

Adafruit CharliePlex LED Matrix Bonnet

Created by Kattni Rembor

https://learn.adafruit.com/adafruit-charlieplex-bonnet

Last updated on 2021-11-15 07:34:39 PM EST

©Adafruit Industries Page 1 of 25

3

5

6

6

6

7

7

8

9

10

10

14

15

16

16

17

17

17

18

20

21

24

24

24

24

Table of Contents

Overview

Pinouts

• IS31FL3731 Driver Chip

• 8 x 16 LED Matrix

• Address Jumper

Python & CircuitPython

• CircuitPython Microcontroller Wiring

• Python Computer Wiring

• CircuitPython Installation of IS31FL3731 Library

• Python Installation of IS31FL3731 Library

• CircuitPython & Python Usage

• Full Example Code

• Text Scrolling Example

Python Examples

• Additional Setup

• DejaVu TTF Font

• Pillow Library

• Speeding up the Display on Raspberry Pi

• Scrolling Marquee Example

• Full Source Code

• Animated GIF Example

Python Docs

Downloads

• Files

• Schematic and Fab Print

©Adafruit Industries Page 2 of 25

Overview

You won't be able to look away from the mesmerizing patterns created by this Adafru

it CharliePlex LED Matrix Display Bonnet. This 16x8 LED display can be placed atop

any Raspberry Pi computer with a 2x20 connector, for a beautiful, bright grid of 128

CharliePlexed LEDs. It even comes with a built-in CharliePlex driver that is run over

I2C.

We carry these Bonnets in a few vivid colors (https://adafru.it/EcS).

©Adafruit Industries Page 3 of 25

What is particularly nice about this Bonnet is the I2C LED driver chip has the ability to

PWM each individual LED in a 16x8 grid so you can have beautiful LED lighting

effects, without a lot of pin twiddling. Simply tell the chip which LED on the grid you

want lit, and what brightness and it's all taken care of for you. You get 8-bit (256 level)

dimming for each individual LED.

The IS31FL3731 is a nice little chip - and it runs happily over 3.3V power. Inside is

enough RAM for 8 separate frames of display memory so you can set up multiple

frames of an animation and flip them to be displayed with a single command. Since it

uses I2C, it takes up only the SDA/SCL pins on your Pi and can share those pins with

other I2C devices and sensors.

The bonnet comes fully assembled, no soldering required, so you can plug it in

immediately. To program it, you'll use our CircuitPython library (https://adafru.it/zlE),

which works with Linux computers like Raspberry Pi. After a pip install, run some of

the examples to display simple graphics or text (https://adafru.it/EcT).

©Adafruit Industries Page 4 of 25

Pinouts

The CharliePlex LED Matrix Bonnet includes the IS31FL3731 driver chip and 128 LEDs

in an 8x16 matrix. Let's take a look!

The main pins used by the Bonnet are 5V, GND, SDA and SCL on the Raspberry Pi.

We power the LEDs from the 5V supply, but the SDA/SCL logic level is still only 3.3V

so it's safe!

©Adafruit Industries Page 5 of 25

IS31FL3731 Driver Chip

The IS31FL3731 drives the LED matrix via

I2C.

8 x 16 LED Matrix

The 8 x 16 LED matrix on the CharliePlex

Bonnet provides 128 LEDs.

Address Jumper

The default I2C address for the Bonnet is

0x74 . Solder this jumper closed to

change it to 0x70 to avoid I2C address

conflicts, if needed.

©Adafruit Industries Page 6 of 25

Python & CircuitPython

It's easy to use the IS31FL3731 Charlieplex breakout, the Charlieplex FeatherWing, and

the CharliePlex Bonnet with Python or CircuitPython and the Adafruit CircuitPython

IS31FL3731 (https://adafru.it/zlE) module. This module allows you to easily write

Python code that does all sorts of fun things with the LED matrix.

You can use CharliePlex LED matrices with any CircuitPython microcontroller board or

with a computer that has GPIO and Python thanks to Adafruit_Blinka, our

CircuitPython-for-Python compatibility library (https://adafru.it/BSN).

CircuitPython Microcontroller Wiring

First wire up a IS31FL3731 breakout to your board exactly as shown on the previous

pages for Arduino.

For the FeatherWing, solder on the headers, and attach to the Feather.

Here's an example of wiring a Feather M0 to the breakout with I2C:

Board 3V to sensor VCC

Board GND to sensor GND

Board SCL to sensor SCL

Board SDA to sensor SDA

And here is the CharlieWing on a Feather M4:

•

•

•

•

©Adafruit Industries Page 7 of 25

Assemble the CharlieWing by

soldering headers onto the board.

Once assembled, plug it into a

Feather!

Python Computer Wiring

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported (https://adafru.it/BSN).

For the Bonnet, simply attach the Bonnet to your Raspberry Pi header.

Here's the Raspberry Pi wired to the breakout with I2C:

Pi 3V3 to sensor VIN

Pi GND to sensor GND

Pi SCL to sensor SCL

Pi SDA to sensor SDA

Here is the CharliePlex Bonnet on a Raspberry Pi Zero:

•

•

•

•

•

•

©Adafruit Industries Page 8 of 25

The CharliePlex Bonnet comes fully

assembled. Simply plug it into your

Raspberry Pi!

CircuitPython Installation of IS31FL3731

Library

You'll need to install the Adafruit CircuitPython IS31FL3731 (https://adafru.it/zlE) library

on your CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/Amd) for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(https://adafru.it/uap). Our CircuitPython starter guide has a great page on how to

install the library bundle (https://adafru.it/ABU).

For non-express boards like the Trinket M0 or Gemma M0, you'll need to manually

install the necessary libraries from the bundle:

adafruit_is31fl3731.mpy

adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has the adafrui

t_is31fl3731.mpy, and adafruit_bus_device files and folders copied over.

Next connect to the board's serial REPL (https://adafru.it/Awz) so you are at the

CircuitPython >>> prompt.

•

•

©Adafruit Industries Page 9 of 25

Python Installation of IS31FL3731 Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready (https

://adafru.it/BSN)!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-is31fl3731 adafruit-

circuitpython-framebuf

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

CircuitPython & Python Usage

To demonstrate the usage of the sensor we'll initialize it and manipulate the LED

matrix from the board's Python REPL.

NOTE: Due to size and design of each CharliePlex matrix form-factor, import and

initialisation is different for each. Make sure you're running the correct code for your

matrix!

First, run the following code to import the necessary modules:

import board

import busio

If you're using the CharliePlex breakout, initialise it by running the following code:

from adafruit_is31fl3731.matrix import Matrix as Display

If you're using the CharliePlex FeatherWing, run the following code:

from adafruit_is31fl3731.charlie_wing import CharlieWing as Display

If you're using the CharliePlex Bonnet, run the following code:

•

©Adafruit Industries Page 10 of 25

from adafruit_is31fl3731.charlie_bonnet import CharlieBonnet as Display

Now, no matter which board you are using, you'll create the I2C object and pass that

into Display .

i2c = busio.I2C(board.SCL, board.SDA)

display = Display(i2c)

When the display initializes it will go through and clear each frame (there are 8 frames

total) of the display. You might see the display momentarily flash and then turn off to a

clear no pixel lit image.

You can control all of the board's pixels using the fill function. Send to this function

a value from 0 to 255 where 0 is every LED pixel turned off and 255 is every LED

pixel turned on to maximum brightness. For example to set all the pixels to half their

brightness run:

display.fill(127)

You might notice some buzzing or ringing sounds from the display when all pixels are

lit, this is normal as the Charlieplex driver quickly switches LEDs on and off.

If you've used other displays like LED matrices you might notice the Charlieplex

module doesn't need to have a show function called to make the changes visible. As

soon as you call fill or other display functions the display will update!

You can turn all the pixels off with fill set to 0 :

display.fill(0)

©Adafruit Industries Page 11 of 25

Now for some fun! You can set any of the LED pixels using the pixel function. This

function takes the following parameters:

X position - The location of the horizontal / X pixel position.

Y position - The location of the vertical / Y pixel position.

Intensity - This is a value from 0 to 255 which specifies how bright the pixel

should be, 0 is off and 255 is maximum brightness. Use an in-between value to

show a less bright pixel.

For example to set pixel 0, 0 to full brightness run:

display.pixel(0, 0, 255)

Or to set the pixel next to it horizontally to half brightness run:

display.pixel(1, 0, 127)

Be careful setting all pixels to 255 maximum brightness! This might pull more

power than your computer's USB port can provide if you are powering your

board over USB. Use an external powers supply or battery when lighting lots of

LEDs to max brightness.

•

•

•

©Adafruit Industries Page 12 of 25

You can turn off individual pixels by setting them to an intensity of zero.

You can even make pixels blink! The board supports a fixed blink rate that you set

using the blink function. This function takes in the number of milliseconds to use

for the blink rate (but internally it can only blink in 270ms increments so you might not

get an exact match). For example to blink pixels about once every half second call:

display.blink(500)

You'll notice nothing actually changes on the board. This is because in addition to

intensity each LED pixel has a blink state which can be enabled and disabled. The fi

ll command can actually set all pixels and turn them on to blink:

display.fill(127, blink=True)

You can turn off the blinking by setting blink=False .

The pixel command supports the blink parameter too! You can turn on and off

blinking pixel by pixel as needed. For example to turn on blinking for pixel 0, 0 :

display.pixel(0, 0, 127, blink=True)

Currently the Charlieplex module is very simple and only exposes pixel set

commands. In the future more advanced graphics commands like line drawing, text

display, etc. might be implemented but for now you'll need to manipulate the pixels

yourself.

Finally the display supports holding up to 8 frames of pixel data. Each frame contains

an entire matrix of LED pixel state (intensity, blinking, etc.) and by default the module

©Adafruit Industries Page 13 of 25

starts you on frame 0. You can change to start displaying and drawing on another

frame by calling frame which takes these parameters:

Frame number - This is the frame number to make the active frame for display or

drawing. There are 8 frames total, 0 through 7 .

show - An optional boolean that defaults to True and specifies if the frame

should be immediately displayed (True) or just made active so that pixel and fill

commands draw on it but it's not yet shown.

For example to clear frame 1 and draw a few pixels on it, then display it you can run:

display.frame(1, show=False)

display.fill(0)

display.pixel(0, 0, 255)

display.pixel(1, 1, 255)

display.pixel(2, 2, 255)

display.frame(1) # show=True is the default, the frame will be displayed!

Notice how the first call switches to make frame 1 the active frame but doesn't display

it because show is set to false. Then the frame pixel data is changed with fill and pixel

commands, and finally the frame is shown by calling frame again but letting the

default show = True be used so the frame is displayed.

Using frames you can build simple animations by drawing each frame and swapping

between them over time!

That's all there is to the basic Charlieplex driver module usage!

Full Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import board

•

•

©Adafruit Industries Page 14 of 25

import busio

uncomment next line if you are using Feather CharlieWing LED 15 x 7

from adafruit_is31fl3731.charlie_wing import CharlieWing as Display

uncomment next line if you are using Adafruit 16x9 Charlieplexed PWM LED Matrix

from adafruit_is31fl3731.matrix import Matrix as Display

uncomment next line if you are using Adafruit 16x8 Charlieplexed Bonnet

from adafruit_is31fl3731.charlie_bonnet import CharlieBonnet as Display

uncomment next line if you are using Pimoroni Scroll Phat HD LED 17 x 7

from adafruit_is31fl3731.scroll_phat_hd import ScrollPhatHD as Display

uncomment next line if you are using Pimoroni 11x7 LED Matrix Breakout

from adafruit_is31fl3731.matrix_11x7 import Matrix11x7 as Display

uncomment this line if you use a Pico, here with SCL=GP21 and SDA=GP20.

i2c = busio.I2C(board.GP21, board.GP20)

i2c = busio.I2C(board.SCL, board.SDA)

display = Display(i2c)

draw a box on the display

first draw the top and bottom edges

for x in range(display.width):

 display.pixel(x, 0, 50)

 display.pixel(x, display.height - 1, 50)

now draw the left and right edges

for y in range(display.height):

 display.pixel(0, y, 50)

 display.pixel(display.width - 1, y, 50)

Text Scrolling Example

NOTE: When running this example on Raspberry Pi, you must have the font8x5.bin file

found here (https://adafru.it/Edh) in the same directory as the program!

wget https://raw.githubusercontent.com/adafruit/

Adafruit_CircuitPython_framebuf/master/examples/font5x8.bin

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import board

import busio

import adafruit_framebuf

uncomment next line if you are using Feather CharlieWing LED 15 x 7

from adafruit_is31fl3731.charlie_wing import CharlieWing as Display

uncomment next line if you are using Adafruit 16x9 Charlieplexed PWM LED Matrix

from adafruit_is31fl3731.matrix import Matrix as Display

uncomment next line if you are using Adafruit 16x8 Charlieplexed Bonnet

from adafruit_is31fl3731.charlie_bonnet import CharlieBonnet as Display

uncomment next line if you are using Pimoroni Scroll Phat HD LED 17 x 7

from adafruit_is31fl3731.scroll_phat_hd import ScrollPhatHD as Display

uncomment next line if you are using Pimoroni 11x7 LED Matrix Breakout

from adafruit_is31fl3731.matrix_11x7 import Matrix11x7 as Display

uncomment this line if you use a Pico, here with SCL=GP21 and SDA=GP20.

i2c = busio.I2C(board.GP21, board.GP20)

©Adafruit Industries Page 15 of 25

i2c = busio.I2C(board.SCL, board.SDA)

display = Display(i2c)

text_to_show = "Adafruit!!"

Create a framebuffer for our display

buf = bytearray(32) # 2 bytes tall x 16 wide = 32 bytes (9 bits is 2 bytes)

fb = adafruit_framebuf.FrameBuffer(

 buf, display.width, display.height, adafruit_framebuf.MVLSB

)

frame = 0 # start with frame 0

while True:

 for i in range(len(text_to_show) * 9):

 fb.fill(0)

 fb.text(text_to_show, -i + display.width, 0, color=1)

 # to improve the display flicker we can use two frame

 # fill the next frame with scrolling text, then

 # show it.

 display.frame(frame, show=False)

 # turn all LEDs off

 display.fill(0)

 for x in range(display.width):

 # using the FrameBuffer text result

 bite = buf[x]

 for y in range(display.height):

 bit = 1 << y & bite

 # if bit > 0 then set the pixel brightness

 if bit:

 display.pixel(x, y, 50)

 # now that the frame is filled, show it.

 display.frame(frame, show=True)

 frame = 0 if frame else 1

Python Examples

If you want to expand the capabilities of the CharliePlex LED Matrix even more, we

can add Pillow into the mix. So we'll show you how to add Pillow and then go over a

couple of examples that use Pillow.

Additional Setup

If you haven't already installed the library, follow the setup section on the Python &

CircuitPython page. If you have, then continue.

©Adafruit Industries Page 16 of 25

DejaVu TTF Font

Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't,

you can run the following to install it:

sudo apt-get install ttf-dejavu

Pillow Library

We also need Pillow, also known as PIL, the Python Imaging Library, to allow using

text with custom fonts. There are several system libraries that PIL relies on, so

installing via a package manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

That's it. You should be ready to go.

Speeding up the Display on Raspberry Pi

For the best performance, especially if you are doing fast animations, you'll want to

tweak the I2C core to run at 1MHz. By default it may be 100KHz or 400KHz

To do this, edit the config with sudo nano /boot/config.txt

and add to the end of the file

dtparam=i2c_baudrate=1000000

•

•

©Adafruit Industries Page 17 of 25

Reboot to 'set' the change.

Scrolling Marquee Example

The first example, we're going to take a look at an example that will take some text,

draw it in a TrueType font and then scroll the rendered text. Let's start by looking at

the code in each section.

We start by importing the libraries we need which include the board and a few Pillow

modules.

import board

from PIL import Image, ImageDraw, ImageFont

Next we do the import for the IS31FL3731 driver for the matrix itself. Since the different

boards have been split into their own modules, we just import the appropriate module

and alias it as Display .

For instance, if you have the breakout instead of the bonnet, you'll want to

uncomment that and comment out the bonnet line.

uncomment next line if you are using Adafruit 16x9 Charlieplexed PWM LED Matrix

from adafruit_is31fl3731.matrix import Matrix as Display

uncomment next line if you are using Adafruit 16x8 Charlieplexed Bonnet

from adafruit_is31fl3731.charlie_bonnet import CharlieBonnet as Display

uncomment next line if you are using Pimoroni Scroll Phat HD LED 17 x 7

from adafruit_is31fl3731.scroll_phat_hd import ScrollPhatHD as Display

©Adafruit Industries Page 18 of 25

Next we set a couple of variables. We have the SCROLLING_TEXT variable. Go ahead

and change the text if you would like. It shouldn't matter how long, though you

probably shouldn't make it too long if you want to see it loop. You can set BRIGHTNE

SS as well, in case you want to adjust the intensity.

SCROLLING_TEXT = "You can display a personal message here..."

BRIGHTNESS = 64 # Brightness can be between 0-255

Next we do the basic setup for the display by declaring the I2C object and passing

that into the display.

i2c = board.I2C()

display = Display(i2c)

Next we go ahead and load up the Deja Vu font into an object. We are going with an 8

pixel high font because that's the largest we can fit on the display and still see

everything.

Load a font

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', 8)

In this next part, we first start by getting the width and height of what the text would

be when rendered with the font we chose. Then we create a virtual image of that

width and height and draw the text onto it.

Create an image that contains the text

text_width, text_height = font.getsize(SCROLLING_TEXT)

text_image = Image.new('L', (text_width, text_height))

text_draw = ImageDraw.Draw(text_image)

text_draw.text((0, 0), SCROLLING_TEXT, font=font, fill=BRIGHTNESS)

Next we create a virtual image that's the same size as the display. This will be where

we draw what we want to actually display.

Create an image for the display

image = Image.new('L', (display.width, display.height))

draw = ImageDraw.Draw(image)

Finally we get to our main loop. We start by drawing a rectangle to be sure we are not

leaving any existing text behind. Then we paste our image of the text onto the

image we are going to display using the value of x , which represents the left offset

we want to use to give a nice scrolling effect. We have a for loop which will scroll

©Adafruit Industries Page 19 of 25

the complete text plus empty display width by one iteration. That's all placed inside an

infinite while loop for endless iterations.

while True:

 for x in range(text_width + display.width):

 draw.rectangle((0, 0, display.width, display.height), outline=0, fill=0)

 image.paste(text_image, (display.width - x, display.height // 2 -

text_height // 2 - 1))

 display.image(image)

Now go ahead and run the example code.

python3 is31fl3731_pillow_marquee.py

You should see the display showing a message scrolling from right to left.

Full Source Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""

Example to scroll some text as a marquee

This example is for use on (Linux) computers that are using CPython with

Adafruit Blinka to support CircuitPython libraries. CircuitPython does

not support PIL/pillow (python imaging library)!

Author(s): Melissa LeBlanc-Williams for Adafruit Industries

"""

import board

from PIL import Image, ImageDraw, ImageFont

©Adafruit Industries Page 20 of 25

uncomment next line if you are using Adafruit 16x9 Charlieplexed PWM LED Matrix

from adafruit_is31fl3731.matrix import Matrix as Display

uncomment next line if you are using Adafruit 16x8 Charlieplexed Bonnet

from adafruit_is31fl3731.charlie_bonnet import CharlieBonnet as Display

uncomment next line if you are using Pimoroni Scroll Phat HD LED 17 x 7

from adafruit_is31fl3731.scroll_phat_hd import ScrollPhatHD as Display

SCROLLING_TEXT = "You can display a personal message here..."

BRIGHTNESS = 64 # Brightness can be between 0-255

i2c = board.I2C()

display = Display(i2c)

Load a font

font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 8)

Create an image that contains the text

text_width, text_height = font.getsize(SCROLLING_TEXT)

text_image = Image.new("L", (text_width, text_height))

text_draw = ImageDraw.Draw(text_image)

text_draw.text((0, 0), SCROLLING_TEXT, font=font, fill=BRIGHTNESS)

Create an image for the display

image = Image.new("L", (display.width, display.height))

draw = ImageDraw.Draw(image)

Load the text in each frame

while True:

 for x in range(text_width + display.width):

 draw.rectangle((0, 0, display.width, display.height), outline=0, fill=0)

 image.paste(

 text_image, (display.width - x, display.height // 2 - text_height // 2 -

1)

)

 display.image(image)

Animated GIF Example

Next let's take a look at an animated GIF player example. First we'll start by

downloading an animated GIF and copying that into the same folder as the script as a

dafruit-star-rotating.gif. It looks tiny and that's because it is. It is 8x8 pixels which

works out nicely for the CharliePlex matrix.

Download Rotating Star

https://adafru.it/HAk

Now let's start with the first section, the imports. You may be surprised that this code

uses fewer Pillow modules than the previous example. We are also adding sys ,

which we mostly use for passing the name of an animated gif.

©Adafruit Industries Page 21 of 25

import sys

import board

from PIL import Image

import adafruit_is31fl3731

Next we do the usual setup for the CharliePlex display.

i2c = board.I2C()

uncomment line if you are using Adafruit 16x9 Charlieplexed PWM LED Matrix

#display = adafruit_is31fl3731.Matrix(i2c)

uncomment line if you are using Adafruit 16x9 Charlieplexed PWM LED Matrix

display = adafruit_is31fl3731.CharlieBonnet(i2c)

Now we make sure the user specified a gif file, so we have something to work with

that's not hard-coded and open the file. If the file wasn't specified, we are using sys.

exit() , since that is the preferred way to do it if you are importing sys anyways.

Check that the gif was specified

if len(sys.argv) < 2:

 print("No image file specified")

 print("Usage: python3 is31fl3731_pillow_animated_gif.py animated.gif")

 sys.exit()

Open the gif

image = Image.open(sys.argv[1])

We need to check that this is an animated gif. While we could have just displayed it as

a static gif in this case, the point was to show how to display the animation.

Make sure it's animated

if not image.is_animated:

 print("Specified image is not animated")

 sys.exit()

Next we get some gif animation information such as the delay. Only the duration of

the first frame is extractable at the time of this writing with Pillow.

Get the autoplay information from the gif

delay = image.info['duration']

The loop number is a little trickier because it means different things between the

IS31FL3731 chip and an animated gif. With an animated gif, it is guaranteed to play at

least once and then loop by the number of times is provided by the loop value, unless

it is zero, which means forever.

With the IS31FL3731, loops mean exactly the number of loops to play the animation,

unless it is zero, in which case it will play forever.

©Adafruit Industries Page 22 of 25

So if loop is 0, we just pass it on. If we only want to play the animation once, then l

oop is not provided in the image information. If it is more than once, we need to

count the first time it plays plus the number of times to loop the animation.

Figure out the correct loop count

if "loop" in image.info:

 loops = image.info['loop']

 if loops > 0:

 loops += 1

else:

 loops = 1

Next, we need to make sure these values are in the ranges that the driver likes. The

number of frames in the animation is available from the property n_frames and the

IS31FL3731 can handle a maximum of 8 frames, so if a longer animation is provided,

only the first 8 frames are used.

IS31FL3731 only supports 0-7

if loops > 7:

 loops = 7

Get the frame count (maximum 8 frames)

frame_count = image.n_frames

if frame_count > 8:

 frame_count = 8

Now that we have a frame count, we will go through each of those frames and load

the frame image into the IS31FL3731 using the paste function and center the image.

First the frame is converted to a 256-grayscale image, which is what mode L is, and

then it is copied into a centered position, which is calculated from the difference in

size between the display and image. After that, it is inserted as the current frame

number.

Load each frame of the gif onto the Matrix

for frame in range(frame_count):

 image.seek(frame)

 frame_image = Image.new('L', (display.width, display.height))

 frame_image.paste(image.convert("L"), (display.width // 2 - image.width // 2,

 display.height // 2 - image.height // 2))

 display.image(frame_image, frame=frame)

Finally, we call the auto_play function using the delay and loop information from the

animated gif.

display.autoplay(delay=delay, loops=loops)

Now go ahead and run the example code.

©Adafruit Industries Page 23 of 25

python3 is31fl3731_pillow_animated_gif.py adafruit-star-rotating.gif

You should see the rotating star appear on the display.

Python Docs

Python Docs (https://adafru.it/C55)

Downloads

Files

IS31FL3731 Datasheet (https://adafru.it/EcU)

Adafruit CharliePlex Bonnet EagleCAD files on GitHub (https://adafru.it/EcV)

Fritzing object in Adafruit Fritzing Library (https://adafru.it/EcW)

Schematic and Fab Print

•

•

•

©Adafruit Industries Page 24 of 25

©Adafruit Industries Page 25 of 25

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LED Lighting Development Tools category:

Click to view products by Adafruit manufacturer:

Other Similar products are found below :

MIC2870YFT EV ADP8860DBCP-EVALZ LM3404MREVAL ADM8843EB-EVALZ TDGL014 ISL97682IRTZEVALZ LM3508TLEV

EA6358NH MAX16826EVKIT MAX16839EVKIT+ TPS92315EVM-516 MAX1698EVKIT MAX6956EVKIT+ OM13321,598 DC986A

DC909A DC824A STEVAL-LLL006V1 IS31LT3948-GRLS4-EB 104PW03F PIM526 PIM527 MAX6946EVKIT+ MAX20070EVKIT#

MAX21610EVKIT# MAX20090BEVKIT# MAX20092EVSYS# PIM498 AP8800EV1 ZXLD1370/1EV4 MAX6964EVKIT

MAX25240EVKIT# MAX25500TEVKITC# MAX77961BEVKIT06# 1216.1013 TPS61176EVM-566 TPS61197EVM TPS92001EVM-628

1270 1271.2004 1272.1030 1273.1010 1278.1010 1279.1002 1279.1001 1282.1000 1293.1900 1293.1800 1293.1700 1293.1500

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/led-lighting-development-tools
https://www.x-on.com.au/manufacturer/adafruit
https://www.x-on.com.au/mpn/micrel/mic2870yftev
https://www.x-on.com.au/mpn/analogdevices/adp8860dbcpevalz
https://www.x-on.com.au/mpn/texasinstruments/lm3404mreval
https://www.x-on.com.au/mpn/analogdevices/adm8843ebevalz
https://www.x-on.com.au/mpn/microchip/tdgl014
https://www.x-on.com.au/mpn/renesas/isl97682irtzevalz
https://www.x-on.com.au/mpn/texasinstruments/lm3508tlev
https://www.x-on.com.au/mpn/active-semi/ea6358nh
https://www.x-on.com.au/mpn/maxim/max16826evkit
https://www.x-on.com.au/mpn/maxim/max16839evkit
https://www.x-on.com.au/mpn/texasinstruments/tps92315evm516
https://www.x-on.com.au/mpn/maxim/max1698evkit
https://www.x-on.com.au/mpn/maxim/max6956evkit
https://www.x-on.com.au/mpn/nxp/om13321598
https://www.x-on.com.au/mpn/analogdevices/dc986a
https://www.x-on.com.au/mpn/analogdevices/dc909a
https://www.x-on.com.au/mpn/analogdevices/dc824a
https://www.x-on.com.au/mpn/stmicroelectronics/stevallll006v1
https://www.x-on.com.au/mpn/issi/is31lt3948grls4eb
https://www.x-on.com.au/mpn/tianma/104pw03f
https://www.x-on.com.au/mpn/pimoroni/pim526
https://www.x-on.com.au/mpn/pimoroni/pim527
https://www.x-on.com.au/mpn/maxim/max6946evkit
https://www.x-on.com.au/mpn/maxim/max20070evkit
https://www.x-on.com.au/mpn/maxim/max21610evkit
https://www.x-on.com.au/mpn/maxim/max20090bevkit
https://www.x-on.com.au/mpn/maxim/max20092evsys
https://www.x-on.com.au/mpn/pimoroni/pim498
https://www.x-on.com.au/mpn/diodesincorporated/ap8800ev1
https://www.x-on.com.au/mpn/diodesincorporated/zxld13701ev4
https://www.x-on.com.au/mpn/maxim/max6964evkit
https://www.x-on.com.au/mpn/analogdevices/max25240evkit
https://www.x-on.com.au/mpn/analogdevices/max25500tevkitc
https://www.x-on.com.au/mpn/analogdevices/max77961bevkit06
https://www.x-on.com.au/mpn/mentor/12161013
https://www.x-on.com.au/mpn/texasinstruments/tps61176evm566
https://www.x-on.com.au/mpn/texasinstruments/tps61197evm
https://www.x-on.com.au/mpn/texasinstruments/tps92001evm628
https://www.x-on.com.au/mpn/adafruit/1270_3
https://www.x-on.com.au/mpn/mentor/12712004
https://www.x-on.com.au/mpn/mentor/12721030
https://www.x-on.com.au/mpn/mentor/12731010
https://www.x-on.com.au/mpn/mentor/12781010
https://www.x-on.com.au/mpn/mentor/12791002
https://www.x-on.com.au/mpn/mentor/12791001
https://www.x-on.com.au/mpn/mentor/12821000
https://www.x-on.com.au/mpn/mentor/12931900
https://www.x-on.com.au/mpn/mentor/12931800
https://www.x-on.com.au/mpn/mentor/12931700
https://www.x-on.com.au/mpn/mentor/12931500

