

Pi Hole Ad Blocker with Pi Zero W

Created by lady ada

https://learn.adafruit.com/pi-hole-ad-blocker-with-pi-zero-w

Last updated on 2021-11-15 07:00:12 PM EST

© Adafruit Industries Page 1 of 30

Table of Contents

Overview	3
Project Parts	4
• Pi Zero W base parts	4
Pi OLED Display Addition	5
Other things you may need	6
• Using a Pi 3 Instead of Pi Zero W	7
Prepare the Pi	7
Install Pi Hole	8
• Pre-Check	8
Change Hostname	8
Run Pi Hole Installer	9
• Configuration	11
Test Admin Page	13
Test Blocking	13
Install PiOLED	14
• Install 2x20 Header	15
• Install CircuitPython Libraries	16
Update stats.py program	18
Test & Stats at Startup	22
Install Mini PiTFT	23
• Install 2x20 Header	23
• Python Setup	25
Update the stats.py program	25
Test & Stats at Startup	29

© Adafruit Industries Page 2 of 30

Overview

A long time ago we made a Pi into a WiFi gateway that also blocked ads but the Pi Hole project does a way better job!

This project will make your Pi Zero W act as a DNS (Domain Name Server) The kind of device that tells you that adafruit.com is known as IP address 104.20.38.240.

Except Pi Hole DNS will do a special trick, when it is asked for the IP address of ads.adserver.com (for example) it will return nothing! So you will never even connect to the ad server and get the ad. Your connection will be faster, less data, and no intrusive ads. It works great on computers, tablets, phones, etc. Even if you cannot run an ad-blocker plugin on your phone or tablet, this will work and ad-blocker-detectors can't tell you're running it.

Unlike our WiFi gateway demo, you do not have to set up the Pi as your access point, you will only use it as a DNS ad blocker so it will not act as a bottleneck

© Adafruit Industries Page 3 of 30

We upgraded our Pi Zero Pi Hole with a little display, that makes setting up clients easy and also gives you some nifty stats!

Follow along with this guide to DIY your own

Project Parts

This project can be done with any Raspberry Pi, but for the most adorably compact version we're using a Pi Zero W - this has enough power to do what we want, and has built in WiFi too!

Pi Zero W base parts

Its easiest if you pick up a Pi Zero W budget pack as it contains most everything you need

© Adafruit Industries Page 4 of 30

Raspberry Pi Zero W Budget Pack -Includes Pi Zero W

Remember those cereal commercials that would always say, "part of a complete breakfast"? Well the Pi Zero's a lot like that bowl of cereal - while it's... https://www.adafruit.com/product/3410

But you can also just DIY with the minimum requirements:

1x Pi Zero W

the type of low cost game-changing product Raspberry Pi's known for - the super light, super lean microcomputer we've come to know and low, but now with built-in WiFi.

https://www.adafruit.com/product/ 3400

1 x 4G or larger SD Card

You will be burning this card with Raspbian Jessie Lite so its ok if its blank or pre-burned

https://www.adafruit.com/product/102

1 x Adafruit Pi Zero Enclosure

Adafruit's classic, sturdy plastic enclosure. Keeps your Pi Zero safe and sleek. https://www.adafruit.com/product/

1 x 5V 1A USB wall adapter

This one is plenty good and you can use any Micro USB cable with it

https://www.adafruit.com/product/501

1 x 5V 2.4A USB wall adapter

Super powerful for any uses, and comes with a built in MicroUSB cable

https://www.adafruit.com/product/1995

Pi OLED Display Addition

If you want to add an OLED display (which is suggested!) you'll also need:

© Adafruit Industries Page 5 of 30

Adafruit PiOLED - 128x32 Monochrome OLED Add-on for Raspberry Pi

If you're looking for the most compact li'l display for a Raspberry Pi (most likely a https://www.adafruit.com/product/3527

If you are using a Pi Zero W you'll need to add 2x20 headers too

1 x 2x20 Male Header

Solder this in to plug in Pi HATs, GPIO cables, etc as you would into a normal Pi. Requires soldering

https://www.adafruit.com/product/ 2822

or

1 x 2x20 No-Solder Hammer Headers

https://www.adafruit.com/product/3413

If your soldering isn't quite up to scratch, or you just don't own a soldering iron yet, then these nifty hammer headers from Pimoroni might be just what you need.

Other things you may need...

You also need a way to burn that SD card!

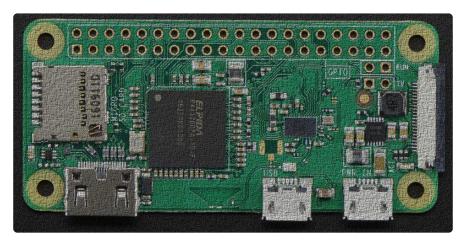
USB MicroSD Card Reader/Writer - microSD / microSDHC / microSDXC

This is the cutest little microSD card reader/writer - but don't be fooled by its adorableness! It's wicked fast and supports up to 64 GB SDXC cards! Simply slide the card into...

https://www.adafruit.com/product/939

© Adafruit Industries Page 6 of 30

Using a Pi 3 Instead of Pi Zero W


Instead of a Pi Zero W you can directly substitute in a Pi 3 which also has built in WiFi, you won't need the 2x20 header in that case

1 x Raspberry Pi 3

https://www.adafruit.com/product/

Raspberry Pi 3 with WiFi built in!

Prepare the Pi

The Pi Zero W is a very minimal computer, so it requires a little work to get it up and running.

We have a guide on how to set up your Pi Zero W 'headless' which is how we recommend you get started. Check out the guide for how to do that!

Set up your Pi Zero W

https://adafru.it/yuC

Here's the quick-start for people with some experience:

- 1. Download the latest 'Lite' Raspbian (https://adafru.it/fQi) to your computer
- 2. Burn the Lite Raspbian to your micro SD card (https://adafru.it/dDL) using your computer
- 3. Re-plug the SD card into your computer (don't use your Pi yet!) and set up your wifi connection by editing supplicant.conf (https://adafru.it/yuD)
- 4. Activate SSH support (https://adafru.it/yuD)
- 5. Plug the SD card into the Pi Zero W

© Adafruit Industries Page 7 of 30

- 6. If you have an HDMI monitor we recommend connecting it up via the mini HDMI adapter we provide in the budget pack so you can see that it's booting OK
- 7. Plug in power to the Pi Zero W you will see the green LED flicker a little. The Pi Zero will reboot while it sets up so wait a good 10 minutes
- 8. If you are running Windows on your computer, install Bonjour support so you can use .local names, you'll need to reboot Windows after installation (https://adafru.it/IPE)
- 9. You can then ssh into raspberrypi.local (https://adafru.it/jvB)

Install Pi Hole

Use the following instructions to install Pi Hole:

https://github.com/pi-hole/pi-hole/#one-step-automated-install (https://adafru.it/PqC)

Pre-Check

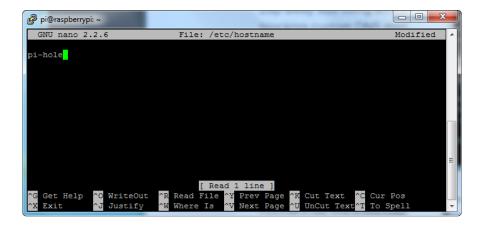
OK once you have set your Pi up and the WiFi is connecting to your home or office network, and your can ssh into it, continue with these easy steps! If you cannot connect via ssh yet, go back and read some of our guides until you are able to log into your Pi.

```
login as: pi
pi@raspberrypi.local's password:

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Wed Aug 16 00:58:31 2017 from fe80::992:656e:d0df:68a0%wlan0

SSH is enabled and the default password for the 'pi' user has not been changed.
This is a security risk - please login as the 'pi' user and type 'passwd' to set
a new password.


pi@raspberrypi:~ $
```

Change Hostname

I like to do this first so I dont get confused between all the different Pi's in the house

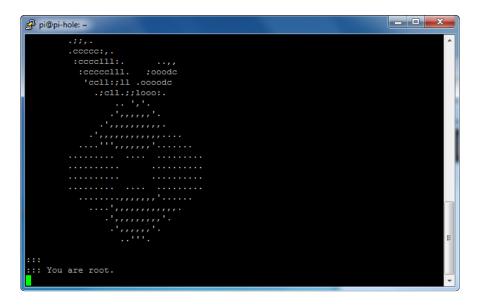
Edit the hostname with sudo nano /etc/hostname and put something else on that first line, like pi-hole

© Adafruit Industries Page 8 of 30

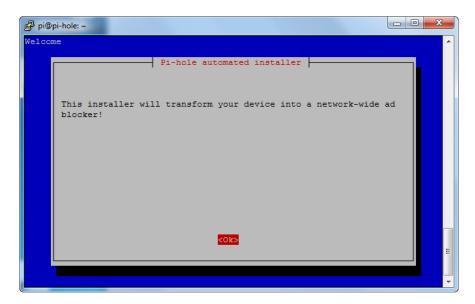
Also change it in the hosts file with sudo nano /etc/hosts to match the same name. It's probably the last line:

Reboot and when you ssh in again, use pi-hole.local

Now's also a good time to change the Pi's password with passwd


Run Pi Hole Installer

There's more information on how installation at https://pi-hole.net/ (https://adafru.it/yuE) - as of the writing of this guide, its easier to just run:

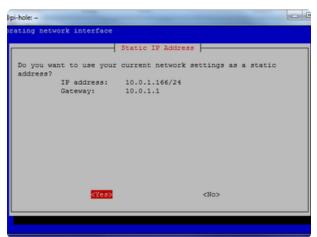

```
curl -sSL https://install.pi-hole.net | bash
```

It will take quite a while to install, and may seem to 'hang' at points. Just let it do its thing for about 20 minutes!

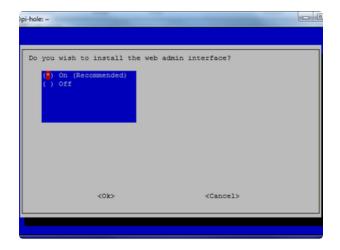
© Adafruit Industries Page 9 of 30



© Adafruit Industries Page 10 of 30


Configuration

Pick who will be the upstream DNS (for non-ad blocked sites) - Google is fine and will probably be up all the time



99% of people will use IPv4 - if you need IPv6 you'd know!

The installer will automatically try to set the dynamic IP address it got from your router to be fixed. This works well enough, if you have an advanced network set up, you can configure a custom IP address

© Adafruit Industries Page 11 of 30

The Web Interface is kinda cool, and is password protected. We'll be showing most of the stats on the little OLED but we still need the API to be running so keep this on

It will keep installing! Just hold tight...

```
pi@pi-hole:~

:::

::: Aggregating list of domains... done!

::: Formatting list of domains to remove comments.... done!

::: 141326 domains being pulled in by gravity...

::: Removing duplicate domains.... done!

::: 116598 unique domains trapped in the event horizon.

:::

::: Adding adlist sources to the whitelist... done!

rm: cannot remove '/etc/pihole/local.list': No such file or directory

::: Whitelisting 6 domains... done!

::: No wildcards used!

::: Formatting domains into a HOSTS file...:: Nothing to blacklist!

done!

:::

::: Cleaning up un-needed files... done!

:::

::: Refresh lists in dnsmasq... done!

:::

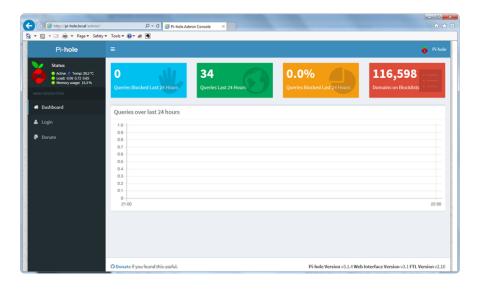
::: Refresh lists in dnsmasq... done!


:::

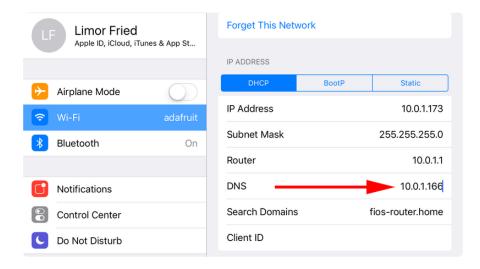
::: Starting pihole-FTL service... done.

:::

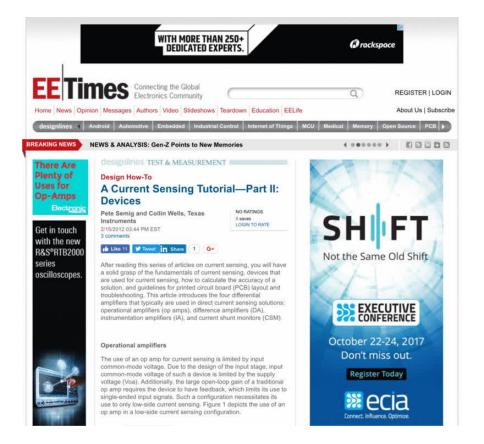
::: Enabling pihole-FTL service to start on reboot...
```


When its done you'll get this final config screen! Copy & paste the password into another window for now

© Adafruit Industries Page 12 of 30


Test Admin Page

On your desktop computer or tablet, visit http://pi-hole.local/admin/ (https://adafru.it/yuF) And you should see an administration panel!


Test Blocking

On your tablet, phone, computer, etc - Set up your DNS server in the network settings to be the IP address of the Pi

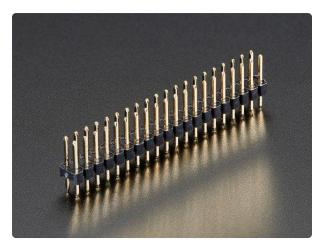
You may need to restart your network or browser to have it kick in, also there may be some cached ads so don't worry if not everything is blocked. Visit your favorite site with ads (not adafruit.com cuz we don't have any! :) and see the difference!

© Adafruit Industries Page 13 of 30

Now that you've got that done, lets continue and install the display!

Install PiOLED

Our little PiOLED add on makes a very cute and easy way to display the Pi Hole stats. We were inspired to add this when we saw this tweet!


© Adafruit Industries Page 14 of 30

What a perfect use! Here's how to add it on for some nice stats. It also displays the hostname and IP address so if you forget it you can just look at the display. It will also tick up when its in use so you can tell its working.

Install 2x20 Header

If you are using a Pi Zero you'll need to solder in or somehow attach a 2x20 header so you can plug in the Pi OLED. Use either a plain 2x20 header and solder it in using an iron + some solder... (https://adafru.it/drl)

Break-away 0.1" 2x20-pin Strip Dual Male Header

If we could eat headers, we'd have them for breakfast, lunch, and dinner. But we can't :(So we're making the best of it and selling them!This...

https://www.adafruit.com/product/2822

© Adafruit Industries Page 15 of 30

Or you can use Hammer headers which do not need soldering!

GPIO Hammer Headers - Solderless Raspberry Pi Connectors

If your soldering isn't quite up to scratch, or you just don't own a soldering iron yet, then these nifty hammer headers from https://www.adafruit.com/product/3413

Either way, you'll want to end up with something like this:

Install CircuitPython Libraries

This guide assumes that you've gotten your Raspberry Pi up and running, and have CircuitPython installed. If not, check out the guide:

CircuitPython Installation Guide

https://adafru.it/Deo

To <u>install the library for the Pi OLED</u> (https://adafru.it/u1f), enter the following into the terminal:

©Adafruit Industries Page 16 of 30

```
sudo apt-get install python3-pip
sudo pip3 install adafruit-circuitpython-ssd1306
```

We also need PIL to allow using text with custom fonts. There are several system libraries that PIL relies on, so installing via a package manager is the easiest way to bring in everything:

```
sudo apt-get install python3-pil
```

And let's also make sure the requests module is installed:

sudo pip3 install requests

A nice font really helps with this little OLED display, something other than the default PIL font. First thing I did is update the font so its a little clearer. I used Kottke's free Silkscreen font which looks great on small screens. (https://adafru.it/yvb)

It's easy to install on your Pi, run

```
cd ~
wget http://kottke.org/plus/type/silkscreen/download/silkscreen.zip
unzip silkscreen.zip
```

© Adafruit Industries Page 17 of 30

```
pi@pi-hole: ~
pi@pi-hole:~ $ cd ~
pi@pi-hole:~ $ wget http://kottke.org/plus/type/silkscreen/download/silkscreen.z
--2019-03-28 17:15:54-- http://kottke.org/plus/type/silkscreen/download/silkscr
Resolving kottke.org (kottke.org)... 162.247.141.135, 2605:f980:a100:6135::1
Connecting to kottke.org (kottke.org)|162.247.141.135|:80... connected.
HTTP request sent, awaiting response... 301 Moved Permanently
Location: https://kottke.org/plus/type/silkscreen/download/silkscreen.zip [follo
--2019-03-28 17:15:54-- https://kottke.org/plus/type/silkscreen/download/silksc
reen.zip
Connecting to kottke.org (kottke.org)|162.247.141.135|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 12646 (12K) [application/zip]
Saving to: 'silkscreen.zip.1
silkscreen.zip.1
                        2019-03-28 17:15:55 (3.45 MB/s) - 'silkscreen.zip.1' saved [12646/12646]
pi@pi-hole:~ $ unzip silkscreen.zip
Archive: silkscreen.zip
  inflating: readme.txt
   inflating: read
creating: _MACOSX/
inflating: MACOSX/._readme.txt
  inflating:
  inflating: slkscr.ttf
  inflating: __MACOSX/._s
inflating: slkscrb.ttf
                   _MACOSX/._slkscr.ttf
 inflating: __MACOSX/._slkscrb.ttf
i@pi-hole:~ $
```

Update stats.py program

Here's the new stats.py code which uses the PiOLED.

Create a new file with nano "pi/stats.py and paste this code below in! Then save it.

```
# Copyright (c) 2017 Adafruit Industries
# Author: Ladyada, Tony DiCola & James DeVito
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
# This example is for use on (Linux) computers that are using CPython with
# Adafruit Blinka to support CircuitPython libraries. CircuitPython does
# not support PIL/pillow (python imaging library)!
# Import Python System Libraries
import json
import subprocess
```

© Adafruit Industries Page 18 of 30

```
import time
# Import Requests Library
import requests
# Import Blinka
from board import SCL, SDA
import busio
import adafruit_ssd1306
# Import Python Imaging Library
from PIL import Image, ImageDraw, ImageFont
api_url = 'http://localhost/admin/api.php'
# Create the I2C interface.
i2c = busio.I2C(SCL, SDA)
# Create the SSD1306 OLED class.
# The first two parameters are the pixel width and pixel height. Change these
# to the right size for your display!
disp = adafruit_ssd1306.SSD1306_I2C(128, 32, i2c)
# Leaving the OLED on for a long period of time can damage it
# Set these to prevent OLED burn in
DISPLAY ON = 10 # on time in seconds
DISPLAY_OFF = 50 # off time in seconds
# Clear display.
disp.fill(0)
disp.show()
# Create blank image for drawing.
# Make sure to create image with mode '1' for 1-bit color.
width = disp.width
height = disp.height
image = Image.new('1', (width, height))
# Get drawing object to draw on image.
draw = ImageDraw.Draw(image)
# Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=0)
# Draw some shapes.
# First define some constants to allow easy resizing of shapes.
padding = -2
top = padding
bottom = height - padding
# Move left to right keeping track of the current x position
# for drawing shapes.
# Load nice silkscreen font
font = ImageFont.truetype('/home/pi/slkscr.ttf', 8)
    # Draw a black filled box to clear the image.
    draw.rectangle((0, 0, width, height), outline=0, fill=0)
    # Shell scripts for system monitoring from here :
    # https://unix.stackexchange.com/questions/119126/command-to-display-memory-
usage-disk-usage-and-cpu-load
    cmd = "hostname -I | cut -d\' \' -f1 | tr -d \'\\n\'"
    IP = subprocess.check output(cmd, shell=True).decode("utf-8")
    cmd = "hostname | tr -d \'\\n\'
    HOST = subprocess.check_output(cmd, shell=True).decode("utf-8")
    cmd = "top -bn1 | grep \overline{load} | awk "
          "'{printf \"CPU Load: %.2f\", $(NF-2)}'"
```

© Adafruit Industries Page 19 of 30

```
CPU = subprocess.check output(cmd, shell=True).decode("utf-8")
cmd = "free -m | awk \overline{NR}=2{printf} " \
      "\"Mem: %s/%sMB %.2f%%\", $3,$2,$3*100/$2 }'"
MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")
cmd = \overline{\ }df -h | awk '$NF==\\overline{\ }\"{printf " \
      "\"Disk: %d/%dGB %s\", $3,$2,$5}'"
Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")
# Pi Hole data!
try:
    r = requests.get(api_url)
    data = json.loads(r.text)
    DNSQUERIES = data['dns_queries_today']
    ADSBLOCKED = data['ads_blocked_today']
    CLIENTS = data['unique_clients']
except KeyError:
    time.sleep(1)
    continue
draw.text((x, top + 24), "DNS Queries: " +
          str(DNSQUERIES), font=font, fill=255)
# skip over original stats
# draw.text((x, top+8), str(CPU), font=font, fill=255)
# draw.text((x, top+16), str(MemUsage), font=font, fill=255)
# draw.text((x, top+25), str(Disk), font=font, fill=255)
# Display image.
disp.image(image)
disp.show()
time.sleep(DISPLAY_ON)
disp.fill(0)
disp.show()
time.sleep(DISPLAY_OFF)
```

Running the OLED for a long period of time without changing the display can cause burn in. For that reason, the version of stats.py above does not show the information constantly.

You'll notice its very similar to the original stats.py but we've added PiHole API support. Here's how we did that!

First up, Pi Hole stats are available through the web server, in json format, so we need to add web requests and json parsing to python. Then set the URL for the API access, which is localhost (the same computer) and through the admin page:

```
import subprocess
import json
import requests
api_url = 'http://localhost/admin/api.php'
```

© Adafruit Industries Page 20 of 30

We load up the nice Silkscreen font here, in 8 point type. Note that we have to have the full path of the file.

```
# Load nice silkscreen font
font = ImageFont.truetype("/home/pi/slkscr.ttf", 8)
```

This is where we grab the API data. I put it in a try block, so it would retry in case the API access failed for some reason

```
# Pi Hole data!
try:
    r = requests.get(api_url)
    data = json.loads(r.text)
    DNSQUERIES = data['dns_queries_today']
    ADSBLOCKED = data['ads_blocked_today']
    CLIENTS = data['unique_clients']
except:
    time.sleep(1)
    continue
```

If you want to print out different info, run this small script in python to see what is available:

```
import json
import requests

api_url = 'http://localhost/admin/api.php'
r = requests.get(api_url)
data = json.loads(r.text)
print(data)
```

```
pi@pi-hole:~

pi@pi-hole:~ $ python3

Python 3.5.3 (default, Sep 27 2018, 17:25:39)

[GCC 6.3.0 20170516] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import json

>>> import requests

>>> api_url = 'http://localhost/admin/api.php'

>>> r = requests.get(api_url)

>>> data = json.loads(r.text)

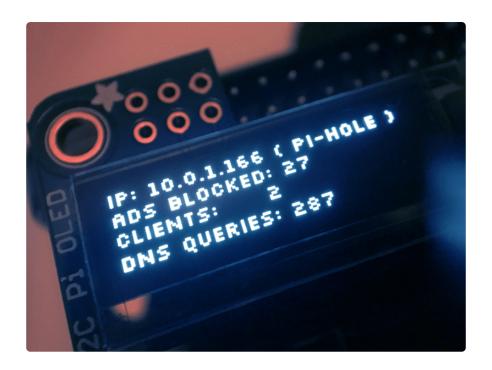
>>> print(data)

{'privacy_level': 0, 'domains_being_blocked': 112361, 'reply_CNAME': 126, 'unique_domains': 89, 'queries_cached': 101, 'status': 'enabled', 'dns_queries_all_types': 405, 'ads_percentage_today': 8.888889, 'reply_IP': 60, 'reply_NXDOMĀIN': 0, 'clients_ever_seen': 2, 'ads_blocked_today': 36, 'unique_clients': 2, 'queries_forwarded': 268, 'reply_NODATA': 18, 'dns_queries_today': 405, 'gravity_last_upd_ated': {'relative': {'hours': '00', 'minutes': '48', 'days': '0'}, 'absolute': 1

553790178, 'file_exists': True}}
```

You can also customize the display printout, but i liked having the IP first, then the pi hole stats below:

©Adafruit Industries Page 21 of 30


Test & Stats at Startup

Once you have the script saved, you can run it with sudo python3 "pi/stats.py and look on the OLED to make sure you see your IP address and such!

Lastly we just want to make this run at boot. We'll do that the easy way by editing /etc /rc.local with sudo nano /etc/rc.local and adding sudo python3 ~pi/stats.py & before e xit 0

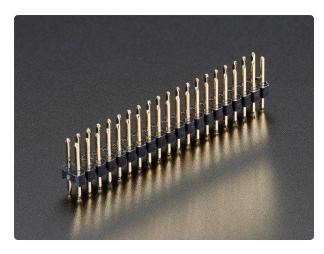
Then save and you can reboot to test it out

© Adafruit Industries Page 22 of 30

Install Mini PiTFT

We've updated our popular PiOLED script for use with the Mini PiTFT (https://adafru.it /HBK), a 135x240 Color TFT add-on for your Raspberry Pi. This cute little display has t wo tactile buttons on GPIO pins that we'll use to make a simple user-interface display for your Pi-Hole.

Adafruit Mini PiTFT - 135x240 Color TFT Add-on for Raspberry Pi


If you're looking for the most compact li'l color display for a Raspberry Pi (most likely a

https://www.adafruit.com/product/4393

Install 2x20 Header

If you are using a Pi Zero, you'll need to solder on or somehow attach a 2x20 header so you can plug in the Pi OLED. Use either a plain 2x20 header and solder it in using an iron + some solder... (https://adafru.it/drl)

© Adafruit Industries Page 23 of 30

Break-away 0.1" 2x20-pin Strip Dual Male Header

If we could eat headers, we'd have them for breakfast, lunch, and dinner. But we can't :(So we're making the best of it and selling them!This...

https://www.adafruit.com/product/2822

Or you can use Hammer headers which do not need soldering.

GPIO Hammer Headers - Solderless Raspberry Pi Connectors

If your soldering isn't quite up to scratch, or you just don't own a soldering iron yet, then these nifty hammer headers from https://www.adafruit.com/product/3413

Either way, you'll want to end up with something like this:

© Adafruit Industries Page 24 of 30

Python Setup

This guide assumes that you've gotten your Raspberry Pi up and running, have CircuitPython installed, and have installed CircuitPython libraries for the Mini PiTFT. If not, follow the steps in the guide below and come back to this page when you've completed them.

Python Setup Guide

https://adafru.it/HBL

Update the stats.py program

Here's the new stats.py code which uses the Mini PiTFT.

Create a new file using nano ~pi/stats.py and paste the code below in. Then, sav e the code.

```
# -*- coding: utf-8 -*-
# Import Python System Libraries
import time
import json
import subprocess
# Import Requests Library
import requests
#Import Blinka
import digitalio
import board
# Import Python Imaging Library
from PIL import Image, ImageDraw, ImageFont
import adafruit_rgb_display.st7789 as st7789
api_url = 'http://localhost/admin/api.php'
# Configuration for CS and DC pins (these are FeatherWing defaults on M0/M4):
cs_pin = digitalio.DigitalInOut(board.CE0)
dc_pin = digitalio.DigitalInOut(board.D25)
reset_pin = None
# Config for display baudrate (default max is 24mhz):
BAUDRATE = 64000000
# Setup SPI bus using hardware SPI:
spi = board.SPI()
# Create the ST7789 display:
\label{eq:disp} \mbox{disp} = \mbox{st7789.ST7789(spi, cs=cs\_pin, dc=dc\_pin, rst=reset\_pin, baudrate=BAUDRATE,}
                     width=135, height=240, x offset=53, y offset=40)
# Create blank image for drawing.
# Make sure to create image with mode 'RGB' for full color.
height = disp.width # we swap height/width to rotate it to landscape!
```

© Adafruit Industries Page 25 of 30

```
width = disp.height
image = Image.new('RGB', (width, height))
rotation = 90
# Get drawing object to draw on image.
draw = ImageDraw.Draw(image)
# Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=(0, 0, 0))
disp.image(image, rotation)
# Draw some shapes.
# First define some constants to allow easy resizing of shapes.
padding = -2
top = padding
bottom = height-padding
# Move left to right keeping track of the current x position for drawing shapes.
x = 0
# Alternatively load a TTF font. Make sure the .ttf font file is in the
# same directory as the python script!
# Some other nice fonts to try: http://www.dafont.com/bitmap.php
font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', 24)
# Turn on the backlight
backlight = digitalio.DigitalInOut(board.D22)
backlight.switch to output()
backlight.value = True
# Add buttons as inputs
buttonA = digitalio.DigitalInOut(board.D23)
buttonA.switch_to_input()
while True:
    # Draw a black filled box to clear the image.
    draw.rectangle((0, 0, width, height), outline=0, fill=0)
    # Shell scripts for system monitoring from here:
    # https://unix.stackexchange.com/questions/119126/command-to-display-memory-
usage-disk-usage-and-cpu-load
    cmd = "hostname -I | cut -d\' \' -f1"
    IP = "IP: "+subprocess.check_output(cmd, shell=True).decode("utf-8")
    cmd = "hostname | tr -d \'\\n\'
    HOST = subprocess.check_output(cmd, shell=True).decode("utf-8")
cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"
CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")
cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\",
$3,$2,$3*100/$2 }'"
    MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")
    cmd = "df - h \mid awk '$NF == \"/\"{printf \"Disk: %d/%d GB %s\", $3,$2,$5}\"
    Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")
    cmd = "cat /sys/class/thermal/thermal_zone0/temp | awk \'{printf \"CPU Temp: %.
1f C\", $(NF-0) / 1000}\'" # pylint: disable=line-too-long
    # Pi Hole data!
    try:
         r = requests.get(api_url)
         data = json.loads(r.text)
         DNSQUERIES = data['dns_queries_today']
ADSBLOCKED = data['ads_blocked_today']
         CLIENTS = data['unique clients']
    except KeyError:
         time.sleep(1)
         continue
    y = top
    if not buttonA.value: # just button A pressed
    draw.text((x, y), IP, font=font, fill="#FFFF00")
         y += font.getsize(IP)[1]
```

©Adafruit Industries Page 26 of 30

```
draw.text((x, y), CPU, font=font, fill="#FFFF00")
        y += font.getsize(CPU)[1]
        draw.text((x, y), MemUsage, font=font, fill="#00FF00")
        y += font.getsize(MemUsage)[1]
        draw.text((x, y), Disk, font=font, fill="#0000FF")
        y += font.getsize(Disk)[1]
        draw.text((x, y), "DNS Queries: {}".format(DNSQUERIES), font=font,
fill="#FF00FF")
   else:
        draw.text((x, y), IP, font=font, fill="#FFFF00")
        y += font.getsize(IP)[1]
        draw.text((x, y), HOST, font=font, fill="#FFFF00")
        y += font.getsize(HOST)[1]
        draw.text((x, y), "Ads Blocked: {}".format(str(ADSBLOCKED)), font=font,
fill="#00FF00")
        y += font.getsize(str(ADSBLOCKED))[1]
        draw.text((x, y), "Clients: {}".format(str(CLIENTS)), font=font,
fill="#0000FF")
        y += font.getsize(str(CLIENTS))[1]
        draw.text((x, y), "DNS Queries: {}".format(str(DNSQUERIES)), font=font,
fill="#FF00FF")
       y += font.getsize(str(DNSQUERIES))[1]
    # Display image.
   disp.image(image, rotation)
    time.sleep(.1)
```

You'll notice it's very similar to the original stats.py, but we've added PiHole API support. Here's how we did that:

First up, Pi Hole stats are available through the web server, in JSON format, so we need to add web requests and JSON parsing to Python. Then set the URL for the API access, which is localhost (the same computer) and through the admin page:

```
# Import Python System Libraries
import time
import json
import subprocess

# Import Requests Library
import requests
api_url = 'http://localhost/admin/api.php'
```

We load up the nice DejaVuSans font here. Note that we have to have the full path of the file.

```
# Alternatively load a TTF font. Make sure the .ttf font file is in the
# same directory as the python script!
# Some other nice fonts to try: http://www.dafont.com/bitmap.php
font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', 24)
```

This is where we grab the API data. I put it in a try block, so it would retry in case the API access failed for some reason

© Adafruit Industries Page 27 of 30

```
# Pi Hole data!
    try:
        r = requests.get(api_url)
        data = json.loads(r.text)
        DNSQUERIES = data['dns_queries_today']
        ADSBLOCKED = data['ads_blocked_today']
        CLIENTS = data['unique_clients']
    except KeyError:
        time.sleep(1)
        continue
```

If you want to print out different info, run this small script in python to see what is available:

```
import json
import requests

api_url = 'http://localhost/admin/api.php'
r = requests.get(api_url)
data = json.loads(r.text)
print(data)
```

```
pi@pi-hole:~

pi@pi-hole:~ $ python3

Python 3.5.3 (default, Sep 27 2018, 17:25:39)
[GCC 6.3.0 20170516] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import json

>>> import requests

>>> api_url = 'http://localhost/admin/api.php'

>>> r = requests.get(api_url)

>>> print(data)
{'privacy_level': 0, 'domains_being_blocked': 112361, 'reply_CNAME': 126, 'unique_domains': 89, 'queries_cached': 101, 'status': 'enabled', 'dns_queries_all_types': 405, 'ads_percentage_today': 8.888889, 'reply_IP': 60, 'reply_NXDOMAIN': 0, 'clients_ever_seen': 2, 'ads_blocked_today': 36, 'unique_clients': 2, 'queries_forwarded': 268, 'reply_NODATA': 18, 'dns_queries_today': 405, 'gravity_last_upd ated': {'relative': {'hours': '00', 'minutes': '48', 'days': '0'}, 'absolute': 1

553790178, 'file_exists': True}}
```

Since the MiniTFT has two tactile push-buttons, we modified the script to print out extra information from the Raspberry Pi when you press the top button.


```
if not buttonA.value: # just button A pressed
        draw.text((x, y), IP, font=font, fill="#FFFF00")
        y += font.getsize(IP)[1]
        draw.text((x, y), CPU, font=font, fill="#FFFF00")
        y += font.getsize(CPU)[1]
        draw.text((x, y), MemUsage, font=font, fill="#00FF00")
        y += font.getsize(MemUsage)[1]
        draw.text((x, y), Disk, font=font, fill="#0000FF")
        y += font.getsize(Disk)[1]
        draw.text((x, y), "DNS Queries: {}".format(DNSQUERIES), font=font,
fill="#FF00FF")
   else:
        draw.text((x, y), IP, font=font, fill="#FFFF00")
        y += font.getsize(IP)[1]
        draw.text((x, y), HOST, font=font, fill="#FFFF00")
        y += font.getsize(HOST)[1]
        draw.text((x, y), "Ads Blocked: {}".format(str(ADSBLOCKED)), font=font,
fill="#00FF00")
```

© Adafruit Industries Page 28 of 30

```
y += font.getsize(str(ADSBLOCKED))[1]
    draw.text((x, y), "Clients: {}".format(str(CLIENTS)), font=font,
fill="#0000FF")
    y += font.getsize(str(CLIENTS))[1]
    draw.text((x, y), "DNS Queries: {}".format(str(DNSQUERIES)), font=font,
fill="#FF00FF")
    y += font.getsize(str(DNSQUERIES))[1]
```

Test & Stats at Startup

Once you have the script saved, you can run it with sudo python3 ~pi/stats.py

Look on the Mini PiTFT to make sure you see your IP address along with some statistics from Pi-Hole.

Pushing the top button should display extra statistics about the Pi such as its hostname, CPU load, memory utilization, disk usage, and DNS queries.

Lastly we just want to make this run at boot. We'll do that the easy way by editing /etc /rc.local with sudo nano /etc/rc.local and adding sudo python3 $^{\circ}$ pi/stats.py & before e xit 0

© Adafruit Industries Page 29 of 30

Then save and you can reboot to test it out

© Adafruit Industries Page 30 of 30

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Development Boards & Kits - ARM category:

Click to view products by Adafruit manufacturer:

Other Similar products are found below:

SAFETI-HSK-RM48 PICOHOBBITFL CC-ACC-MMK-2443 TWR-MC-FRDMKE02Z EVALSPEAR320CPU EVB-SCMIMX6SX
MAX32600-KIT# TMDX570LS04HDK TXSD-SV70 OM13080UL EVAL-ADUC7120QSPZ OM13082UL TXSD-SV71
YGRPEACHNORMAL OM13076UL PICODWARFFL YR8A77450HA02BG 3580 32F3348DISCOVERY ATTINY1607 CURIOSITY
NANO PIC16F15376 CURIOSITY NANO BOARD PIC18F47Q10 CURIOSITY NANO VISIONSTK-6ULL V.2.0 80-001428 DEV-17717
EAK00360 YR0K77210B000BE RTK7EKA2L1S00001BE MAX32651-EVKIT# SLN-VIZN-IOT LV18F V6 DEVELOPMENT SYSTEM
READY FOR AVR BOARD READY FOR PIC BOARD READY FOR PIC (DIP28) EVB-VF522R3 AVRPLC16 V6 PLC SYSTEM
MIKROLAB FOR AVR XL MIKROLAB FOR PIC L MINI-AT BOARD - 5V MINI-M4 FOR STELLARIS MOD-09.Z BUGGY +
CLICKER 2 FOR PIC32MX + BLUETOOT 1410 LETS MAKE PROJECT PROGRAM. RELAY PIC LETS MAKE - VOICE
CONTROLLED LIGHTS LPC-H2294 DSPIC-READY2 BOARD DSPIC-READY3 BOARD MIKROBOARD FOR ARM 64-PIN
MIKROLAB FOR AVR