iPixel LED
 iPixel LED Light Co. , Ltd

Addressable 5mm RGB DIP Board

Product Description

this is a full board in 66mm Diameter
there are many hole in center of the board which are for mounting purpose.
looks like it consist by 3 circle ,but it's not removeable as it's a full sheet.
44pcs addressable DIP 5mm lamp, both in and output Soldering Pad on back side of the PCB, 5 VCC operation, SPI signal.

Product Datasheet

Product	Number	M066044XA3SF
LED	Quantity	44 leds
Explicit	index	80
LED	Type	DIP 5mm RGB
Color		RGB
Size	(mm)	$66 \mathrm{~mm} \varnothing$
Luminous intensity	R=44000mcd ,G=55000mcd ,B=66000mcd	
IP	Level	IP20
Beam	Angle	270°
Guarantee quality	1 years	

Outline Dimension

*The following is the lamp details

SPECIFICATION SHEET

Description:
■ $4.8 * 5.8 \mathrm{MM}$

- Lens Color: Water Clear
- Emitting Color: RGB

■ Viewing Angle : 270°

CUSTOMER	APPROVED BY	CHECKED BY	PREPARED BY
APPROVED			
SIGNATURES			

Description :

5 mm WS2812Bstraw hat LED is a light emittingdiode with integrated digital control circuitin shape of 5 mm Straw hat. Each lighting element is a pixel. The intensities of the pixels are contained within the intelligent digital interface input. The output is driven by patented PWM technology, which effectively guarantees high consistency of the color of the pixels. The control circuit consists of a signal shaping amplification circuit, a built-in constant current circuit, and a high precision RC oscillator.

The data protocol being used is uni-polar NRZ communication mode. The 24 -bit data are transmitted from the controller to DIN of the firstelement, and if it is accepted it is extracted pixel to pixel. After an internal data latch, the remaining data pass through the internal amplification circuitand send out on the DO port to the remaining pixels. The pixel is reset after the end of DIN. Using automatic shaping forwarding technology makes the number of cascaded pixels without signal transmission only limited by signal transmission speed.

The LED has a low driving voltage (which allows for environmental protection and energy saving), high brightness, scattering angle, good consistency, low power, and long life. The control circuitis integrated in the LED above.

Main Application Field:

- Full color LED string light, LED full color module, LED guardrail tube, LED appearance / scene lighting,spot light for advertsing
- LED point light, LED pixel screen, LED shaped screen, a variety of electronic products, electrical equipment etc..

Description:

- LED internal integrated high quality external control line serial cascade constant current IC;
- control circuitand the RGB chip in Lamps LED components, to form a complete control of pixel, color mixing uniformityand consistency;
- built-in data shaping circuit, a pixel signal is received after wave shaping and output waveform distortion will not guarantee a line;
- The built-in power on reset and reset circuit, the power does not work;
- gray level adjusting circuit(256level gray scale adjustable);
- red drive special treatment, color balance;
- line data transmission;
- plastic forward strengthening technology, the transmission distance over 10 m ;
- Using a typical data transmission frequency of 800 Kbps with refreshing rate of 30 frames/sec.

Mechanical
Dimension :

NO.	Symbol	Function description
1.	DOUT	Control data signal output
2.	VDD	Power supply LED
3.	VSS	Ground
4.	DIN	Control data signal input

Absolute Maximum Ratings ($\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{VSS}=\mathbf{0 V}$)

Parameter	Symbol	Range	Unit
Power supply voltage	VDD	$+3.5 \sim+5.5$	V
Logic input voltage	VIN	$-0.5 \sim$ VDD +0.5	V
Workingtemperature	Topt	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	$-50 \sim+150$	${ }^{\circ} \mathrm{C}$
ESD pressure	VESD	4 K	V

Electrical/Optical Characteristics ($\mathrm{T} \mathbf{A}=25^{\circ} \mathrm{C}, \mathrm{VDD}=5.0 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}$)
RED COLOR:

Parameter	Symbol	Min	Typ.	Max	Unit	Test Condition
Forward voltage	V_{F}	1.8	2.0	2.2	V	$\mathrm{IF}=20 \mathrm{~mA}$
Luminous intensity	I_{V}	1000	1250	1500	mcd	$\mathrm{IF}=20 \mathrm{~mA}$
Peak emission wavelength	р	620	622.5	625	nm	v
Half intensity angle	$2 \theta^{11 / 2}$	v	120	v	deg	v

GREEN COLOR :

Parameter	Symbol	Min	Typ.	Max	Unit	Test Condition
Forward voltage	V_{F}	3.0	3.2	3.4	V	$\mathrm{IF}=20 \mathrm{~mA}$
Luminous intensity	IV_{V}	1500	1850	2200	mcd	$\mathrm{IF}=20 \mathrm{~mA}$
Peak emission wavelength	p	520	522.5	525	nm	v
Half intensity angle	$2 \theta^{11 / 2}$	v	120	v	deg	v

BLUE COLOR :

Parameter	Symbol	Min	Typ.	Max	Unit	Test Condition
Forward voltage	V_{F}	3.0	3.2	3.4	V	$\mathrm{IF}=20 \mathrm{~mA}$
Luminous intensity	IV	700	850	1000	mcd	$\mathrm{IF}=20 \mathrm{~mA}$
Peak emission wavelength	p	465	467.5	470	nm	v
Half intensity angle	$2 \theta^{11 / 2}$	v	120	v	deg	v

Parameter	Symbol	Min	Typical	Max	Unit	Test
The chip supply voltage	VDD	---	5.2	---	V	
R/G/B port pressure	VDS, MAX	---	---	26	V	
DOUT drive capability	IDOH	---	49	---	mA	DOUT conect ground, the maximum drive current
	IDOL	---	-50	---	mA	DOUT conect +, the largest current
	VIH	VIL	3.4	---	---	V
The frequency of PWM	FPWM	---	1.2	---	KHZ	
Static power consumption	IDD	---	1	---	mA	

Dynamic Parameters ($\mathbf{T a}=25^{\circ} \mathrm{C}$):

Parameter	Symbol	Min	Typical	Max	Unit	Test
The speed of data transmission	fDIN	---	800	---	KHZ	The duty ratio of 67\% (data 1)
DOUT transmission delay	TPLH	---	----	500	ns	DIN \rightarrow DOUT
	TPHL	---	---	500	ns	n
IOUT Rise/Drop Time	Tr		100		ns	VDS $=1.5$ IOUT $=13 \mathrm{~mA}$

The Data Transmission Time (TH+TL=1.25 $\boldsymbol{\mu} \mathrm{s} \pm 600 \mathrm{~ns}$):

TOH	0 code, high level time	$0.3 \mu \mathrm{~s}$	$\pm 0.15 \mu \mathrm{~s}$
TOL	0 code, low level time	$0.9 \mu \mathrm{~s}$	$\pm 0.15 \mu \mathrm{~s}$
T1H	1 code, high level time	$0.6 \mu \mathrm{~s}$	$\pm 0.15 \mu \mathrm{~s}$
T1L	1 code, low level time	$0.6 \mu \mathrm{~s}$	$\pm 0.15 \mu \mathrm{~s}$
Trst	Reset code, low level time	$80 \mu \mathrm{~s}$	

Timing waveform:

Input code:

1码

RESET码

Connction mode:

The method of data transmission:

Note: the D1 sends data for MCU, D2, D3, D4 for data forwarding automatic shaping cascade circuit.
The data structure of 24 bit :

G7	G6	G5	G4	G3	G2	G1	G0	R7	R6	R5	R4	R3	R2	R1	R0	B7	B6	B5	B4	B3	B2	B1	B0

Note: high starting, in order to send data (G7-G6 - \qquad

The typical application circuit:

Standard LED Performance Graph:

Typical Radiation Pattern 120°

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Development Tools category:
Click to view products by Adafruit manufacturer:
Other Similar products are found below :
MIC2870YFT EV ADP8860DBCP-EVALZ LM3404MREVAL ADM8843EB-EVALZ TDGL014 ISL97682IRTZEVALZ LM3508TLEV EA6358NH MAX16826EVKIT MAX16839EVKIT+ TPS92315EVM-516 MAX1698EVKIT MAX6956EVKIT+ OM13321,598 DC986A DC909A DC824A STEVAL-LLL006V1 IS31LT3948-GRLS4-EB 104PW03F PIM526 PIM527 MAX6946EVKIT+ MAX20070EVKIT\# MAX21610EVKIT\# MAX20090BEVKIT\# MAX20092EVSYS\# PIM498 AP8800EV1 ZXLD1370/1EV4 MAX6964EVKIT MAX25240EVKIT\# MAX25500TEVKITC\# MAX77961BEVKIT06\# 1216.1013 TPS61176EVM-566 TPS61197EVM TPS92001EVM-628 $\underline{1270} \underline{1271.2004} \underline{1272.1030} \underline{1273.1010} \underline{1278.1010} \underline{1279.1002} \underline{1279.1001} \underline{1282.1000} \underline{1293.1900} \underline{1293.1800} \underline{1293.1700} \underline{1293.1500}$

