Adafruit Industries Page 53 of 66

Design Considerations

One thing to be aware of before you use the RFM9x series of radios with

CircuitPython are some of the limitations and design considerations for its module.

 Keep these in mind as you think about projects using the RFM9x and CircuitPython:

You can only send and receive packets up to 252 bytes in length at a time. The

size of the radio's internal buffer dictates this limit so if you want to send longer

messages you'll need to break them into a series of smaller send calls in your

application code.

Receiving packets is a 'best effort' in pure Python code. Unlike the Arduino

versions of the RFM9x library there is no interrupt support which means when a

packet is received it must be immediately processed by the Python code or it

could be lost. For your application it will work best to only receive small, single

packet messages at a time. Don't try to receive kilobytes of data or else you'll

lose packets. This module is really intended for simple single packet messages

like 'ON', 'OFF', etc.

Sending and receiving packets will 'block' your Python code until the packet is

fully processed. This means you can't do a lot of other things while sending and

waiting for packets to be received. Design your application so the radio usage

is the primary scenario and very little other tasks need to happen in the

background.

The module is written to be compatible with the RadioHead RFM95 Arduino

library. This means by default the module will setup the radio with the same

modulation and configuration for transmitting and receiving at the maximum

distance with LoRa support. In addition the CircuitPython module uses the same

packet preamble (8 bytes) and header (4 bytes) as RadioHead. If you want to

use different modulations or settings you'll need to configure the radio yourself

after carefully consulting the datasheet.

The CircuitPython module supports advanced RadioHead features like the node

addressing and "Reliable Datagram". "Reliable DataGram" mode in CircuitPython

has some additional parameters to control timing that are not available with the

RadioHead library. It may be difficult to get reliable transmission to work

between the RadioHead library and CircuitPython.

Encryption and sync words are also not supported by the LoRa radio module.

You must perform these operations yourself in your application code if they're

desired.

•

•

•

•

•

•

©Adafruit Industries Page 54 of 66

Wiring With Breakout

First wire up a RFM9x breakout to your board as shown on the previous pages for

Arduino. Note that the G0/interrupt line is not used by the CircuitPython module and

can remain unconnected. Here's an example of wiring a Feather M0 to the radio with

a SPI connection:

Board 3V to radio VIN

Board GND to radio GND

Board SCK to radio SCK

Board MOSI to radio MOSI

Board MISO to radio MISO

Board D5 to radio CS (or any other digital I/O pin)

Board D6 to radio RST (or any other digital I/O pin)

Upgrading to the UF2 Bootlader (https://adafru.it/ODG)

•

•

•

•

•

•

•

The Feather M0 LoRa does NOT come with UF2 bootloader or CircuitPython pre-

installed, you can install CircuitPython as described below or update to the UF2

bootloader before installing CircuitPython

©Adafruit Industries Page 55 of 66

Usage with All-In-One Feather M0

Alternatively you can use the default bootloader on the Feather M0 RFM9x board but

be sure you load the adafruit-circuitpython-feather_m0_rfm9x-*.bin (https://adafru.it/

tBa) version of CircuitPython on your board! This is very important as the RFM9x build

has special pins added to the board module which are used to access the radio's

control lines!

For details on how to load a binary circuitpython build, check out our Non-UF2-Install

guide (https://adafru.it/Bed)

Adafruit Feather M0 with RFM95 LoRa

Radio - 900MHz

This is the Adafruit Feather M0 RFM95

LoRa Radio (900MHz). We call these

RadioFruits, our take on an

microcontroller with a...

https://www.adafruit.com/product/3178

Adafruit Feather M0 RFM96 LoRa Radio -

433MHz

This is the Adafruit Feather M0 RFM96

LoRa Radio (433 MHz). We call these

RadioFruits, our take on an

microcontroller with a "

https://www.adafruit.com/product/3179

Module Install

If you have the Feather M0 RFM9x and have installed CircuitPython 6.0 or later, it is

not necessary to install the library modules. They are "frozen into" the Circuitpython

build. Skip to the "Usage" section below.

If you are using an older version of CircuitPython you will need to install the modules

as described.

©Adafruit Industries Page 56 of 66

Next you'll need to install the Adafruit CircuitPython RFM9x (https://adafru.it/BjD) mod

ule on your CircuitPython board. Before you do that make sure you are running the la

test version of Adafruit CircuitPython (https://adafru.it/Amd) for your board too (again

be sure to the load the Feather M0 RFM9x version if you're using that board and want

to use its built-in radio module).

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(https://adafru.it/zdx). Our introduction guide has a great page on how to install the

library bundle (https://adafru.it/ABU) for both express and non-express boards.

Remember for non-express boards like the, you'll need to manually install the

necessary libraries from the bundle:

adafruit_rfm9x.mpy

adafruit_bus_device

You can also download the adafruit_rfm9x.mpy from its releases page on Github (http

s://adafru.it/Bl1).

Before continuing make sure your board's lib folder or root filesystem has the adafrui

t_rfm9x.mpy, and adafruit_bus_device files and folders copied over.

Usage

To demonstrate the usage of the radio we'll initialize it and send and receive data

from the board's Python REPL.

Connect to the board's serial REPL (https://adafru.it/Awz)so you are at the

CircuitPython >>> prompt.

Run the following code to import the necessary modules and initialize the

SPI connection with the radio:

import board
import busio
import digitalio
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

•

•

©Adafruit Industries Page 57 of 66

Now define a few of the pins connected to the RFM9x, specifically the CS and RST

pins:

cs = digitalio.DigitalInOut(board.D5)
reset = digitalio.DigitalInOut(board.D6)

However if you're using the Feather M0 RFM95 board with a built-in RFM9x radio (and

you've loaded the special version of CircuitPython just for this board as mentioned

above), you instead want to use these pins for the CS and RST lines:

cs = digitalio.DigitalInOut(board.RFM9X_CS)
reset = digitalio.DigitalInOut(board.RFM9X_RST)

You're ready to import the RFM9x module and create an instance of the RFM9x class

inside it. Before you create the radio module instance you'll need to check if you're

using a 433mhz or 915mhz radio module as the initializer requires the frequency to be

specified--confirm which frequency your module uses and run one of the following

lines.

For a 915mhz radio use:

import adafruit_rfm9x
rfm9x = adafruit_rfm9x.RFM9x(spi, cs, reset, 915.0)

Or for a 433mhz radio use:

import adafruit_rfm9x
rfm9x = adafruit_rfm9x.RFM9x(spi, cs, reset, 433.0)

Notice the initializer takes the following required parameters:

spi - The SPI bus connected to the board.

cs - The DigitalInOut instance connected to the CS line of the radio.

reset - The DigitalInOut instance connected to the RST or reset line of the radio.

frequency - The frequency in megahertz of the radio module. Remember this

frequency depends on which type of radio you're using and the frequency you

desire to use!

In addition there are some optional parameters you might specify:

baudrate - The baud rate to use for the SPI connection to the radio. By default

this is 10mhz which is as fast as the radio can handle, but in some cases it might

•

•

•

•

•

©Adafruit Industries Page 58 of 66

be too fast if you're wiring up a breakout to a breadboard (breadboards can be

notorious for not working well with high speed signals). If you run into odd

errors like being unable to find the RFM9x radio try lowering the baudrate by

specifying a baudrate=1000000 keyword (which sets the speed to a lower 1mhz

value).

Once the RFM9x class is created and initialized you're ready to start sending and

receiving data.

Remember by default the module will be configured to interface with the "RadioHead"

RFM9x setup so you can also send and receive packets with an Arduino running the

RFM95 TX/RX examples!

To send a message simply call the send function and provide a string or byte string of

data:

rfm9x.send('Hello world!')

Remember you can only send a message up to 252 bytes in length at a time!

Attempting to send a message longer than 252 bytes will fail with an exception error.

 If you need to send a longer message it will have to be broken up into multiple send

calls and reconstructed on the receiving side.

If you have another RFM9x on the same frequency waiting to receive messages (like

another CircuitPython module running receive code below) you should see it receive

the message.

You can even have an Arduino running the RadioHead library's RFM95 client example

see the message that was sent:

©Adafruit Industries Page 59 of 66

To receive a message simply call the receive function. This function will wait for

half a second for any packet to be received. If a packet is found it will be returned as

a byte string (remember packets are at most 252 bytes long), or if no packet was

found a result of None is returned.

rfm9x.receive()

You can increase the amount of time the module waits for a packet to be received by

specifying the time in seconds as a parameter to the receive call:

rfm9x.receive(timeout=5.0) # Wait 5 seconds instead of 0.5 seconds.

Notice this waits longer at the REPL for a packet to be received before returning. If

you have another RFM9x setup try having it send a message while the other is waiting

to receive it. You should see a byte string returned. You can also have an Arduino

running the RadioHead library's RFM95 client example send messages that are

received by your code:

One thing to note in Python byte strings aren't exactly like text strings and you might

not be able to do all the text processing (like find, replace, etc.) as you expect.

©Adafruit Industries Page 60 of 66

 However you can convert a byte string into text by assuming a specific text encoding

like ASCII. For example to receive a packet and convert the contents to an ASCII text

string you can run code like:

packet = rfm9x.receive() # Wait for a packet to be received (up to 0.5 seconds)
if packet is not None:
 packet_text = str(packet, 'ascii')
 print('Received: {0}'.format(packet_text))

Notice this code first receives a packet, then checks if one was actually found (the

packet is not None check--if no packet is received a value of None is returned), and

then converts the packet data to a string assuming an ASCII text encoding.

Beyond RX & TX

Beyond basic sending and receiving there are a few properties of the RFM69 class

you might want to interact with:

tx_power - This is a power level (in dB) to use when transmitting with the radio.

By default this is set to a moderate 13 dB value, however you can increase this

depending on the type of radio you're using. For high power radios (the

modules sold by Adafruit) they support a range of TX power from 5 to 23 dB.

Try increasing this to the maximum 23 dB level (however check your local laws

for permission to transmit with such power!) to get the most distance and range.

rssi - The received signal strength indicator is a property you can read to see

the strength of the radio signal being received. This is updated when packets

are received and returns a value in decibels (typically negative, so the smaller th

e number and closer to 0, the higher the strength / better the signal).

That's all there is to the basic RFM9x radio usage! Remember the CircuitPython

module is designed for sending and receiving small up to 252 byte control messages

and not large or high bandwidth amounts of data.

•

•

©Adafruit Industries Page 61 of 66

Here's a complete example of sending a message and waiting to receive and print

any received messages. Save this as main.py on your board and open the serial REPL

to see it print data and any received messages. If you have two boards and radios

setup to run this code at the same time they'll send each other a message on start up!

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

Simple demo of sending and recieving data with the RFM95 LoRa radio.
Author: Tony DiCola
import board
import busio
import digitalio

import adafruit_rfm9x

Define radio parameters.
RADIO_FREQ_MHZ = 915.0 # Frequency of the radio in Mhz. Must match your
module! Can be a value like 915.0, 433.0, etc.

Define pins connected to the chip, use these if wiring up the breakout according
to the guide:
CS = digitalio.DigitalInOut(board.D5)
RESET = digitalio.DigitalInOut(board.D6)
Or uncomment and instead use these if using a Feather M0 RFM9x board and the
appropriate
CircuitPython build:
CS = digitalio.DigitalInOut(board.RFM9X_CS)
RESET = digitalio.DigitalInOut(board.RFM9X_RST)

Define the onboard LED
LED = digitalio.DigitalInOut(board.D13)
LED.direction = digitalio.Direction.OUTPUT

Initialize SPI bus.
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

Initialze RFM radio
rfm9x = adafruit_rfm9x.RFM9x(spi, CS, RESET, RADIO_FREQ_MHZ)

Note that the radio is configured in LoRa mode so you can't control sync
word, encryption, frequency deviation, or other settings!

You can however adjust the transmit power (in dB). The default is 13 dB but
high power radios like the RFM95 can go up to 23 dB:
rfm9x.tx_power = 23

Send a packet. Note you can only send a packet up to 252 bytes in length.
This is a limitation of the radio packet size, so if you need to send larger
amounts of data you will need to break it into smaller send calls. Each send
call will wait for the previous one to finish before continuing.
rfm9x.send(bytes("Hello world!\r\n", "utf-8"))
print("Sent Hello World message!")

Wait to receive packets. Note that this library can't receive data at a fast
rate, in fact it can only receive and process one 252 byte packet at a time.
This means you should only use this for low bandwidth scenarios, like sending
and receiving a single message at a time.
print("Waiting for packets...")

while True:
 packet = rfm9x.receive()
 # Optionally change the receive timeout from its default of 0.5 seconds:
 # packet = rfm9x.receive(timeout=5.0)

©Adafruit Industries Page 62 of 66

 # If no packet was received during the timeout then None is returned.
 if packet is None:
 # Packet has not been received
 LED.value = False
 print("Received nothing! Listening again...")
 else:
 # Received a packet!
 LED.value = True
 # Print out the raw bytes of the packet:
 print("Received (raw bytes): {0}".format(packet))
 # And decode to ASCII text and print it too. Note that you always
 # receive raw bytes and need to convert to a text format like ASCII
 # if you intend to do string processing on your data. Make sure the
 # sending side is sending ASCII data before you try to decode!
 packet_text = str(packet, "ascii")
 print("Received (ASCII): {0}".format(packet_text))
 # Also read the RSSI (signal strength) of the last received message and
 # print it.
 rssi = rfm9x.last_rssi
 print("Received signal strength: {0} dB".format(rssi))

Radio Range F.A.Q.

Which gives better range, LoRa or RFM69?

All other things being equal (antenna, power output, location) you will get better

range with LoRa than with RFM69 modules. We've found 50% to 100% range

improvement is common.

What ranges can I expect for RFM69 radios?

The RFM69 radios have a range of approx. 500 meters line of sight with tuned uni-

directional antennas. Depending on obstructions, frequency, antenna and power

output, you will get lower ranges - especially if you are not line of sight.

What ranges can I expect for RFM9X LoRa radios?

The RFM9x radios have a range of up to 2 km line of sight with tuned uni-

directional antennas. Depending on obstructions, frequency, antenna and power

output, you will get lower ranges - especially if you are not line of sight.

I don't seem to be getting the range advertised! Is my

module broken?

Your module is probably not broken. Radio range is dependant on a lot of things

and all must be attended to make sure you get the best performance!

Tuned antenna for your frequency - getting a well-tuned antenna is incredibly

important. Your antenna must be tuned for the exact frequency you are using

1.

©Adafruit Industries Page 63 of 66

Matching frequency - make sure all modules are on the same exact frequency

Matching settings - all radios must have the same settings so they can

communicate

Directional vs non-directional antennas - for the best range, directional

antennas like Yagi will direct your energy in one path instead of all around

Good power supply - a nice steady power supply will keep your transmissions

clean and strong

Max power settings on the radios - they can be set for higher/lower power!

Don't forget to set them to max.

Line of sight - No obstructions, walls, trees, towers, buildings, mountains, etc

can be in the way of your radio path. Likewise, outdoors is way better than

indoors because its very hard to bounce radio paths around a building

Radio transmission speed - trying to transmit more data faster will be hard. Go

for small packets, with lots of retransmissions. Lowering the baud rate on the

radio (see the libraries for how to do this) will give you better reliability

How do I pick/design the right antenna?

Various antennas will cost diferent amounts and give you different directional gain.

In general, spending a lot on a large fixed antenna can give you better power

transfer if the antenna is well tuned. For most simple uses, a wire works pretty well

The ARRL antena book is recommended if you want to learn how to do the

modeling and analysis (https://adafru.it/sdN)

But nothing beats actual tests in your environment!

What frequency is my module?

Look for a little colored paint dot on top of the module.

GREEN or BLUE = 900 MHz

RED = 433 MHz

Every now and then the paint dot shows up without a color or with the ink dot

burnt. This is just a manufacturing variance and there is nothing wrong with the

board. You should get the frequency you ordered though. So if you plan on mixing

these up, you may want to add a new mark of your own.

2.

3.

4.

5.

6.

7.

8.

•

•

©Adafruit Industries Page 64 of 66

My radio has a burnt blob on it, is it damaged?

Nope! The radios have an ink dot on them, which sometimes gets toasty when we

put the board through the oven, or rework it, so it may have a burnt appearance.

The chip is fine!

Downloads

Datasheets & Files

RFM9x

SX127x Datasheet (https://adafru.it/oBm)- The RFM9X LoRa radio chip itself

RFM9X (https://adafru.it/mFX) - The radio module, which contains the SX1272

chipset

FCC Test Report (https://adafru.it/q6A)

ETSI Test Report (https://adafru.it/r6a)

RoHS Report (https://adafru.it/r6b)

RFM69

SX1231 Datasheet (https://adafru.it/mCv) - The RFM69 radio chip itself

RFM69HCW datasheet (https://adafru.it/mCu)- contains the SX1231 datasheet

plus details about the module (https://adafru.it/mFX)

RoHS Test Report (https://adafru.it/oC1)

RoHS Test Report (https://adafru.it/oC2)

REACH Test Report (https://adafru.it/oC3)

ETSI Test Report (https://adafru.it/r6c)

FCC Test Report (https://adafru.it/r6d)

EagleCAD PCB files on GitHub (https://adafru.it/r6e)

Fritzing object in Adafruit Fritzing library (https://adafru.it/aP3)

Schematic

(Pinouts are the same for all four radio versions)

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 65 of 66

Fabrication Print

Dimensions in inches

©Adafruit Industries Page 66 of 66

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Sub-GHz Development Tools category:

Click to view products by Adafruit manufacturer:

Other Similar products are found below :

EVAL-ADF7021DBJZ EVAL-ADF7021-NDBZ2 EVAL-ADF7021-VDB3Z EVAL-ADF7023DB3Z MICRF219A-433 EV MICRF220-433

EV AD6679-500EBZ EVAL-ADF7901EBZ EVAL-ADF790XEBZ 110976-HMC453QS16G STEVAL-IKR002V7D MAX2602EVKIT+

MAX1472EVKIT-315 MAX1479EVKIT-315 STEVAL-IKR002V3D MAX7042EVKIT-315+ MAX2902EVKIT# MAX9947EVKIT+

MAX1470EVKIT-315 SKY66188-11-EK1 SKY66013-11-EVB EVAL-ADF7023DB5Z DRF1200/CLASS-E 1096 1097 1098 MDEV-900-

PRO DVK-SFUS-1-GEVK DVK-SFUS-API-1-GEVK US-SIGFOX-GEVB STEVAL-IKR002V2D 107755-HMC454ST89 DM182017-2

110961-HMC453ST89 DM182017-1 3179 DC689A DC1513B-AB 3229 3230 3231 3232 DC1250A-AA DC1513B-AC DC1513B-AD

DC1513B-AA TEL0075 131903-HMC921LP4E EU-SIGFOX-GEVB 856512-EVB

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/communication-development-tools/rf-wireless-development-tools/sub-ghz-development-tools
https://www.x-on.com.au/manufacturer/adafruit
https://www.x-on.com.au/mpn/analogdevices/evaladf7021dbjz
https://www.x-on.com.au/mpn/analogdevices/evaladf7021ndbz2
https://www.x-on.com.au/mpn/analogdevices/evaladf7021vdb3z
https://www.x-on.com.au/mpn/analogdevices/evaladf7023db3z
https://www.x-on.com.au/mpn/micrel/micrf219a433ev
https://www.x-on.com.au/mpn/micrel/micrf220433ev
https://www.x-on.com.au/mpn/micrel/micrf220433ev
https://www.x-on.com.au/mpn/analogdevices/ad6679500ebz
https://www.x-on.com.au/mpn/analogdevices/evaladf7901ebz
https://www.x-on.com.au/mpn/analogdevices/evaladf790xebz
https://www.x-on.com.au/mpn/analogdevices/110976hmc453qs16g
https://www.x-on.com.au/mpn/stmicroelectronics/stevalikr002v7d
https://www.x-on.com.au/mpn/maxim/max2602evkit
https://www.x-on.com.au/mpn/maxim/max1472evkit315
https://www.x-on.com.au/mpn/maxim/max1479evkit315
https://www.x-on.com.au/mpn/stmicroelectronics/stevalikr002v3d
https://www.x-on.com.au/mpn/maxim/max7042evkit315
https://www.x-on.com.au/mpn/maxim/max2902evkit
https://www.x-on.com.au/mpn/maxim/max9947evkit
https://www.x-on.com.au/mpn/maxim/max1470evkit315
https://www.x-on.com.au/mpn/skyworks/sky6618811ek1
https://www.x-on.com.au/mpn/skyworks/sky6601311evb
https://www.x-on.com.au/mpn/analogdevices/evaladf7023db5z
https://www.x-on.com.au/mpn/microchip/drf1200classe
https://www.x-on.com.au/mpn/adafruit/1096
https://www.x-on.com.au/mpn/adafruit/1097
https://www.x-on.com.au/mpn/adafruit/1098
https://www.x-on.com.au/mpn/linxtechnologies/mdev900pro
https://www.x-on.com.au/mpn/linxtechnologies/mdev900pro
https://www.x-on.com.au/mpn/onsemiconductor/dvksfus1gevk
https://www.x-on.com.au/mpn/onsemiconductor/dvksfusapi1gevk
https://www.x-on.com.au/mpn/onsemiconductor/ussigfoxgevb
https://www.x-on.com.au/mpn/stmicroelectronics/stevalikr002v2d
https://www.x-on.com.au/mpn/analogdevices/107755hmc454st89
https://www.x-on.com.au/mpn/microchip/dm1820172
https://www.x-on.com.au/mpn/analogdevices/110961hmc453st89
https://www.x-on.com.au/mpn/microchip/dm1820171
https://www.x-on.com.au/mpn/adafruit/3179
https://www.x-on.com.au/mpn/analogdevices/dc689a
https://www.x-on.com.au/mpn/analogdevices/dc1513bab
https://www.x-on.com.au/mpn/adafruit/3229
https://www.x-on.com.au/mpn/adafruit/3230
https://www.x-on.com.au/mpn/adafruit/3231
https://www.x-on.com.au/mpn/adafruit/3232
https://www.x-on.com.au/mpn/analogdevices/dc1250aaa
https://www.x-on.com.au/mpn/analogdevices/dc1513bac
https://www.x-on.com.au/mpn/analogdevices/dc1513bad
https://www.x-on.com.au/mpn/analogdevices/dc1513baa
https://www.x-on.com.au/mpn/dfrobot/tel0075
https://www.x-on.com.au/mpn/analogdevices/131903hmc921lp4e
https://www.x-on.com.au/mpn/onsemiconductor/eusigfoxgevb
https://www.x-on.com.au/mpn/qorvo/856512evb

