

Adafruit eInk Display Breakouts and

FeatherWings

Created by lady ada

https://learn.adafruit.com/adafruit-eink-display-breakouts

Last updated on 2021-12-09 03:20:06 PM EST

©Adafruit Industries Page 1 of 79

5

8

9

10

11

12

13

14

14

14

16

16

17

18

19

20

21

21

22

23

24

25

25

27

28

28

28

29

31

36

36

37

37

37

37

38

38

39

40

41

Table of Contents

Overview

Pinouts

• eInk Breakout Friend

• Power Pins

• Data Control Pins

• FeatherWing Connections

Shield Pinouts

• Power Pins

• Data Pins

• Buttons

Assembly

• Assembly

• Add the E-Ink Display

• And Solder!

Usage & Expectations

Arduino Setup

Arduino Code

• Wiring

• FeatherWing Connection

• Load First Demo

• Load Graphics Test Demo

• Unnecessary Pins

Drawing Bitmaps

Arduino Library Documentation

Adafruit GFX Library

CircuitPython Code

• CircuitPython Microcontroller Wiring

• CircuitPython eInk displayio Library Installation

• Usage

Python Code

• Wiring

• Setup

• Python Installation of EPD Library

• Download font5x8.bin

• DejaVu TTF Font

• Pillow Library

• Usage

• Tri-Color Example

• Monochrome Example

• Tri-Color Bitmap Example

©Adafruit Industries Page 2 of 79

45

46

51

55

56

57

58

58

59

60

60

61

61

62

62

63

65

65

66

68

68

68

68

69

70

70

70

71

71

72

72

73

73

74

74

76

77

79

• Full Example Code

• Image Drawing with Pillow

• Drawing Shapes and Text with Pillow

Python Docs

2.9" Grayscale eInk FeatherWing

Pinouts

• Power Pins

• Buttons

• Data Control Pins

Wiring

• FeatherWing Connection

Arduino Usage

• Configure Pins

• Configure Display Size

• Upload Sketch

Arduino Bitmaps

CircuitPython Code

• CircuitPython eInk displayio Library Installation

• Usage

Downloads

• Files

• Schematic

• Fab Print

2.9" Tri-Color eInk

Wiring

• Breakout Wiring

• FeatherWing Connection

• Python Wiring

Arduino Usage

• FeatherWing Wiring

• Breakout Wiring

Downloads

• Files

• Schematic & Fabrication Prints

• Shared schematic for 1.54" 2.13" and 2.7" Breakouts

• 2.9 Inch Display

• eInk Friends

• 2.7" Shield

©Adafruit Industries Page 3 of 79

©Adafruit Industries Page 4 of 79

Overview

Easy e-paper finally comes to microcontrollers, with these breakouts, shields and

friends that are designed to make it a breeze to add a tri-color eInk display. Chances

are you've seen one of those new-fangled 'e-readers' like the Kindle or Nook. They

have gigantic electronic paper 'static' displays - that means the image stays on the

display even when power is completely disconnected. The image is also high contrast

and very daylight readable. It really does look just like printed paper!

We've liked these displays for a long time, but they were never designed for makers

to use. Finally, we decided to make our own!

©Adafruit Industries Page 5 of 79

We have multiple tri-color displays. They have black and red ink pixels and a white-ish

background. Using our Arduino library, you can create a 'frame buffer' with what

pixels you want to have activated and then write that out to the display. Most simple

breakouts leave it at that. But if you do the math, using even the smallest 1.54"

display: 152 x 152 pixels x 2 colors = 5.7 KBytes. Which won't fit into many

microcontroller memories. Heck, even if you do have 32KB of RAM, why waste 6KB?

So we did you a favor and tossed a small SRAM chip on the back. This chip shares the

SPI port the eInk display uses, so you only need one extra pin. And, no more frame-

buffering! You can use the SRAM to set up whatever you want to display, then shuffle

data from SRAM to eInk when you're ready. The library we wrote does all the work for

you (https://adafru.it/BRK), you can just interface with it as if it were an Adafruit_GFX

compatible display (https://adafru.it/BRK).

©Adafruit Industries Page 6 of 79

On the EInk Friends and Breakouts, for ultra-low power usages, the onboard 3.3V

regulator has the Enable pin brought out so you can shut down the power to the

SRAM, MicroSD and display.

On the Breakouts and Shields, We even tossed on a MicroSD socket so you can store

images, text files, whatever you like to display. Everything is 3 or 5V logic safe so you

can use it with any and all microcontrollers.

©Adafruit Industries Page 7 of 79

Pinouts

This e-Paper display uses SPI to receive image data. Since the display is SPI, it was

easy to add two more SPI devices to share the bus - an SPI SRAM chip and SPI-driven

SD card holder. There's quite a few pins and a variety of possible combinations for

control depending on your needs

©Adafruit Industries Page 8 of 79

eInk Breakout Friend

Connect a bare eInk display to this breakout to use it!

The pin outs are identical for the 1.54", 2.13" and 2.7" E-Ink display!

©Adafruit Industries Page 9 of 79

Power Pins

3-5V / Vin - this is the power pin, connect to 3-5VDC - it has reverse polarity

protection but try to wire it right!

3.3V out - this is the 3.3V output from the onboard regulator, you can 'borrow'

about 100mA if you need to power some other 3.3V logic devices

GND - this is the power and signal ground pin

ENAble - This pin is all the way on the right. It is connected to the enable pin on

the onboard regulator that powers everything. If you want to really have the

lowest possible power draw, pull this pin low! Note that if you do so you will cut

power to the eInk display but also the SPI RAM (thus erasing it) and the SD card

(which means you'll have to re-initialize it when you re-power

•

•

•

•

©Adafruit Industries Page 10 of 79

Data Control Pins

SCK - this is the SPI clock input pin, required for e-Ink, SRAM and SD card

MISO - this is the SPI Microcontroller In Serial Out pin, its used for the SD card

and SRAM. It isn't used for the e-Ink display which is write-only, however you'll

likely be using the SRAM to buffer the display so connect this one too!

MOSI - this is the SPI Microcontroller Out Serial In pin, it is used to send data

from the microcontroller to the SD card, SRAM and e-Ink display

ECS - this is the E-Ink Chip Select, required for controlling the display

D/C - this is the e-Ink Data/Command pin, required for controlling the display

SRCS - this is the SRAM Chip Select, required for communicating with the

onboard RAM chip.

SDCS - this is the SD card Chip Select, required for communicating with the

onboard SD card holder. You can leave this disconnected if you aren't going to

access SD cards

RST - this is the E-Ink ReSeT pin, you may be able to share this with your

microcontroller reset pin but if you can, connect it to a digital pin.

BUSY - this is the e-Ink busy detect pin, and is optional if you don't want to

connect the pin (in which case the code will just wait an approximate number of

seconds)

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 11 of 79

FeatherWing Connections

The FeatherWing eInk Display and eInk Feather Friend are a little more compact but

have just about the same pins as the breakout

SPI MOSI/MISO/SCK are on the FeatherWing SPI connection pads

•

©Adafruit Industries Page 12 of 79

SD CS, SRAM CS, EINK CS and DC are in order after the two I2C pins. The numbers of

the pins these correspond to will differ from board to board. However, on 32u4/328p/

M0/M4/nRF52840 and many other boards you will see the following connections

SD CS to Pin D5

SRAM CS to Pin D6

EINK CS to Pin D9

EINK DC to Pin D10

If you do not plan to use the SD card, you can cut the trace to SD CS. Likewise for

SRAM CS.

The Reset pin for the E-Ink display is connected to an auto-reset circuit and also to

the Feather Reset pin, so it will reset when you press the reset button.

The Busy pin is available on a breakout pad, you can solder it to a wire and connect

to a pin if you need it - we figure most people will just use a fixed delay.

Shield Pinouts

The 2.7" EInk Shield is a little special in that the pins are fixed, so we'll document that

here.

•

•

•

•

©Adafruit Industries Page 13 of 79

Power Pins

5V - this pin on the Arduino is used to generate the 3V logic level for the EInk

chip, level shifter and boost converter.

GND - connected for power and logic reference

IORef - this pin is connected to the level shifter and pullups. On modern Arduino

boards it is connected to the logic level of the board (3V or 5V)

Data Pins

SCK, MISO, MOSI - The 3 SPI logic pins are connected through the 2x3 socket

header which is compatible with any Arduino board. If you have an Arduino

board without the 2x3 headers, you can cut the jumpers and connect the solder

jumper traces to D13, D12 and D11 respectively.

ECS (EInk Chip Select) - this is connected to D10

DC (EInk Data/Command) - this is connected to D9

SCS (SRAM Chip Select) - this is connected to D8

SDCS (SD Card Chip Select) - this is connected to D5

The BUSY pin is not used on the 2.7" display (it doesn't do anything anyways)

The RESET pin is connected to the microcontroller reset pin, but is available on a pad

labeled EReset if you want to toggle it yourself!

Buttons

The 4 buttons on the front are connected through a resistor divider to A3 you can use

this function to determine what button was pressed:

int8_t readButtons(void) {

 uint16_t reading = analogRead(A3);

 //Serial.println(reading);

 if (reading > 600) {

 return 0; // no buttons pressed

 }

 if (reading > 400) {

 return 4; // button D pressed

 }

 if (reading > 250) {

 return 3; // button C pressed

 }

 if (reading > 125) {

 return 2; // button B pressed

 }

•

•

•

•

•

•

•

•

©Adafruit Industries Page 14 of 79

 return 1; // Button A pressed

}

Here's a simple test example for an Arduino with standard pin numbers:

/***

 Adafruit invests time and resources providing this open source code,

 please support Adafruit and open-source hardware by purchasing

 products from Adafruit!

 Written by Limor Fried/Ladyada for Adafruit Industries.

 MIT license, all text above must be included in any redistribution

 **/

#include "Adafruit_ThinkInk.h"

#define EPD_DC 9 // can be any pin, but required!

#define EPD_CS 10 // can be any pin, but required!

#define EPD_BUSY -1 // can set to -1 to not use a pin (will wait a fixed delay)

#define SRAM_CS 8 // can set to -1 to not use a pin (uses a lot of RAM!)

#define EPD_RESET -1 // can set to -1 and share with chip Reset (can't deep

sleep)

// 2.7" Tricolor Featherwing or Breakout with IL91874 chipset

ThinkInk_270_Tricolor_C44 display(EPD_DC, EPD_RESET, EPD_CS, SRAM_CS, EPD_BUSY);

void setup() {

 Serial.begin(115200);

 while (!Serial) { delay(10); }

 Serial.println("Adafruit EPD full update test in red/black/white");

 display.begin(THINKINK_TRICOLOR);

 display.setRotation(2);

}

void loop() {

 Serial.println("Banner demo");

 display.clearBuffer();

 display.setTextSize(3);

 display.setCursor((display.width() - 144)/2, (display.height() - 24)/2);

 display.setTextColor(EPD_BLACK);

 display.print("Tri");

 display.setTextColor(EPD_RED);

 display.print("Color");

 display.display();

 delay(15000);

 Serial.println("Color rectangle demo");

 display.clearBuffer();

 display.fillRect(display.width()/3, 0, display.width()/3, display.height(),

EPD_BLACK);

 display.fillRect((display.width()*2)/3, 0, display.width()/3, display.height(),

EPD_RED);

 display.display();

 delay(15000);

 Serial.println("Text demo");

 // large block of text

 display.clearBuffer();

 display.setTextSize(1);

 testdrawtext("Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur

adipiscing ante sed nibh tincidunt feugiat. Maecenas enim massa, fringilla sed

malesuada et, malesuada sit amet turpis. Sed porttitor neque ut ante pretium vitae

malesuada nunc bibendum. Nullam aliquet ultrices massa eu hendrerit. Ut sed nisi

©Adafruit Industries Page 15 of 79

lorem. In vestibulum purus a tortor imperdiet posuere. ", EPD_BLACK);

 display.display();

 delay(15000);

 display.clearBuffer();

 for (int16_t i=0; i<display.width(); i+=4) {

 display.drawLine(0, 0, i, display.height()-1, EPD_BLACK);

 }

 for (int16_t i=0; i<display.height(); i+=4) {

 display.drawLine(display.width()-1, 0, 0, i, EPD_RED);

 }

 display.display();

 delay(15000);

}

void testdrawtext(char *text, uint16_t color) {

 display.setCursor(0, 0);

 display.setTextColor(color);

 display.setTextWrap(true);

 display.print(text);

}

Assembly

Assembly

Cut the header down to length if necessary. It will be easier to solder if you insert it

into a breadboard - long pins down

©Adafruit Industries Page 16 of 79

Add the E-Ink Display

Place the board over the pins so that the

short pins poke through the top of the

breakout pads

©Adafruit Industries Page 17 of 79

And Solder!

Be sure to solder all pins for reliable

electrical contact.

(For tips on soldering, be sure to check

out the Guide to Excellent

Soldering (https://adafru.it/aTk)).

OK, you're done!

©Adafruit Industries Page 18 of 79

Usage & Expectations

One thing to remember with these small e-Ink screens is that its very slow compared

to OLEDs, TFTs, or even 'memory displays'. It will take may seconds to fully erase and

replace an image

There's also a recommended limit on refeshing - you shouldn't refresh or change the

display more than every 3 minutes (180 seconds).

©Adafruit Industries Page 19 of 79

You don't have to refresh often, but with tri-color displays, the larger red ink dots will

slowly rise, turning the display pinkish instead of white background. To keep the

background color clear and pale, refresh once a day

Arduino Setup

To use the display, you will need to install the Adafruit_EPD library (code on our

github repository) (https://adafru.it/BRK). It is available from the Arduino library

manager so we recommend using that.

From the IDE open up the library manager...

And type in adafruit EPD to locate the library. Click Install

If you would like to draw bitmaps, do the same with adafruit ImageReader, click Install

Do the same to install the latest adafruit GFX library, click Install

If using an earlier version of the Arduino IDE (pre-1.8.10), locate and install Adafruit_B

usIO (newer versions handle this prerequisite automatically).

Do not update more than once every 180 seconds or you may permanently

damage the display

©Adafruit Industries Page 20 of 79

Arduino Code

Wiring

Wiring up the display in SPI mode is pretty easy as there's not that many pins! We'll be

using hardware SPI, but you can also use software SPI (any pins) later.

Start by connecting the power pins

3-5V Vin connects to the microcontroller board's 5V or 3.3V power supply pin

GND connects to ground

Do not update more than once every 180 seconds or you may permanently

damage the display

The pin outs are identical for the 1.54", 2.13" and 2.7" E-Ink display!

•

•

©Adafruit Industries Page 21 of 79

Required SPI Pins

These use the hardware SPI interface and is required so check your microcontroller

board to see which pins are hardware SPI

CLK connects to SPI clock. On Arduino Uno/Duemilanove/328-based, thats Digi

tal 13. (For other Arduino-compatibles See SPI Connections for more details (htt

ps://adafru.it/d5h))

MISO connects to SPI MISO. On Arduino Uno/Duemilanove/328-based, thats Di

gital 12. (For other Arduino-compatibles See SPI Connections for more details (h

ttps://adafru.it/d5h))

MOSI connects to SPI MOSI. On Arduino Uno/Duemilanove/328-based, thats Di

gital 11. (For other Arduino-compatibles See SPI Connections for more details (ht

tps://adafru.it/d5h))

Other Digital I/O Pins

These can be set in the sketch to any pins you like but to follow the exact example

code we'll use the following:

ECS connects to our e-Ink Chip Select pin. We'll be using Digital 10 but you can

later change this to any pin

D/C connects to our e-Ink data/command select pin. We'll be using Digital 9 but

you can later change this pin too.

SRCS connects to our SRAM Chip Select pin. We'll be using Digital 8 but you can

later change this to any pin

RST connects to our e-Ink reset pin. We'll be using Digital 5 but you can later

change this pin too.

BUSY connects to our e-Ink busy pin. We'll be using Digital 3 but you can later

change this pin too.

FeatherWing Connection

FeatherWing usage is easy, simply plug your Feather into the Wing

•

•

•

•

•

•

•

•

©Adafruit Industries Page 22 of 79

Load First Demo

Open up File→Examples→Adafruit_EPD→EPDTest

If you have the FeatherWing open up File→Examples→Adafruit_EPD→FeatherWingTe

st

At the top of the sketch find the lines that look like:

/* Uncomment the following line if you are using 1.54" tricolor EPD */

Adafruit_IL0373 display(152, 152 ,EPD_DC, EPD_RESET, EPD_CS, SRAM_CS, EPD_BUSY);

/* Uncomment the following line if you are using 2.13" tricolor EPD */

//Adafruit_IL0373 display(212, 104 ,EPD_DC, EPD_RESET, EPD_CS, SRAM_CS, EPD_BUSY);

/* Uncomment the following line if you are using 2.7" tricolor EPD */

//Adafruit_IL91874 display(264, 176 ,EPD_DC, EPD_RESET, EPD_CS, SRAM_CS);

And uncomment the matching object for the screen chipset and resolution you will be

using. Then upload to your microcontroller wired up to the display

©Adafruit Industries Page 23 of 79

You will see the display flash a bunch and

then a set of black and red lines will

appear like shown on the left.

If you see the lines, your wiring is good! If

not, go back and check your wiring to

make sure its correct. If you didn't use

the default pins, change them in the

sketch

Load Graphics Test Demo

Open up File→Examples→Adafruit_EPD→graphicstest and upload to your

microcontroller wired up to the display

If you're using a FeatherWing, use the pin definitions from the top of FeatherWingTest,

for example:

#ifdef ESP8266

#define SD_CS 2

#define SRAM_CS 16

#define EPD_CS 0

#define EPD_DC 15

#endif

and copy those into the top of the graphics test sketch

This time you will see the display going

through a range of tests, from pixels,

lines, text circles etc.

This shows all the different shapes and

techniques you can use that come with

the Adafruit GFX library! Unlike most e-

paper displays, where you can only draw

an image, the built in SRAM lets you have

full control over what shows up on the

eInk screen.

©Adafruit Industries Page 24 of 79

Unnecessary Pins

Once you've gotten everything working you can experiment with removing the RST

and BUSY pins. We recommend tying RST to your microcontroller's Reset line so the

eInk display is reset when the microcontrollers is. The busy pin makes startup a little

faster but we don't find it to be essential

You can set the code as below to remove control of those pins from the Adafruit_EPD

library:

#define EPD_RESET -1 // can set to -1 and share with microcontroller Reset!

#define EPD_BUSY -1 // can set to -1 to not use a pin (will wait a fixed delay)

Thus saving you two pins!

Note that the 2.7" Tri-color display works best if you have a reset pin, it really likes

being reset before sending data, so we recommend keeping it.

Drawing Bitmaps

Don't forget, after you call drawLine() or print() to display lines or text or other

graphics, you must call display() to make the e-Ink display show the changes.

Since this takes a few seconds, only do it once you've drawn everything you

need.

©Adafruit Industries Page 25 of 79

Not only can you draw shapes but you can also load images from the SD card, perfect

for static images!

The 1.54" display can show a max of 152x152 pixels. Lets use this Blinka bitmap as our

demo:

Click here to download blinka.bmp

https://adafru.it/BTa

For the 2.13" display, use this image instead

2.13" Sized bitmap

https://adafru.it/EaE

Rename the file blinka.bmp and place into the base directory of a microSD card and

insert it into the microSD socket in the breakout.

One extra wire is required, for SDCS which is the SD card Chip Select. We'll connect

that to pin #4 but you can use any pin.

You may need a board with more memory such as the Feather M4 or Metro M4 to

handle the memory requirements of drawing a bitmap.

©Adafruit Industries Page 26 of 79

Plug the MicroSD card into the display. You may want to try the SD library examples

before continuing, especially one that lists all the files on the SD card

Open the file->examples->Adafruit_ImageReader->EInkBreakouts example

Upload to the upload & you will see Blinka appear!

Arduino Library Documentation

Arduino Library Documentation (https://adafru.it/BST)

©Adafruit Industries Page 27 of 79

Adafruit GFX Library

Adafruit GFX Library (https://adafru.it/doL)

CircuitPython Code

CircuitPython Microcontroller Wiring

Using eInk displays with displayio is really easy. First, wire up your eInk breakout

as shown below. All displays have the same pinout, so if your display differs from the

one in the Fritzing diagram, you can wire it up the same way.

Breakout Wiring

Feather 3V to display VIN

Feather GND to display GND

Feather SCK to display SCK

Feather MOSI to display MOSI

Feather D10 to display D/C

Feather D9 to display ECS

Feather D6 to display BUSY

Feather D5 to display RST

Do not update more than once every 180 seconds or you may permanently

damage the display

•

•

•

•

•

•

•

•

©Adafruit Industries Page 28 of 79

Download Fritzing Diagram

https://adafru.it/GdH

FeatherWing Wiring

Download Fritzing Diagram

https://adafru.it/GdI

CircuitPython eInk displayio Library Installation

To use displayio, you will need to install the appropriate library for your display.

First make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/Amd) for your board. You will need CircuitPython version 5.0 or later.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(https://adafru.it/zdx). Our introduction guide has a great page on how to install the

library bundle (https://adafru.it/ABU) for both express and non-express boards.

To use the eInk displays with displayio, you will need to use the latest version of

CircuitPython 5.0 and board that can fit `displayio`. See the Support Matrix to

determine if `displayio` is available on a given board: https://

circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html

©Adafruit Industries Page 29 of 79

You will need to copy the appropriate displayio driver from the bundle lib folder to a li

b folder on your CIRCUITPY drive. The displayio driver contains the initialization

codes specific to your display that are needed to for it to work. Since there is more

than one driver, you will need to copy the correct file over. Here is a list of each of the

displays and the correct driver for that display.

Adafruit_CircuitPython_IL0373

1.54” Tri-Color eInk

2.13” Tri-Color eInk

2.13” Tri-Color eInk FeatherWing

2.13” Flexible Monochrome eInk

2.9” Flexible Monochrome eInk

2.9” Tri-Color eInk

Copy the adafruit_il0373.mpy file from the bundle to the lib folder on your CIRC

UITPY drive.

Adafruit_CircuitPython_SSD1608

1.54” Monochrome eInk

Copy the adafruit_ssd1608.mpy file from the bundle to the lib folder on your CIRC

UITPY drive.

Adafruit_CircuitPython_SSD1675

2.13” Monochrome eInk

2.13 Monochrome eInk FeatherWing

Copy the adafruit_ssd1675.mpy file from the bundle to the lib folder on your CIRC

UITPY drive.

Adafruit_CircuitPython_IL91874

2.7” Tri-Color eInk

Copy the adafruit_il91874.mpy file from the bundle to the lib folder on your CIRC

UITPY drive.

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 30 of 79

Adafruit_CircuitPython_IL0398

4.2” Tri-Color eInk

Copy the adafruit_il0398.mpy file from the bundle to the lib folder on your CIRC

UITPY drive.

Usage

To show you how to use the eInk with displayio, we'll show you how to draw a bitmap

onto it. First start by downloading display-ruler.bmp

Download display-ruler.bmp

https://adafru.it/UIa

Next copy display-ruler.bmp into the root directory of your CIRCUITPY drive.

In the examples folder for your displayio driver, there should be a test for your display,

which will all be similar, but include specific parameters such as the width and height

of the display. In this example, we will examine the 2.9" Tri-color breakout test. Here is

the code in its entirety.

import time

import board

import displayio

Make sure your display driver is uncommented

import adafruit_il0373

#import adafruit_il91874

#import adafruit_ssd1608

#import adafruit_ssd1675

#import adafruit_il0398

Set based on your display

FLEXIBLE = False

TRICOLOR = True

ROTATION = 90

Used to ensure the display is free in CircuitPython

displayio.release_displays()

Define the pins needed for display use

This pinout is for a Feather M4 and may be different for other boards

For the Metro/Shield, esc is board.D10 and dc is board.D9

spi = board.SPI() # Uses SCK and MOSI

ecs = board.D9

•

This code is specific to the 2.9" breakout and may not work with other displays!

Look at the CircuitPython Bundle for examples specific to your display.

©Adafruit Industries Page 31 of 79

dc = board.D10

rst = board.D5 # set to None for FeatherWing/Shield

busy = board.D6 # set to None for FeatherWing/Shield

if TRICOLOR:

 highlight = 0xff0000 #third color is red (0xff0000)

else:

 highlight = 0x000000

Create the displayio connection to the display pins

display_bus = displayio.FourWire(spi, command=dc, chip_select=ecs,

 reset=rst, baudrate=1000000)

time.sleep(1) # Wait a bit

Create the display object

#display = adafruit_ssd1608.SSD1608(display_bus, width=200, height=200, # 1.54"

HD Monochrome

#display = adafruit_ssd1675.SSD1675(display_bus, width=122, height=250, # 2.13"

HD Monochrome

#display = adafruit_il91874.IL91874(display_bus, width=264, height=176, # 2.7"

Tri-color

#display = adafruit_il0398.IL0398(display_bus, width=400, height=300, # 4.2"

Tri-color

#display = adafruit_il0373.IL0373(display_bus, width=152, height=152, # 1.54"

Tri-color

#display = adafruit_il0373.IL0373(display_bus, width=296, height=128,

swap_rams=FLEXIBLE, # 2.9" Tri-color OR Flexible Monochrome

display = adafruit_il0373.IL0373(display_bus, width=212, height=104,

swap_rams=FLEXIBLE, # 2.13" Tri-color OR Flexible Monochrome

 busy_pin=busy, rotation=ROTATION,

 highlight_color=highlight)

Create a display group for our screen objects

g = displayio.Group()

Display a ruler graphic from the root directory of the CIRCUITPY drive

f = open("/display-ruler.bmp", "rb")

pic = displayio.OnDiskBitmap(f)

Create a Tilegrid with the bitmap and put in the displayio group

t = displayio.TileGrid(pic, pixel_shader=displayio.ColorConverter())

g.append(t)

Place the display group on the screen

display.show(g)

Refresh the display to have it actually show the image

NOTE: Do not refresh eInk displays sooner than 180 seconds

display.refresh()

print("refreshed")

time.sleep(180)

We start by importing the libraries that we need. In this case we need time for

adding delays, board the pin definitions, and of course displayio .

import time

import board

import displayio

©Adafruit Industries Page 32 of 79

Next you want to uncomment the import statement for the correct driver for your

display. This should match the file you copied over earlier. In our case, the 2.9" uses

the adafruit_il0373 driver, so we can leave it as is.

Make sure your display driver is uncommented

import adafruit_il0373

#import adafruit_il91874

#import adafruit_ssd1608

#import adafruit_ssd1675

#import adafruit_il0398

Next we want to set these variables based on your display. If you have a flexible

display, you would want to change FLEXIBLE to True . If you have a monochrome

display, you would want to change TRICOLOR to False . If you would like to change

the rotation, you can do that here as well.

Set based on your display

FLEXIBLE = False

TRICOLOR = True

ROTATION = 90

Next we release any previously used displays. This is important because if the

Feather is reset, the display pins are not automatically released and this makes them

available for use again.

displayio.release_displays()

Next we assign the Pins to use. Note that we are not using the SRAM on the eInk

display, so we only need to connect the SCK and MOSI SPI pins. We set the SPI object

to the board's SPI with the easy shortcut function board.SPI() . We also have the

ePaper Display Chip Select and Data/Command pins.

For the breakout boards only, we define the Reset and Busy pins, otherwise you

would change these to None in the case of a shield or FeatherWing.

spi = board.SPI() # Uses SCK and MOSI

ecs = board.D9

dc = board.D10

rst = board.D5 # can be None to not use this pin

busy = board.D6 # can be None to not use this pin

In the next section, we set the highlight color to either red or black based on whether

you have a monochrome or tri-color display. You can leave this alone.

if TRICOLOR:

 highlight = 0xff0000 #third color is red (0xff0000)

©Adafruit Industries Page 33 of 79

else:

 highlight = 0x000000

In the next line, we set the display bus to FourWire which makes use of the SPI bus.

We pass it the D/C , and CS pins, which are also usually found on TFT displays and if

this is a breakout, we also pass in the reset pin.

We set the baudrate to 1 MHz instead of the default 24 MHz because the ePaper

displays are not about the speed. They are about the patience of waiting many

seconds for them to change and the infrequent updates.

After that, we pause for 1 second. Remember, patience.

display_bus = displayio.FourWire(spi, command=epd_dc, chip_select=epd_cs,

 reset=epd_reset, baudrate=1000000)

time.sleep(1)

Next is the initializer. You will want to uncomment the one appropriate to your display.

For the 2.9" display, we would want to comment out the line with 2.13" Tri-color OR

Flexible Monochrome next to it and uncomment the line with 2.9" Tri-color OR Flexible

Monochrome next to it.

Create the display object

#display = adafruit_ssd1608.SSD1608(display_bus, width=200, height=200, # 1.54"

HD Monochrome

#display = adafruit_ssd1675.SSD1675(display_bus, width=122, height=250, # 2.13"

HD Monochrome

#display = adafruit_il91874.IL91874(display_bus, width=264, height=176, # 2.7"

Tri-color

#display = adafruit_il0398.IL0398(display_bus, width=400, height=300, # 4.2"

Tri-color

#display = adafruit_il0373.IL0373(display_bus, width=152, height=152, # 1.54"

Tri-color

#display = adafruit_il0373.IL0373(display_bus, width=296, height=128,

swap_rams=FLEXIBLE, # 2.9" Tri-color OR Flexible Monochrome

display = adafruit_il0373.IL0373(display_bus, width=212, height=104,

swap_rams=FLEXIBLE, # 2.13" Tri-color OR Flexible Monochrome

 busy_pin=busy, rotation=ROTATION,

 highlight_color=highlight)

Next we create a couple of variables including a displayio group and a file handle to

the display-ruler.bmp that you placed in your CIRCUITPY root folder. You did do that,

right?

Create a display group for our screen objects

g = displayio.Group()

Display a ruler graphic from the root directory of the CIRCUITPY drive

f = open("/display-ruler.bmp", "rb")

©Adafruit Industries Page 34 of 79

Next we take the file handle and read the bitmap data into a TileGrid object. We

also specify the pixel_shader to displayio.ColorConverter() because we want d

isplayio to convert the image data into something that will look nice on the eInk.

We take the TileGrid object and place it into the group.

pic = displayio.OnDiskBitmap(f)

Create a Tilegrid with the bitmap and put in the displayio group

t = displayio.TileGrid(pic, pixel_shader=displayio.ColorConverter())

g.append(t)

In the next line we tell the display to show everything in the group.

display.show(g)

Finally, we tell the display to refresh so that everything in memory is written out to the

display.

display.refresh()

print("refreshed")

Your display will look something like this:

After that we tell it to pause for 180 seconds or three minutes before continuing

where your display would show the REPL.

time.sleep(180)

©Adafruit Industries Page 35 of 79

Python Code

Wiring

It's easy to use eInk breakouts with Python and the Adafruit CircuitPython EPD (https:

//adafru.it/BTd) library. This library allows you to easily write Python code to control

the display.

We'll cover how to wire the display to your Raspberry Pi. First assemble your display.

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported (https://adafru.it/BSN).

Connect the display as shown below to your Raspberry Pi.

Raspberry Pi 3.3 to display VIN

Raspberry Pi GND to display GND

Raspberry Pi SCLK to display SCK

Raspberry Pi MOSI to display MOSI

Raspberry Pi GPIO CE0 to display

ECS

Raspberry Pi GPIO 22 to display D/

C

Raspberry Pi GPIO 27 to display

RST

Raspberry Pi GPIO 17 to display

BUSY

Note this is not a kernel driver that will let you have the console appear on the

eInk. However, this is handy when you want to use the eInk display purely from

'user Python' code!

You can only use this technique with Linux/computer devices that have hardware

SPI support, and not all single board computers have an SPI device, so check

before continuing

•

•

•

•

•

•

•

•

©Adafruit Industries Page 36 of 79

Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling SPI on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready (https

://adafru.it/BSN)!

Python Installation of EPD Library

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-epd

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

Download font5x8.bin

This library also requires a font file to run! You can download it below. Before

continuing, make sure the folder you are running scripts from contains the font5x8.bin

file.

Download font5x8.bin

https://adafru.it/Gfb

DejaVu TTF Font

Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't,

you can run the following to install it:

sudo apt-get install fonts-dejavu

•

•

•

©Adafruit Industries Page 37 of 79

This package was previously calls ttf-dejavu, so if you are running an older version of

Raspberry Pi OS, it may be called that.

Pillow Library

Some of the examples also use PIL, the Python Imaging Library, to allow graphics and

using text with custom fonts. There are several system libraries that PIL relies on, so

installing via a package manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

That's it. You should be ready to go.

Usage

To demonstrate the usage of the display we'll initialize it and draw some lines from

the Python REPL.

Run the following code to import the necessary modules and set up the pin

assignments:

import digitalio

import busio

import board

from adafruit_epd.epd import Adafruit_EPD

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

ecs = digitalio.DigitalInOut(board.CE0)

dc = digitalio.DigitalInOut(board.D22)

rst = digitalio.DigitalInOut(board.D27)

busy = digitalio.DigitalInOut(board.D17)

srcs = None

If you're using the 1.54" Tri-Color display, run the following code to initialize the

display:

from adafruit_epd.il0373 import Adafruit_IL0373

display = Adafruit_IL0373(152, 152, spi, cs_pin=ecs, dc_pin=dc, sramcs_pin=srcs,

 rst_pin=rst, busy_pin=busy)

If you're using the 2.13" Tri-Color display, run the following code to initialize the

display:

•

©Adafruit Industries Page 38 of 79

from adafruit_epd.il0373 import Adafruit_IL0373

display = Adafruit_IL0373(104, 212, spi, cs_pin=ecs, dc_pin=dc, sramcs_pin=srcs,

 rst_pin=rst, busy_pin=busy)

If you're using the 2.9" Tri-Color display, run the following code to initialize the

display:

from adafruit_epd.il0373 import Adafruit_IL0373

display = Adafruit_IL0373(128, 296, spi, cs_pin=ecs, dc_pin=dc, sramcs_pin=srcs,

 rst_pin=rst, busy_pin=busy)

If you're using the 2.7" Tri-Color display, run the following code to initialize the display:

from adafruit_epd.il91874 import Adafruit_IL91874

display = Adafruit_IL91874(176, 264, spi, cs_pin=ecs, dc_pin=dc, sramcs_pin=srcs,

 rst_pin=rst, busy_pin=busy)

If you're using the 4.2" Tri-Color display, run the following code to initialize the

display:

from adafruit_epd.il0398 import Adafruit_IL0398

display = Adafruit_IL0398(400, 300, spi, cs_pin=ecs, dc_pin=dc, sramcs_pin=srcs,

 rst_pin=rst, busy_pin=busy)

If you're using the 1.54" HD Monochrome display, run the following code to initialize

the display:

from adafruit_epd.ssd1608 import Adafruit_SSD1608

display = Adafruit_SSD1608(200, 200, spi, cs_pin=ecs, dc_pin=dc, sramcs_pin=srcs,

 rst_pin=rst, busy_pin=busy)

Tri-Color Example

Now we can clear the screens buffer and draw some shapes. Once we're done

drawing, we need to tell the screen to update using the display() method.

display.fill(Adafruit_EPD.WHITE)

display.fill_rect(20, 20, 50, 60, Adafruit_EPD.RED)

display.hline(80, 30, 60, Adafruit_EPD.BLACK)

display.vline(80, 30, 60, Adafruit_EPD.BLACK)

display.display()

Your display will look something like this:

©Adafruit Industries Page 39 of 79

Monochrome Example

Now we can clear the screens buffer and draw some shapes. Once we're done

drawing, we need to tell the screen to update using the display() method.

display.fill(Adafruit_EPD.WHITE)

display.fill_rect(0, 0, 50, 60, Adafruit_EPD.BLACK)

display.hline(80, 30, 60, Adafruit_EPD.BLACK)

display.vline(80, 30, 60, Adafruit_EPD.BLACK)

display.display()

Your eInk display should look similar to the image above, with a black rectangle

instead of a red one.

©Adafruit Industries Page 40 of 79

That's all there is to drawing simple shapes with eInk displays and CircuitPython!

Tri-Color Bitmap Example

Here's a complete example of how to display a bitmap image on your display. Note

that any .bmp image you want to display must be exactly the size of your display. We

will be using the image below on the 1.54" display. Click the button below to

download the image and save it as blinka.bmp on your Raspberry Pi.

Click here to download blinka for

the 1.54" display

https://adafru.it/BTa

Save the following code to your Raspberry Pi as epd_bitmap.py.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import digitalio

©Adafruit Industries Page 41 of 79

import busio

import board

from adafruit_epd.epd import Adafruit_EPD

from adafruit_epd.il0373 import Adafruit_IL0373

from adafruit_epd.il91874 import Adafruit_IL91874 # pylint: disable=unused-import

from adafruit_epd.il0398 import Adafruit_IL0398 # pylint: disable=unused-import

from adafruit_epd.ssd1608 import Adafruit_SSD1608 # pylint: disable=unused-import

from adafruit_epd.ssd1675 import Adafruit_SSD1675 # pylint: disable=unused-import

from adafruit_epd.ssd1680 import Adafruit_SSD1680 # pylint: disable=unused-import

from adafruit_epd.ssd1681 import Adafruit_SSD1681 # pylint: disable=unused-import

from adafruit_epd.uc8151d import Adafruit_UC8151D # pylint: disable=unused-import

create the spi device and pins we will need

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

ecs = digitalio.DigitalInOut(board.D10)

dc = digitalio.DigitalInOut(board.D9)

srcs = digitalio.DigitalInOut(board.D7) # can be None to use internal memory

rst = digitalio.DigitalInOut(board.D11) # can be None to not use this pin

busy = digitalio.DigitalInOut(board.D12) # can be None to not use this pin

give them all to our driver

print("Creating display")

display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display

display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display

display = Adafruit_SSD1680(122, 250, # 2.13" HD Tri-color display

display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display

display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display

display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display

display = Adafruit_UC8151D(128, 296, # 2.9" mono flexible display

display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display

display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display

display = Adafruit_IL0373(

 104,

 212, # 2.13" Tri-color display

 spi,

 cs_pin=ecs,

 dc_pin=dc,

 sramcs_pin=srcs,

 rst_pin=rst,

 busy_pin=busy,

)

IF YOU HAVE A 2.13" FLEXIBLE DISPLAY uncomment these lines!

display.set_black_buffer(1, False)

display.set_color_buffer(1, False)

IF YOU HAVE A 2.9" FLEXIBLE DISPLAY uncomment these lines!

display.set_black_buffer(1, True)

display.set_color_buffer(1, True)

display.rotation = 0

FILENAME = "blinka.bmp"

def read_le(s):

 # as of this writting, int.from_bytes does not have LE support, DIY!

 result = 0

 shift = 0

 for byte in bytearray(s):

 result += byte << shift

 shift += 8

 return result

class BMPError(Exception):

 pass

©Adafruit Industries Page 42 of 79

def display_bitmap(epd, filename): # pylint: disable=too-many-locals, too-many-

branches

 try:

 f = open(filename, "rb") # pylint: disable=consider-using-with

 except OSError:

 print("Couldn't open file")

 return

 print("File opened")

 try:

 if f.read(2) != b"BM": # check signature

 raise BMPError("Not BitMap file")

 bmpFileSize = read_le(f.read(4))

 f.read(4) # Read & ignore creator bytes

 bmpImageoffset = read_le(f.read(4)) # Start of image data

 headerSize = read_le(f.read(4))

 bmpWidth = read_le(f.read(4))

 bmpHeight = read_le(f.read(4))

 flip = True

 print(

 "Size: %d\nImage offset: %d\nHeader size: %d"

 % (bmpFileSize, bmpImageoffset, headerSize)

)

 print("Width: %d\nHeight: %d" % (bmpWidth, bmpHeight))

 if read_le(f.read(2)) != 1:

 raise BMPError("Not singleplane")

 bmpDepth = read_le(f.read(2)) # bits per pixel

 print("Bit depth: %d" % (bmpDepth))

 if bmpDepth != 24:

 raise BMPError("Not 24-bit")

 if read_le(f.read(2)) != 0:

 raise BMPError("Compressed file")

 print("Image OK! Drawing...")

 rowSize = (bmpWidth * 3 + 3) & ~3 # 32-bit line boundary

 for row in range(bmpHeight): # For each scanline...

 if flip: # Bitmap is stored bottom-to-top order (normal BMP)

 pos = bmpImageoffset + (bmpHeight - 1 - row) * rowSize

 else: # Bitmap is stored top-to-bottom

 pos = bmpImageoffset + row * rowSize

 # print ("seek to %d" % pos)

 f.seek(pos)

 rowdata = f.read(3 * bmpWidth)

 for col in range(bmpWidth):

 b, g, r = rowdata[3 * col : 3 * col + 3] # BMP files store RGB in

BGR

 if r < 0x80 and g < 0x80 and b < 0x80:

 epd.pixel(col, row, Adafruit_EPD.BLACK)

 elif r >= 0x80 and g >= 0x80 and b >= 0x80:

 pass # epd.pixel(row, col, Adafruit_EPD.WHITE)

 elif r >= 0x80:

 epd.pixel(col, row, Adafruit_EPD.RED)

 except OSError:

 print("Couldn't read file")

 except BMPError as e:

 print("Failed to parse BMP: " + e.args[0])

 finally:

 f.close()

 print("Finished drawing")

©Adafruit Industries Page 43 of 79

clear the buffer

display.fill(Adafruit_EPD.WHITE)

display_bitmap(display, FILENAME)

display.display()

Before running it, we need to change a few pin definitions though. Find the section of

code that looks like this:

ecs = digitalio.DigitalInOut(board.D10)

dc = digitalio.DigitalInOut(board.D9)

srcs = digitalio.DigitalInOut(board.D7) # can be None to use internal memory

rst = digitalio.DigitalInOut(board.D11) # can be None to not use this pin

busy = digitalio.DigitalInOut(board.D12) # can be None to not use this pin

Change the pins to the following to match the wiring on the Raspberry Pi:

ecs = digitalio.DigitalInOut(board.CE0)

dc = digitalio.DigitalInOut(board.D22)

srcs = None

rst = digitalio.DigitalInOut(board.D27)

busy = digitalio.DigitalInOut(board.D17)

Now go to the command prompt on your Raspberry Pi and run the script with the

following command:

python3 epd_bitmap.py

After a few seconds, your display should show this image:

©Adafruit Industries Page 44 of 79

Full Example Code

Here is the full example code.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import digitalio

import busio

import board

from adafruit_epd.epd import Adafruit_EPD

from adafruit_epd.il0373 import Adafruit_IL0373

from adafruit_epd.il91874 import Adafruit_IL91874 # pylint: disable=unused-import

from adafruit_epd.il0398 import Adafruit_IL0398 # pylint: disable=unused-import

from adafruit_epd.ssd1608 import Adafruit_SSD1608 # pylint: disable=unused-import

from adafruit_epd.ssd1675 import Adafruit_SSD1675 # pylint: disable=unused-import

from adafruit_epd.ssd1680 import Adafruit_SSD1680 # pylint: disable=unused-import

from adafruit_epd.ssd1681 import Adafruit_SSD1681 # pylint: disable=unused-import

from adafruit_epd.uc8151d import Adafruit_UC8151D # pylint: disable=unused-import

create the spi device and pins we will need

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

ecs = digitalio.DigitalInOut(board.D12)

dc = digitalio.DigitalInOut(board.D11)

srcs = digitalio.DigitalInOut(board.D10) # can be None to use internal memory

rst = digitalio.DigitalInOut(board.D9) # can be None to not use this pin

busy = digitalio.DigitalInOut(board.D5) # can be None to not use this pin

give them all to our drivers

print("Creating display")

display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display

display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display

display = Adafruit_SSD1680(122, 250, # 2.13" HD Tri-color display

display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display

display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display

display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display

display = Adafruit_UC8151D(128, 296, # 2.9" mono flexible display

display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display

display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display

display = Adafruit_IL0373(

 104,

 212, # 2.13" Tri-color display

 spi,

 cs_pin=ecs,

 dc_pin=dc,

 sramcs_pin=srcs,

 rst_pin=rst,

 busy_pin=busy,

)

IF YOU HAVE A 2.13" FLEXIBLE DISPLAY uncomment these lines!

display.set_black_buffer(1, False)

display.set_color_buffer(1, False)

IF YOU HAVE A 2.9" FLEXIBLE DISPLAY uncomment these lines!

display.set_black_buffer(1, True)

display.set_color_buffer(1, True)

To run the code sample below, you will need to change the pins the same way as

you did in the Tri-color Bitmap Example.

©Adafruit Industries Page 45 of 79

display.rotation = 1

clear the buffer

print("Clear buffer")

display.fill(Adafruit_EPD.WHITE)

display.pixel(10, 100, Adafruit_EPD.BLACK)

print("Draw Rectangles")

display.fill_rect(5, 5, 10, 10, Adafruit_EPD.RED)

display.rect(0, 0, 20, 30, Adafruit_EPD.BLACK)

print("Draw lines")

display.line(0, 0, display.width - 1, display.height - 1, Adafruit_EPD.BLACK)

display.line(0, display.height - 1, display.width - 1, 0, Adafruit_EPD.RED)

print("Draw text")

display.text("hello world", 25, 10, Adafruit_EPD.BLACK)

display.display()

Image Drawing with Pillow

In this image, we will use Pillow to resize and crop the image automatically and draw

it the the ePaper Display. Pillow is really powerful and with it you can open and render

additional file formats such as PNG or JPG. Let's start with downloading a PNG of

blinka that has been adjusted down to 3 colors so it prints nicely on an ePaper

Display. We are using PNG for this because it is a lossless format and won't introduce

unexpected colors in.

Make sure you save it as blinka.png and place it in the same folder as your script.

Here's the code we'll be loading onto the Raspberry Pi. Go ahead and copy it onto

your Raspberry Pi and save it as epd_pillow_image.py. We'll go over the interesting

parts.

©Adafruit Industries Page 46 of 79

SPDX-FileCopyrightText: 2019 Melissa LeBlanc-Williams for Adafruit Industries

SPDX-License-Identifier: MIT

"""

Image resizing and drawing using the Pillow Library. For the image, check out the

associated Adafruit Learn guide at:

https://learn.adafruit.com/adafruit-eink-display-breakouts/python-code

"""

import digitalio

import busio

import board

from PIL import Image

from adafruit_epd.il0373 import Adafruit_IL0373

from adafruit_epd.il91874 import Adafruit_IL91874 # pylint: disable=unused-import

from adafruit_epd.il0398 import Adafruit_IL0398 # pylint: disable=unused-import

from adafruit_epd.ssd1608 import Adafruit_SSD1608 # pylint: disable=unused-import

from adafruit_epd.ssd1675 import Adafruit_SSD1675 # pylint: disable=unused-import

from adafruit_epd.ssd1680 import Adafruit_SSD1680 # pylint: disable=unused-import

from adafruit_epd.ssd1681 import Adafruit_SSD1681 # pylint: disable=unused-import

from adafruit_epd.uc8151d import Adafruit_UC8151D # pylint: disable=unused-import

create the spi device and pins we will need

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

ecs = digitalio.DigitalInOut(board.CE0)

dc = digitalio.DigitalInOut(board.D22)

srcs = None

rst = digitalio.DigitalInOut(board.D27)

busy = digitalio.DigitalInOut(board.D17)

give them all to our driver

display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display

display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display

display = Adafruit_SSD1680(122, 250, # 2.13" HD Tri-color or mono display

display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display

display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display

display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display

display = Adafruit_UC8151D(128, 296, # 2.9" mono flexible display

display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display

display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display

display = Adafruit_IL0373(

 104,

 212, # 2.13" Tri-color display

 spi,

 cs_pin=ecs,

 dc_pin=dc,

 sramcs_pin=srcs,

 rst_pin=rst,

 busy_pin=busy,

)

IF YOU HAVE A 2.13" FLEXIBLE DISPLAY uncomment these lines!

display.set_black_buffer(1, False)

display.set_color_buffer(1, False)

IF YOU HAVE A 2.9" FLEXIBLE DISPLAY uncomment these lines!

display.set_black_buffer(1, True)

display.set_color_buffer(1, True)

display.rotation = 1

image = Image.open("blinka.png")

Scale the image to the smaller screen dimension

image_ratio = image.width / image.height

screen_ratio = display.width / display.height

©Adafruit Industries Page 47 of 79

if screen_ratio < image_ratio:

 scaled_width = image.width * display.height // image.height

 scaled_height = display.height

else:

 scaled_width = display.width

 scaled_height = image.height * display.width // image.width

image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Crop and center the image

x = scaled_width // 2 - display.width // 2

y = scaled_height // 2 - display.height // 2

image = image.crop((x, y, x + display.width, y + display.height)).convert("RGB")

Convert to Monochrome and Add dithering

image = image.convert("1").convert("L")

Display image.

display.image(image)

display.display()

So we start with our usual imports including a couple of Pillow modules and the

ePaper display drivers.

import digitalio

import busio

import board

from PIL import Image, ImageDraw

from adafruit_epd.il0373 import Adafruit_IL0373

from adafruit_epd.il91874 import Adafruit_IL91874

from adafruit_epd.il0398 import Adafruit_IL0398

from adafruit_epd.ssd1608 import Adafruit_SSD1608

from adafruit_epd.ssd1675 import Adafruit_SSD1675

That is followed by initializing the SPI bus and defining a few pins here. The reason

we chose these is because they allow you to use the same code with the EPD

bonnets if you chose to do so.

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

ecs = digitalio.DigitalInOut(board.CE0)

dc = digitalio.DigitalInOut(board.D22)

srcs = None

rst = digitalio.DigitalInOut(board.D27)

busy = digitalio.DigitalInOut(board.D17)

We wanted to make these examples work on as many displays as possible with very

few changes. The 2.13" Tri-color display is selected by default. For other displays, go

ahead and comment out the following lines:

display = Adafruit_IL0373(

 104,

 212, # 2.13" Tri-color display

and uncomment the line appropriate for your display.

©Adafruit Industries Page 48 of 79

#display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display

#display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display

#display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display

#display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display

#display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display

#display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display

display = Adafruit_IL0373(

 104,

 212, # 2.13" Tri-color display

 spi,

 cs_pin=ecs,

 dc_pin=dc,

 sramcs_pin=srcs,

 rst_pin=rst,

 busy_pin=busy

)

Uncomment the next two lines if you have a flexible display. This tells the library to

change a couple of settings so that it is writing the correct colors to the correct

places.

IF YOU HAVE A FLEXIBLE DISPLAY (2.13" or 2.9") uncomment these lines!

#display.set_black_buffer(1, False)

#display.set_color_buffer(1, False)

Next we tall the display the rotation setting we want to use. This can be a value

between 0-3 .

display.rotation = 1

Next we open the Blinka image, which we've named blinka.png, which assumes it is in

the same directory that you are running the script from. Feel free to change it if it

doesn't match your configuration.

image = Image.open("blinka.png")

Here's where it starts to get interesting. We want to scale the image so that it matches

either the width or height of the display, depending on which is smaller, so that we

have some of the image to chop off when we crop it. So we start by calculating the

width to height ration of both the display and the image. If the height is the closer of

the dimensions, we want to match the image height to the display height and let it be

a bit wider than the display. Otherwise, we want to do the opposite.

Once we've figured out how we're going to scale it, we pass in the new dimensions

and using a Bicubic rescaling method, we reassign the newly rescaled image back

to image . Pillow has quite a few different methods to choose from, but Bicubic does

a great job and is reasonably fast.

©Adafruit Industries Page 49 of 79

Nearest actually gives a little better result with the Tri-color eInks, but loses detail with

displaying a color image on the monochrome display, so we decided to go with the

best balance.

image_ratio = image.width / image.height

screen_ratio = display.width / display.height

if screen_ratio < image_ratio:

 scaled_width = image.width * display.height // image.height

 scaled_height = display.height

else:

 scaled_width = display.width

 scaled_height = image.height * display.width // image.width

image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Next we want to figure the starting x and y points of the image where we want to

begin cropping it so that it ends up centered. We do that by using a standard

centering function, which is basically requesting the difference of the center of the

display and the center of the image. Just like with scaling, we replace the image vari

able with the newly cropped image.

x = scaled_width // 2 - display.width // 2

y = scaled_height // 2 - display.height // 2

image = image.crop((x, y, x + display.width, y + display.height))

Finally, we take our image , draw it to the frame buffer and display it. At this point,

the image should have the exact same dimensions at the display and fill it completely.

display.image(image)

display.display()

Now go to the command prompt on your Raspberry Pi and run the script with the

following command:

python3 epd_pillow_image.py

After a few seconds, your display should show this image:

©Adafruit Industries Page 50 of 79

Here's what it looks like on a monochrome display:

Drawing Shapes and Text with Pillow

In the next example, we'll take a look at drawing shapes and text. This is very similar

to the displayio example, but it uses Pillow instead. Go ahead and copy it onto your

Raspberry Pi and save it as epd_pillow_demo.py. Here's the code for that.

SPDX-FileCopyrightText: 2019 Melissa LeBlanc-Williams for Adafruit Industries

SPDX-License-Identifier: MIT

©Adafruit Industries Page 51 of 79

"""

ePaper Display Shapes and Text demo using the Pillow Library.

"""

import digitalio

import busio

import board

from PIL import Image, ImageDraw, ImageFont

from adafruit_epd.il0373 import Adafruit_IL0373

from adafruit_epd.il91874 import Adafruit_IL91874 # pylint: disable=unused-import

from adafruit_epd.il0398 import Adafruit_IL0398 # pylint: disable=unused-import

from adafruit_epd.ssd1608 import Adafruit_SSD1608 # pylint: disable=unused-import

from adafruit_epd.ssd1675 import Adafruit_SSD1675 # pylint: disable=unused-import

from adafruit_epd.ssd1680 import Adafruit_SSD1680 # pylint: disable=unused-import

from adafruit_epd.ssd1681 import Adafruit_SSD1681 # pylint: disable=unused-import

from adafruit_epd.uc8151d import Adafruit_UC8151D # pylint: disable=unused-import

First define some color constants

WHITE = (0xFF, 0xFF, 0xFF)

BLACK = (0x00, 0x00, 0x00)

RED = (0xFF, 0x00, 0x00)

Next define some constants to allow easy resizing of shapes and colors

BORDER = 20

FONTSIZE = 24

BACKGROUND_COLOR = BLACK

FOREGROUND_COLOR = WHITE

TEXT_COLOR = RED

create the spi device and pins we will need

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

ecs = digitalio.DigitalInOut(board.CE0)

dc = digitalio.DigitalInOut(board.D22)

srcs = None

rst = digitalio.DigitalInOut(board.D27)

busy = digitalio.DigitalInOut(board.D17)

give them all to our driver

display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display

display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display

display = Adafruit_SSD1680(122, 250, # 2.13" HD Tri-color or mono display

display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display

display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display

display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display

display = Adafruit_UC8151D(128, 296, # 2.9" mono flexible display

display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display

display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display

display = Adafruit_IL0373(

 104,

 212, # 2.13" Tri-color display

 spi,

 cs_pin=ecs,

 dc_pin=dc,

 sramcs_pin=srcs,

 rst_pin=rst,

 busy_pin=busy,

)

IF YOU HAVE A 2.13" FLEXIBLE DISPLAY uncomment these lines!

display.set_black_buffer(1, False)

display.set_color_buffer(1, False)

IF YOU HAVE A 2.9" FLEXIBLE DISPLAY uncomment these lines!

display.set_black_buffer(1, True)

display.set_color_buffer(1, True)

display.rotation = 1

©Adafruit Industries Page 52 of 79

image = Image.new("RGB", (display.width, display.height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Draw a filled box as the background

draw.rectangle((0, 0, display.width - 1, display.height - 1), fill=BACKGROUND_COLOR)

Draw a smaller inner foreground rectangle

draw.rectangle(

 (BORDER, BORDER, display.width - BORDER - 1, display.height - BORDER - 1),

 fill=FOREGROUND_COLOR,

)

Load a TTF Font

font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf",

FONTSIZE)

Draw Some Text

text = "Hello World!"

(font_width, font_height) = font.getsize(text)

draw.text(

 (display.width // 2 - font_width // 2, display.height // 2 - font_height // 2),

 text,

 font=font,

 fill=TEXT_COLOR,

)

Display image.

display.image(image)

display.display()

Just like in the last example, we'll do our imports, but this time we're including the Im

ageDraw and ImageFont Pillow modules because we'll be drawing some text this

time.

import digitalio

import busio

import board

from PIL import Image, ImageDraw, ImageFont

from adafruit_epd.il0373 import Adafruit_IL0373

from adafruit_epd.il91874 import Adafruit_IL91874

from adafruit_epd.il0398 import Adafruit_IL0398

from adafruit_epd.ssd1608 import Adafruit_SSD1608

from adafruit_epd.ssd1675 import Adafruit_SSD1675

Next we define some colors that can be used with Pillow.

WHITE = (0xFF, 0xFF, 0xFF)

BLACK = (0x00, 0x00, 0x00)

RED = (0xFF, 0x00, 0x00)

After that, we create some parameters that are easy to change. If you had a smaller

display for instance, you could reduce the FONTSIZE and BORDER parameters.

The BORDER will be the size in pixels of the green border between the edge of the

display and the inner purple rectangle. The FONTSIZE will be the size of the font in

points so that we can adjust it easily for different displays. You could play around with

©Adafruit Industries Page 53 of 79

the colors as well. One thing to note is that on monochrome displays, the RED will

show up as BLACK .

BORDER = 20

FONTSIZE = 24

BACKGROUND_COLOR = BLACK

FOREGROUND_COLOR = WHITE

TEXT_COLOR = RED

After that, the initializer and rotation sections are exactly the same as in the previous

example. If you have are using a different display than the 2.13" Tri-color, go ahead

and adjust your initializer as explained in the previous example. After that, we will

create an image with our dimensions and use that to create a draw object. The dr

aw object will have all of our drawing functions.

image = Image.new('RGB', (display.width, display.height))

draw = ImageDraw.Draw(image)

Next we clear whatever is on the screen by drawing a rectangle using the BACKGROU

ND_COLOR that takes up the full screen.

draw.rectangle((0, 0, display.width, display.height), fill=BACKGROUND_COLOR)

Next we will draw an inner rectangle using the FOREGROUND_COLOR . We use the BOR

DER parameter to calculate the size and position that we want to draw the rectangle.

draw.rectangle((BORDER, BORDER, display.width - BORDER - 1, display.height - BORDER

- 1),

 fill=FOREGROUND_COLOR)

Next we'll load a TTF font. The DejaVuSans.ttf font should come preloaded on

your Pi in the location in the code. We also make use of the FONTSIZE parameter

that we discussed earlier.

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf',

FONTSIZE)

Now we draw the text Hello World onto the center of the display. You may recognize

the centering calculation was the same one we used to center crop the image in the

previous example. In this example though, we get the font size values using the gets

ize() function of the font object.

text = "Hello World!"

(font_width, font_height) = font.getsize(text)

©Adafruit Industries Page 54 of 79

draw.text((display.width//2 - font_width//2, display.height//2 - font_height//2),

 text, font=font, fill=TEXT_COLOR)

Finally, just like before, we display the image.

display.image(image)

display.display()

Now go to the command prompt on your Raspberry Pi and run the script with the

following command:

python3 epd_pillow_demo.py

After a few seconds, your display should show this image:

Python Docs

Python Docs (https://adafru.it/C4z)

©Adafruit Industries Page 55 of 79

2.9" Grayscale eInk FeatherWing

Easy e-paper comes to your Feather with this breakout that's designed to make it a

breeze to add a monochrome eInk display. Chances are you've seen one of those

new-fangled 'e-readers' like the Kindle or Nook. They have gigantic electronic paper

'static' displays - that means the image stays on the display even when power is

completely disconnected. The image is also high contrast and very daylight readable.

It really does look just like printed paper!

We've liked these displays for a long time, so wouldn't a custom e-paper FeatherWing

with buttons make a ton of sense? This 'Wing is tested to work with all of our

Feathers, from the ESP8266 to the M0. It has built in memory buffering so it can work

with chips as small as the '32u4 and '328. It does use a lot of pins: the 3 SPI pins, and

up to 4 control pins to manage the SD card slot and SRAM. Plus 3 optional buttons

are available for Feathers with available pins.

The FeatherWing sports a 2.9" grayscale display with 296x128 pixels. Each pixel can

be white, light gray, dark gray or black. Compared to 'tri-color' displays with a red

pigment, this display takes a lot less time to update, only about a second instead of 15

seconds!

Using our CircuitPython or Arduino libraries, you can create a 'frame buffer' with what

pixels you want to have activated and then write that out to the display. Most simple

breakouts leave it at that. But if you do the math, 296 x 128 pixels x 2-bits-per-pixel =

9.5 KBytes. Which won't fit into many microcontroller memories. Heck, even if you do

have 32KB of RAM, why waste 9KB?

©Adafruit Industries Page 56 of 79

So we did you a favor and tossed a small SRAM chip on the back. This chip shares the

SPI port the eInk display uses, so you only need one extra pin. And, no more frame-

buffering! You can use the SRAM to set up whatever you want to display, then shuffle

data from SRAM to eInk when you're ready. The library we wrote does all the work for

you (https://adafru.it/BRK), you can just interface with it as if it were an Adafruit_GFX

compatible display (https://adafru.it/BRK).

We even tossed on a MicroSD socket so you can store images, text files, whatever

you like to display. Comes assembled and tested with socket headers that you can

plug your Feather right into, no soldering required!

Pinouts

This e-Paper display uses SPI to receive image data. Since the display is SPI, it was

easy to add two more SPI devices to share the bus - an SPI SRAM chip and SPI-driven

SD card holder. There's quite a few pins and a variety of possible combinations for

control depending on your needs.

©Adafruit Industries Page 57 of 79

Power Pins

3V - this is the power pin, and

connects to the Feather 3V power

supply output

GND - this is the power and signal

ground pin

Buttons

The buttons are connected to Digital

Input pins. Pressing the button brings the

pin low. There are no pull-up resistors

connected, so you will need to enable

those in software.

The numbers of the pins these correspond to will differ from board to board.

However, on 32u4/328p/M0/M4/nRF52840 and many other boards you will see the

following connections:

A Button - this is connected to D11 of the feather

B Button - this is connected to D12 of the feather

C Button - this is connected to D13 of the feather

•

•

•

•

•

©Adafruit Industries Page 58 of 79

Data Control Pins

The FeatherWing uses SPI and some

control pins for reading/writing data from

the SD and then sending data to the E-

Ink display

SPI data pins

SCK - this is the SPI clock input pin, required for e-Ink, SRAM and SD card

MISO - this is the SPI Microcontroller In Serial Out pin, its used for the SD card

and SRAM. It isn't used for the e-Ink display which is write-only, however you'll

likely be using the SRAM to buffer the display.

MOSI - this is the SPI Microcontroller Out Serial In pin, it is used to send data

from the microcontroller to the SD card, SRAM and e-Ink display

SPI control pins

ECS - this is the E-Ink Chip Select, required for controlling the display

SRCS - this is the SRAM Chip Select, required for communicating with the

onboard RAM chip.

SDCS - this is the SD card Chip Select, required for communicating with the

onboard SD card holder. You can leave this disconnected if you aren't going to

access SD cards

Other control pins

D/C - this is the e-Ink Data/Command pin, required for controlling the display

RST - this is connected to the microcontroller reset circuitry, so you don't need

to worry about it in software.

•

•

•

•

•

•

•

•

©Adafruit Industries Page 59 of 79

Optional control pads:

BUSY - this is the e-Ink busy detect pad and is optional if you don't want to

connect the pin (in which case the code will just wait an approximate number of

seconds). To use it, you will need to run a wire over to it.

SD CS, SRAM CS, EINK CS and DC are in order after the two I2C pins. The numbers of

the pins these correspond to will differ from board to board. However, on 32u4/328p/

M0/M4/nRF52840 and many other boards you will see the following connections

SD CS to Pin D5

SRAM CS to Pin D6

EINK CS to Pin D9

EINK DC to Pin D10

If you do not plan to use the SD card, you can cut the trace to SD CS.

Likewise if you do not plan to use the built in SRAM, say because you're in

CircuitPython or if you are using Arduino and have a lot of RAM in your controller, you

can cut the trace for SRAM CS.

Wiring

FeatherWing Connection

FeatherWing usage is easy, simply plug your Feather into the Wing

•

•

•

•

•

©Adafruit Industries Page 60 of 79

Download Fritzing Diagram

https://adafru.it/OdD

Arduino Usage

For this display we will run a 4-level grayscale demo

Open up File→Examples→Adafruit_EPD→ThinkInk_gray4

Configure Pins

At the top of the sketch find the lines that look like:

#define EPD_DC 10

#define EPD_CS 9

#define SRAM_CS 6

#define EPD_RESET 8 // can set to -1 and share with microcontroller Reset!

#define EPD_BUSY 7 // can set to -1 to not use a pin (will wait a fixed delay)

Change both EPD_RESET and EPD_BUSY to -1 since neither of these lines are

connected on the FeatherWing.

You'll also need to update the CS and DC pins if you're not using a Feather M0 or M4.

For example, on an ESP8266

#define SRAM_CS 16

#define EPD_CS 0

#define EPD_DC 15

©Adafruit Industries Page 61 of 79

Configure Display Size

Find the part of the script where you can pick which display is going to be used.

For the 2.9" Grayscale Featherwing, you will need to have ThinkInk_290_Grayscal

e4_T5 uncommented, and any other type commented.

Fine this line and make sure it is not commented out:

// 2.9" Grayscale Featherwing or Breakout:

ThinkInk_290_Grayscale4_T5 display(EPD_DC, EPD_RESET, EPD_CS, SRAM_CS, EPD_BUSY);

Upload Sketch

Go ahead and upload the sketch to your board. Once it is done uploading, open the S

erial Monitor.

The display should start running a series of monochrome and grayscale tests.

©Adafruit Industries Page 62 of 79

Arduino Bitmaps

Not only can you draw shapes but you can also load images from the SD card, perfect

for static images!

The 2.9" Grayscale display can show a max of 296x128 pixels. Lets use these three

bitmaps for our demo:

Download panda_head.bmp

https://adafru.it/OdE

Download adabot_head.bmp

©Adafruit Industries Page 63 of 79

https://adafru.it/OdF

Download 29gray4.bmp

https://adafru.it/OdG

Rename the files to panda_head.bmp, adabot_head.bmp, and 29gray4.bmp and

place them into the base directory of a microSD card and insert it into the microSD

socket in the breakout.

Plug the MicroSD card into the display. You may want to try the SD library examples

before continuing, especially one that lists all the files on the SD card

Open the file->examples->Adafruit_ImageReader->EInkGray29BmpButtonDemo exam

ple

Upload to your board and press the buttons on top. You should see a different image

appear for each button.

©Adafruit Industries Page 64 of 79

CircuitPython Code

CircuitPython eInk displayio Library Installation

To use displayio, you will need to install the appropriate library for your display.

First make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/Amd) for your board. You will need the latest version of CircuitPython.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(https://adafru.it/zdx). Our introduction guide has a great page on how to install the

library bundle (https://adafru.it/ABU) for both express and non-express boards.

You will need to copy the appropriate displayio driver from the bundle lib folder to a li

b folder on your CIRCUITPY drive. The displayio driver contains the initialization

codes specific to your display that are needed to for it to work. Since there is more

than one driver, you will need to copy the correct file over. Here is a list of each of the

displays and the correct driver for that display.

To use the eInk displays with displayio, you will need to use the absolute latest

version of CircuitPython and a board that can fit `displayio`. See the Support

Matrix to determine if `displayio` is available on a given board: https://

circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html

©Adafruit Industries Page 65 of 79

Adafruit_CircuitPython_IL0373

This display uses the Adafruit_CircuitPython_ILI0373 library. Copy the adafruit_il

0373.mpy file from the bundle to the lib folder on your CIRCUITPY drive. You will

want a recent version grayscale support was first added in version 1.3.1.

Usage

To show you how to use the eInk with displayio, we'll show you how to draw a bitmap

onto it. First start by downloading display-ruler.bmp

Download display-ruler.bmp

https://adafru.it/UIa

Next copy display-ruler.bmp into the root directory of your CIRCUITPY drive.

In the examples folder for your displayio driver, there should be a test for your display

which we have listed here:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""Simple test script for 2.9" 296x128 grayscale display.

Supported products:

 * Adafruit 2.9" Grayscale

 * https://www.adafruit.com/product/4777

 """

import time

import busio

import board

import displayio

import adafruit_il0373

displayio.release_displays()

This pinout works on a Feather M4 and may need to be altered for other boards.

spi = busio.SPI(board.SCK, board.MOSI) # Uses SCK and MOSI

epd_cs = board.D9

epd_dc = board.D10

display_bus = displayio.FourWire(

 spi, command=epd_dc, chip_select=epd_cs, baudrate=1000000

)

time.sleep(1)

display = adafruit_il0373.IL0373(

When downloading CircuitPython, for Grayscale support, you will need to choose

Absolute Newest, choose your language, and then download the top-most link.

©Adafruit Industries Page 66 of 79

 display_bus,

 width=296,

 height=128,

 rotation=270,

 black_bits_inverted=False,

 color_bits_inverted=False,

 grayscale=True,

 refresh_time=1,

)

g = displayio.Group()

with open("/display-ruler.bmp", "rb") as f:

 pic = displayio.OnDiskBitmap(f)

 # CircuitPython 6 & 7 compatible

 t = displayio.TileGrid(

 pic, pixel_shader=getattr(pic, "pixel_shader", displayio.ColorConverter())

)

 # CircuitPython 7 compatible only

 # t = displayio.TileGrid(pic, pixel_shader=pic.pixel_shader)

 g.append(t)

 display.show(g)

 display.refresh()

 print("refreshed")

 time.sleep(120)

Save it to your CIRCUITPY drive as code.py and it should automatically run. Your

display will look something like this:

©Adafruit Industries Page 67 of 79

Downloads

Files

Fritzing object in Adafruit Fritzing Library (https://adafru.it/Pcq)

IL0376F E-Ink interface chip datasheet (https://adafru.it/BRW)

PCB Files on GitHub (https://adafru.it/BRX)

Schematic

Fab Print

•

•

•

©Adafruit Industries Page 68 of 79

2.9" Tri-Color eInk

This breakout has a 2.9" tri-color (red, black, and white) display. It has 296x128 black

and red ink pixels and a white-ish background. Using our CircuitPython or Arduino

libraries, you can create a 'frame buffer' with what pixels you want to have activated

and then write that out to the display. Most simple breakouts leave it at that. But if you

do the math, 296 x 128 pixels x 2 colors = 9.5 KBytes. Which won't fit into many

microcontroller memories. Heck, even if you do have 32KB of RAM, why waste 10KB?

So we did you a favor and tossed a small SRAM chip on the back. This chip shares the

SPI port the eInk display uses, so you only need one extra pin. And, no more frame-

buffering! You can use the SRAM to set up whatever you want to display, then shuffle

data from SRAM to eInk when you're ready. The library we wrote does all the work for

you (https://adafru.it/BRK), you can just interface with it as if it were an Adafruit_GFX

compatible display (https://adafru.it/BRK).

For ultra-low power usages, the onboard 3.3V regulator has the Enable pin brought

out so you can shut down the power to the SRAM, MicroSD and display.

We even tossed on a MicroSD socket so you can store images, text files, whatever

you like to display. Everything is 3 or 5V logic safe so you can use it with any and all

microcontrollers.

©Adafruit Industries Page 69 of 79

Wiring

Breakout Wiring

Wiring up the display in SPI mode is pretty easy as there's not that many pins! We'll be

using hardware SPI, but you can also use software SPI (any pins) later.

Vin connects to the microcontroller

board's 5V or 3.3V power supply

pin

GND connects to ground

CLK connects to SPI clock. It's

easiest to connect it to pin 3 of the

ICSP header.

MOSI connects to SPI MOSI. It's

easiest to connect it to pin 4 of the

ICSP header.

MISO connects to SPI MISO. It's

easiest to connect it to pin 1 of the

ICSP header.

ECS connects to our e-Ink Chip

Select pin. We'll be using Digital 9

D/C connects to our e-Ink data/

command select pin. We'll be using

Digital 10.

SRCS connects to our SRAM Chip

Select pin. We'll be using Digital 6

RST connects to our e-Ink reset pin.

We'll be using Digital 8.

BUSY connects to our e-Ink busy

pin. We'll be using Digital 7.

SDCS connects to our SD Card Chip

Select pin. We'll be using Digital 5

Download Fritzing Diagram

https://adafru.it/Ofg

FeatherWing Connection

FeatherWing usage is easy, simply plug your Feather into the Wing

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 70 of 79

Download Fritzing Diagram

https://adafru.it/OdD

Python Wiring

Raspberry Pi 3.3 to display VIN

Raspberry Pi GND to display GND

Raspberry Pi SCLK to display SCK

Raspberry Pi MOSI to display MOSI

Raspberry Pi GPIO CE0 to display

ECS

Raspberry Pi GPIO 22 to display D/

C

Raspberry Pi GPIO 27 to display

RST

Raspberry Pi GPIO 17 to display

BUSY

Download Fritzing Diagram

https://adafru.it/Ofh

Arduino Usage

Open up File→Examples→Adafruit_EPD→ThinkInk_tricolor

•

•

•

•

•

•

•

•

©Adafruit Industries Page 71 of 79

At the top of the sketch find the lines that look like:

#define EPD_CS 9

#define EPD_DC 10

#define SRAM_CS 6

#define EPD_RESET 8 // can set to -1 and share with microcontroller Reset!

#define EPD_BUSY 7 // can set to -1 to not use a pin (will wait a fixed delay)

FeatherWing Wiring

If you are using the FeatherWing, change both EPD_RESET and EPD_BUSY to -1 since

neither of these lines are connected.

You'll also need to update the EPD_DC, EPD_CS and SRAM_CS pins if you're not

using a Feather M0 or M4. For example, on an ESP8266

#define SRAM_CS 16

#define EPD_CS 0

#define EPD_DC 15

Breakout Wiring

If you are using the Breakout, just upload the sketch as it is.

Once it is done uploading, open the Serial Monitor.

©Adafruit Industries Page 72 of 79

The display should start running a series of monochrome and grayscale tests.

Downloads

Files

Fritzing object in Adafruit Fritzing Library (https://adafru.it/aP3)

IL0376F E-Ink interface chip datasheet (https://adafru.it/BRW)

PCB Files on GitHub (https://adafru.it/BRX)

SSD1675 driver datasheet

https://adafru.it/M5C

Display shape/outline:

•

•

•

©Adafruit Industries Page 73 of 79

Schematic & Fabrication Prints

Shared schematic for 1.54" 2.13" and 2.7" Breakouts

©Adafruit Industries Page 74 of 79

©Adafruit Industries Page 75 of 79

2.9 Inch Display

©Adafruit Industries Page 76 of 79

eInk Friends

©Adafruit Industries Page 77 of 79

©Adafruit Industries Page 78 of 79

2.7" Shield

©Adafruit Industries Page 79 of 79

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Electronic Paper Displays - ePaper category:

Click to view products by Adafruit manufacturer:

Other Similar products are found below :

PIM534 E2741JS0B2 16565 17779 18057 DEE 172072A-W 13187 13353 13378 14410 14597 17574 19408 14986 15084 13186 18401

18321 EA EPA20-A DEE 600800A-W DFR0369 10628 12561 12672 12915 12955 3625 4086 4098 4195 4196 4197 4243 4262 4777

4778 4814 000026 000041 DEE 400300A2-W DFR0835 DFR0837 DEE 800480A-W EA ELABEL20-A EA EPA43-A EA EPA60-A

28084 E2154CS0C1 E2154JS0C1 E2260CS021

https://www.x-on.com.au/category/optoelectronics/displays/electronic-paper-displays-epaper
https://www.x-on.com.au/manufacturer/adafruit
https://www.x-on.com.au/mpn/pimoroni/pim534
https://www.x-on.com.au/mpn/pervasive/e2741js0b2
https://www.x-on.com.au/mpn/waveshare/16565
https://www.x-on.com.au/mpn/waveshare/17779
https://www.x-on.com.au/mpn/waveshare/18057
https://www.x-on.com.au/mpn/displayelektronik/dee172072aw
https://www.x-on.com.au/mpn/waveshare/13187
https://www.x-on.com.au/mpn/waveshare/13353
https://www.x-on.com.au/mpn/waveshare/13378
https://www.x-on.com.au/mpn/waveshare/14410
https://www.x-on.com.au/mpn/waveshare/14597
https://www.x-on.com.au/mpn/waveshare/17574
https://www.x-on.com.au/mpn/waveshare/19408
https://www.x-on.com.au/mpn/waveshare/14986
https://www.x-on.com.au/mpn/waveshare/15084
https://www.x-on.com.au/mpn/waveshare/13186
https://www.x-on.com.au/mpn/waveshare/18401
https://www.x-on.com.au/mpn/waveshare/18321
https://www.x-on.com.au/mpn/electronicassembly/eaepa20a
https://www.x-on.com.au/mpn/displayelektronik/dee600800aw
https://www.x-on.com.au/mpn/dfrobot/dfr0369
https://www.x-on.com.au/mpn/waveshare/10628
https://www.x-on.com.au/mpn/waveshare/12561
https://www.x-on.com.au/mpn/waveshare/12672
https://www.x-on.com.au/mpn/waveshare/12915
https://www.x-on.com.au/mpn/waveshare/12955
https://www.x-on.com.au/mpn/adafruit/3625
https://www.x-on.com.au/mpn/adafruit/4086
https://www.x-on.com.au/mpn/adafruit/4098
https://www.x-on.com.au/mpn/adafruit/4195
https://www.x-on.com.au/mpn/adafruit/4196
https://www.x-on.com.au/mpn/adafruit/4197
https://www.x-on.com.au/mpn/adafruit/4243
https://www.x-on.com.au/mpn/adafruit/4262
https://www.x-on.com.au/mpn/adafruit/4777
https://www.x-on.com.au/mpn/adafruit/4778
https://www.x-on.com.au/mpn/adafruit/4814
https://www.x-on.com.au/mpn/crowdsupply/000026
https://www.x-on.com.au/mpn/crowdsupply/000041
https://www.x-on.com.au/mpn/displayelektronik/dee400300a2w
https://www.x-on.com.au/mpn/dfrobot/dfr0835
https://www.x-on.com.au/mpn/dfrobot/dfr0837
https://www.x-on.com.au/mpn/displayelektronik/dee800480aw
https://www.x-on.com.au/mpn/electronicassembly/eaelabel20a
https://www.x-on.com.au/mpn/electronicassembly/eaepa43a
https://www.x-on.com.au/mpn/electronicassembly/eaepa60a
https://www.x-on.com.au/mpn/parallax/28084
https://www.x-on.com.au/mpn/pervasive/e2154cs0c1
https://www.x-on.com.au/mpn/pervasive/e2154js0c1
https://www.x-on.com.au/mpn/pervasive/e2260cs021

