

Adafruit Ultimate GPS

Created by lady ada

https://learn.adafruit.com/adafruit-ultimate-gps

Last updated on 2021-11-15 05:50:13 PM EST

©Adafruit Industries Page 1 of 48

5

6

7

7

8

8

9

10

11

12

12

13

14

14

16

19

20

20

21

21

22

23

24

24

25

26

27

27

28

31

33

33

33

33

34

37

37

38

39

40

Table of Contents

Overview

• Ultimate GPS Breakout Board

• Ultimate GPS USB Board

• Antenna Usage

• Pick one up today at the Adafruit shop!

• Specifications:

Pinouts

• Breakout Power Pins

• Breakout Serial Data Pins

• Breakout Other Pins

Battery Backup

• If you have a v1 or v2 module ONLY:

External Antenna

• New in version 3 of the Ultimate GPS breakout, we now have support for optional external antennas!

Direct Computer Wiring

Breakout Arduino Wiring

• Software Serial Boards

• Hardware Serial Boards

• Arduino UNO or other SoftwareSerial boards

• Leonardo/M0/M4/ESP32 and other Hardware Serial Boards

• Upload and Check Output

Breakout Arduino Parsing

CircuitPython & Python Setup

• CircuitPython MicroController Wiring

• Python Computer Wiring

• CircuitPython Installation of GPS Library

• Python Installation of GPS Library

CircuitPython & Python UART Usage

• Example Parsing Code

• GPS Example Code Explained

CircuitPython Datalogging

• Datalogging Example

• Install SD Card Library

• Enable Internal Filesystem Writes

• Datalogging Example Code

Python Docs

Built In Logging

• Logging Status

• Downloading Data

• Using the GPS Tool

©Adafruit Industries Page 2 of 48

40

40

40

41

41

41

41

45

45

45

46

47

48

LOCUS Parser

Resources

• Datasheets

• More reading:

• Adafruit GPS Library for Arduino

• EPO files for AGPS use

F.A.Q.

Downloads

• Files

• Ultimate GPS v3 Schematic

• Ultimate GPS Fabrication Print

• Ultimate GPS USB Schematic

• Ultimate GPS USB Fabrication Print

©Adafruit Industries Page 3 of 48

©Adafruit Industries Page 4 of 48

Overview

We carry a few different GPS modules here in the Adafruit shop, but none that

satisfied our every desire - that's why we designed this little GPS breakout board. We

believe this is the Ultimate GPS module, so we named it that. It's got everything you

want and more:

-165 dBm sensitivity, 10 Hz updates, 66 channels

5V friendly design and only 20mA current draw

Breadboard friendly + two mounting holes

RTC battery-compatible

Built-in datalogging

PPS output on fix

Internal patch antenna + u.FL connector for external active antenna

Fix status LED

The breakout is built around the MTK3339 chipset, a no-nonsense, high-quality GPS

module that can track up to 22 satellites on 66 channels, has an excellent high-

sensitivity receiver (-165 dB tracking!), and a built in antenna. It can do up to 10

location updates a second for high speed, high sensitivity logging or tracking. Power

usage is incredibly low, only 20 mA during navigation.

•

•

•

•

•

•

•

•

©Adafruit Industries Page 5 of 48

Ultimate GPS Breakout Board

The Breadboard Breakout board comes with: a ultra-low dropout 3.3V regulator so

you can power it with 3.3-5VDC in, 5V level safe inputs, ENABLE pin so you can turn

off the module using any microcontroller pin or switch, a footprint for optional CR1220

coin cell to keep the RTC running and allow warm starts and a tiny bright red LED. The

LED blinks at about 1Hz while it's searching for satellites and blinks once every 15

seconds when a fix is found to conserve power. If you want to have an LED on all the

time, we also provide the FIX signal out on a pin so you can put an external LED on.

©Adafruit Industries Page 6 of 48

Ultimate GPS USB Board

The USB Breakout board comes with: 4-pin USB breakout for direct-soldering or

connection to a USB host, two yellow receive/transmit LEDs let you know when data

is being transmitted to or from the GPS module serial interface, a footprint for optional

CR1220 coin cell to keep the RTC running and allow warm starts and a tiny bright red

LED. The LED blinks at about 1Hz while it's searching for satellites and blinks once

every 15 seconds when a fix is found to conserve power. If you want to have an LED

on all the time, we also provide the FIX signal out on a pin so you can put an external

LED on.

Antenna Usage

Two features that really stand out about version 3 MTK3339-based module is the

external antenna functionality and the the built in data-logging capability. The module

has a standard ceramic patch antenna that gives it -165 dB sensitivity, but when you

want to have a bigger antenna, you can snap on any 3V active GPS antenna via the

uFL connector. The module will automatically detect the active antenna and switch

over! Most GPS antennas use SMA connectors so you may want to pick up one of our

uFL to SMA adapters. (http://adafru.it/851)

The other cool feature of the new MTK3339-based module (which we have tested

with great success) is the built in datalogging ability. Since there is a microcontroller

inside the module, with some empty FLASH memory, the newest firmware now allows

sending commands to do internal logging to that FLASH. The only thing is that you do

©Adafruit Industries Page 7 of 48

need to have a microcontroller send the "Start Logging" command. However, after

that message is sent, the microcontroller can go to sleep and does not need to wake

up to talk to the GPS anymore to reduce power consumption. The time, date,

longitude, latitude, and height is logged every 15 seconds and only when there is a

fix. The internal FLASH can store about 16 hours of data, it will automatically append

data so you don't have to worry about accidentally losing data if power is lost. It is not

possible to change what is logged and how often, as its hardcoded into the module

but we found that this arrangement covers many of the most common GPS

datalogging requirements.

Pick one up today at the Adafruit shop! (http://adafru.it/

746)

Specifications:

Module specs:

Satellites: 22 tracking, 66 searching

Patch Antenna Size: 15mm x 15mm x 4mm

Update rate: 1 to 10 Hz

Position Accuracy: 1.8 meters

Velocity Accuracy: 0.1 meters/s

Warm/cold start: 34 seconds

Acquisition sensitivity: -145 dBm

Tracking sensitivity: -165 dBm

Maximum Velocity: 515m/s

Vin range: 3.0-5.5VDC

MTK3339 Operating current: 25mA tracking, 20 mA current draw during

navigation

Output: NMEA 0183, 9600 baud default

DGPS/WAAS/EGNOS supported

FCC E911 compliance and AGPS support (Offline mode : EPO valid up to 14 days

)

Up to 210 PRN channels

Jammer detection and reduction

Multi-path detection and compensation

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 8 of 48

Breakout board details:

Weight (not including coin cell or holder): 8.5g

Dimensions (not including coin cell or holder): 25.5mm x 35mm x 6.5mm / 1.0" x

1.35" x 0.25"

If you purchased a module before March 26th, 2012 and it says MTK3329 on the

silkscreen, you have the PA6B version of this breakout with the MT3329 chipset. The

MTK3329 does not have built in datalogging. If your module has sharpie marker

crossing out the MTK3329 text or there is no text, you have a PA6C MTK3339 with

datalogging ability. If you have the version with "v3" next to the name, you have the

PA6H which has PPS output and external-antenna support

This tutorial assumes you have a '3339 type module.

Pinouts

adafruit_products_gps_746_topkit.jpg The plain GPS breakout is meant to be

used with a microcontroller that has a

3/5V UART and has all the GPIO pins

exposed on the bottom 0.1" header

The USB version doesn't have those

breakouts. Instead it has a single USB

serial port. There's 4 pads to the right

side that are the USB pinouts for when

you want to solder it directly to a USB

host converoller.

•

•

©Adafruit Industries Page 9 of 48

Breakout Power Pins

These are the pins that are involved with powering the GPS. Starting from the right

are the required power pins:

VIN - power input, connect to 3-5VDC. It's important to connect to a clean and

quiet power supply. GPS's are very sensitive, so you want a nice and quiet

power supply. Don't connect to a switching supply if you can avoid it, an LDO

will be less noisy!

GND - power and signal ground. Connect to your power supply and

microcontroller ground.

Then, on the left are some optional power pins:

VBAT is an input pin - it is connected to the GPS real time clock battery backup.

We suggest using the battery spot on the back but if you have a project with a

coin cell or other kind of battery that you want to use (and its under 3.3V) you

can connect it to the VBAT pin. For V1 and V2 modules: If you do this, be sure to

cut the trace on the back between the RTC solder pads

EN is the Enable pin, it is pulled high with a 10K resistor. When this pin is pulled

to ground, it will turn off the GPS module. This can be handy for very low power

projects where you want to easily turn the module off for long periods. You will

lose your fix if you disable the GPS and it will also take a long time to get fix

back if you dont have the backup battery installed.

•

•

•

•

©Adafruit Industries Page 10 of 48

3.3V is the output from the onboard 3.3V regulator. If you have a need for a

clean 3.3V output, you can use this! It can provide at least 100mA output.

Breakout Serial Data Pins

Next pins you'll want to use are the serial data pins:

TX - the pin that transmits data from the GPS module to your microcontroller or

computer. It is 3.3V logic level. Data comes out at 9600 baud by default

RX - the pin that you can use to send data to the GPS. You can use use 3.3V or

5V logic, there is a logic level shifter. By default it expects 9600 baud data, and

remember you need to send it checksum'med NMEA sentences

•

•

•

©Adafruit Industries Page 11 of 48

Breakout Other Pins

FIX is an output pin - it is the same pin as the one that drives the red LED. When there

is no fix, the FIX pin is going to pulse up and down once every second. When there is

a fix, the pin is low (0V) for most of the time, once every 15 seconds it will pulse high

for 200 milliseconds

PPS is a new pin output on V3 modules. Its a "pulse per second" output. Most of the

time it is at logic low (ground) and then it pulses high (3.3V) once a second, for

50-100ms, so it should be easy for a microcontroller to sync up to it

Battery Backup

The GPS has a built in real time clock, which can keep track of time even when it

power is lost and it doesn't have a fix yet. It can also help reduce fix times, if you

expect to have a flakey power connection (say you're using solar or similar). To use

the RTC, we need to attach a battery. There is a spot on the back for a CR1220 sized

battery holder. We provide the holder but the battery is not included. You can use any

12mm coin cell - these are popular and we also carry them in the Adafruit shop.

Normally, if the GPS loses power, it will revert to the factory default for baud rates,

configuration, etc. A backup battery will mean that those defaults will not be lost!

The backup real-time-clock circuitry draws 7 uA (0.007 mA) so a CR1220 will last

40mAh / 0.007mA = 5,714 hours = 240 days continuously. The backup battery is only

©Adafruit Industries Page 12 of 48

used when there's no main 3V power to the GPS, so as long as it's only used as

backup once in a while, it will last years

If you have a v1 or v2 module ONLY:

Before inserting a battery into the battery holder, first cut the trace between the two

solder pads on the back, labeled RTC (this disconnects the VIN pin from the battery

input) Use a multimeter with continuity checking to verify the two pads are no longer

tied together.

V3 modules do not have a trace to cut, they have a built-in diode!

©Adafruit Industries Page 13 of 48

Remember, the GPS does not know what time zone you are in (even though it knows

your location, there is no easy way to determine time zone without a massive lookup

table) so all date/time data is in UTC (aka. Greenwich Mean Time) - You will have to

write the code that converts that to your local time zone and account for Daylight

Savings if required! Since that's pretty complicated, most people just stick to keeping

everything in UTC

External Antenna

New in version 3 of the Ultimate GPS breakout, we now

have support for optional external antennas!

This is not available in v1 or v2 so if you do not see the uFL connector, you have an

older version of the module which cannot support antennas

All Ultimate GPS modules have a built in patch antenna - this antenna provides -165

dBm sensitivity and is perfect for many projects. However, if you want to place your

project in a box, it might not be possible to have the antenna pointing up, or it might

be in a metal shield, or you may need more sensitivity. In these cases, you may want

to use an external active antenna. (http://adafru.it/960)

Active antennas draw current, so they do provide more gain but at a power cost.

Check the antenna datasheet for exactly how much current they draw - its usually

around 10-20mA. (http://adafru.it/960)

Most GPS antennas use SMA connectors, which are popular and easy to use.

©Adafruit Industries Page 14 of 48

However, an SMA connector would be fairly big on the GPS breakout so we went with

a uFL connector - which is lightweight, small and easy to manufacture. If you don't

need an external antenna it wont add significant weight or space but its easy to attach

a uFL->SMA adapter cable (http://adafru.it/851). Then connect the GPS antenna to the

cable.

The Ultimate GPS will automagically detect an external active antenna is attached and

'switch over' - you do not need to send any commands

There is an output sentence that will tell you the status of the antenna. $PGTOP,11,x

where x is the status number. If x is 3 that means it is using the external antenna. If x i

s 2 it's using the internal antenna and if x is 1 there was an antenna short or problem.

On newer shields & modules, you'll need to tell the firmware you want to have this

report output, you can do that by adding a gps.sendCommand(PGCMD_ANTENNA) ar

ound the same time you set the update rate/sentence output.

uFL connectors are small, delicate and are not rated for strain or tons of

connections/disconnections. Once you attach a uFL adapter use strain relief to

avoid ripping off the uFL

©Adafruit Industries Page 15 of 48

Direct Computer Wiring

GPS modules are great in that the moment you turn them on, they'll start spitting out

data, and trying to get a 'fix' (location verification). Like pretty much every GPS in

existence, the Adafruit Ultimate GPS uses TTL serial output to send data so the best

way to first test the GPS is to wire it directly to the computer via the TTL serial to USB

converter on an Arduino. You can also use an FTDI Friend or other TTL adapter but

for this demonstration we'll use a classic Arduino.

First, load a 'blank' sketch into the Arduino:

// this sketch will allow you to bypass the Atmega chip
// and connect the Ultimate GPS directly to the USB/Serial
// chip converter.

// Connect VIN to +5V
// Connect GND to Ground
// Connect GPS RX (data into GPS) to Digital 0
// Connect GPS TX (data out from GPS) to Digital 1

void setup() {}
void loop() {}

This is will free up the converter so you can directly wire and bypass the Arduino chip.

Once you've uploaded this sketch, wire the GPS as follows. Your module may look

slightly different, but as long as you are connecting to the right pin names, they all

work identically for this part

This tutorial step won't work with a chip that has NATIVE USB - its for an Arduino

UNO compatible only. Go on to the next step, "Arduino Wiring", but refer back

here for this discussion of the GPS data!

©Adafruit Industries Page 16 of 48

Now plug in the USB cable, and open up the serial monitor from the Arduino IDE and

be sure to select 9600 baud in the drop down. You should see text like the following:

This is the raw GPS "NMEA sentence" output from the module. There are a few

different kinds of NMEA sentences, the most common ones people use are the $GPR

MC (Global Positioning RecommendedMinimum Coordinates or something like that)

and the $GPGGA sentences. These two provide the time, date, latitude, longitude,

altitude, estimated land speed, and fix type. Fix type indicates whether the GPS has

locked onto the satellite data and received enough data to determine the location (2D

fix) or location+altitude (3D fix).

©Adafruit Industries Page 17 of 48

For more details about NMEA sentences and what data they contain, check out this

site (https://adafru.it/kMb)

If you look at the data in the above window, you can see that there are a lot of

commas, with no data in between them. That's because this module is on my desk,

indoors, and does not have a 'fix'. To get a fix, we need to put the module outside.

If you can get a really long USB cord (or attach a GPS antenna to the v3 modules) and

stick the GPS out a window, so its pointing at the sky, eventually the GPS will get a fix

and the window data will change over to transmit valid data like this:

Look for the line that says $GPRMC,194509.000,A,4042.6142,N,07400.4168,W,

2.03,221.11,160412,,,A*77

This line is called the RMC (Recommended Minimum) sentence and has pretty much

all of the most useful data. Each chunk of data is separated by a comma.

The first part 194509.000 is the current time GMT (Greenwich Mean Time). The first

two numbers 19 indicate the hour (1900h, otherwise known as 7pm) the next two are

the minute, the next two are the seconds and finally the milliseconds. So the time

when this screenshot was taken is 7:45 pm and 9 seconds. The GPS does not know

what time zone you are in, or about "daylight savings" so you will have to do the

calculation to turn GMT into your timezone

GPS modules will always send data EVEN IF THEY DO NOT HAVE A FIX! In order

to get 'valid' (not-blank) data you must have the GPS module directly outside,

with the square ceramic antenna pointing up with a clear sky view. In ideal

conditions, the module can get a fix in under 45 seconds. however depending on

your location, satellite configuration, solar flares, tall buildings nearby, RF noise,

etc it may take up to half an hour (or more) to get a fix! This does not mean your

GPS module is broken, the GPS module will always work as fast as it can to get a

fix.

©Adafruit Industries Page 18 of 48

The second part is the 'status code', if it is a V that means the data is Void (invalid). If it

is an A that means its Active (the GPS could get a lock/fix)

The next 4 pieces of data are the geolocation data. According to the GPS, my location

is 4042.6142,N (Latitude 40 degrees, 42.6142 decimal minutes North)

& 07400.4168,W. (Longitude 74 degrees, 0.4168 decimal minutes West) To look at this

location in Google maps, type +40 42.6142', -74 00.4168' into the google maps

search box (https://adafru.it/aMl) . Unfortunately gmaps requires you to use +/- instead

of NSWE notation. N and E are positive, S and W are negative.

The next data is the ground speed in knots. We're going 2.03 knots

After that is the tracking angle, this is meant to approximate what 'compass' direction

we're heading at based on our past travel

The one after that is 160412 which is the current date (16th of April, 2012).

Finally there is the *XX data which is used as a data transfer checksum

Once you get a fix using your GPS module, verify your location with google maps (or

some other mapping software). Remember that GPS is often only accurate to 5-10

meters and worse if you're indoors or surrounded by tall buildings.

Breakout Arduino Wiring

Once you've gotten the GPS module tested with direct wiring, we can go forward and

wire it up to a microcontroller. We'll be using an Arduino but you can adapt our code

to any other microcontroller that can receive TTL serial at 9600 baud.

People often get confused because the GPS is working but is "5 miles off" - this

is because they are not parsing the lat/long data correctly. Despite appearances,

the geolocation data is NOT in decimal degrees. It is in degrees and minutes in

the following format: Latitude: DDMM.MMMM (The first two characters are the

degrees.) Longitude: DDDMM.MMMM (The first three characters are the degrees.)

©Adafruit Industries Page 19 of 48

Software Serial Boards

For an Arduino compatible, or any board

that does not have an extra Hardware

Serial port, we'll use Software Serial

Connect VIN to +5V (or whatever the

logic level is of your board), GND to

Ground, RX to digital 7 and TX to digital

8.

Hardware Serial Boards

If you're using a board with hardware

serial support, like this Feather M0, wire

up VIN to 3.3V (since that is the logic

level of the Feather M0), GND to ground,

and GPS RX to Feather TX and GPS TX to

Feather RX.

Next up, download the Adafruit GPS library. This library does a lot of the 'heavy lifting'

required for receiving data from GPS modules, such as reading the streaming data in

a background interrupt and auto-magically parsing it. You can check the code by

visiting the GitHub repository (https://adafru.it/aMm)

To install, open the Arduino library manager

©Adafruit Industries Page 20 of 48

Search for Adafruit GPS and click Install

Library installation is a frequent stumbling block…if you need assistance, our All About

Arduino Libraries (https://adafru.it/dit) guide spells it out in detail!

Arduino UNO or other SoftwareSerial boards

If your microcontrollers doesn't have a Hardware Serial interface available - say you're

using an Arduino UNO or compatible, load up the SoftwareSerial_echotest

example:

Leonardo/M0/M4/ESP32 and other Hardware Serial

Boards

If you have a board with a spare Hardware Serial interface (which many boards other

than the original Arduino UNO compatibles have) - we recommend using that since

hardware serial will always give less errors and better performance than software

serial!

We assume you'll be using Serial1 - check your board documentation to figure out

which pins that is!

©Adafruit Industries Page 21 of 48

Upload and Check Output

Whichever version you decide to use, upload the sketch to the microcontroller. Then

open up the serial monitor. This sketch simply reads data from the software serial or

hardware serial port and outputs that to USB.

Open up the Arduino IDE Serial Console and make sure to set the Serial baud rate to

115200

You can configure the GPS output you see by commenting/uncommenting lines in the

setup() procedure. For example, we can ask the GPS to send different sentences, and

change how often it sends data. 10 Hz (10 times a second) is the max speed, and is a

lot of data. You may not be able to output "all data" at that speed because the 9600

baud rate is not fast enough.

// You can adjust which sentences to have the module emit, below

 // uncomment this line to turn on RMC (recommended minimum) and GGA (fix data)
including altitude
 GPS.sendCommand(PMTK_SET_NMEA_OUTPUT_RMCGGA);
 // uncomment this line to turn on only the "minimum recommended" data for high
update rates!
 //GPS.sendCommand(PMTK_SET_NMEA_OUTPUT_RMCONLY);
 // uncomment this line to turn on all the available data - for 9600 baud you'll
want 1 Hz rate

©Adafruit Industries Page 22 of 48

 //GPS.sendCommand(PMTK_SET_NMEA_OUTPUT_ALLDATA);

 // Set the update rate
 // 1 Hz update rate
 //GPS.sendCommand(PMTK_SET_NMEA_UPDATE_1HZ);
 // 5 Hz update rate- for 9600 baud you'll have to set the output to RMC or RMCGGA
only (see above)
 GPS.sendCommand(PMTK_SET_NMEA_UPDATE_5HZ);
 // 10 Hz update rate - for 9600 baud you'll have to set the output to RMC only
(see above)
 //GPS.sendCommand(PMTK_SET_NMEA_UPDATE_10HZ);

In general, we find that most projects only need the RMC and GGA NMEA's so you

don't need ALLDATA unless you have some need to know satellite locations.

Breakout Arduino Parsing

Since all GPS's output NMEA sentences and often for our projects we need to extract

the actual data from them, we've simplified the task tremendously when using the

Adafruit GPS library. By having the library read, store and parse the data in a

background interrupt it becomes trivial to query the library and get the latest updated

information without any icky parsing work.

Open up the File→Examples→Adafruit_GPS→GPS_HardwareSerial_Parsing or GPS_S

oftwareSerial_Parsing sketch and upload it to the microcontroller. Use the same

wiring as in the previous page. Then open up the serial monitor.

You'll only get correct time and location data if the GPS has a fix. Make sure it has

an external antenna outside or is very close to a window and pointing up, to get

GPS data! You'll usually get time information before location since you don't need

as many satellites.

©Adafruit Industries Page 23 of 48

In this sketch, we call GPS.read() constantly in the main loop (if you can, get this to run

once a millisecond in an interrupt). Then in the main loop we can ask if a new chunk

of data has been received by calling GPS.newNMEAreceived(), if this returns true then

we can ask the library to parse that data with GPS.parse(GPS.lastNMEA()).

We do have to keep querying and parsing in the main loop - its not possible to do this

in an interrupt because then we'd be dropping GPS data by accident.

Once data is parsed, we can just ask for data from the library like GPS.day, GPS.mont

h and GPS.year for the current date. GPS.fix will be 1 if there is a fix, 0 if there is none.

If we have a fix then we can ask for GPS.latitude, GPS.longitude, GPS.speed (in knots,

not mph or k/hr!), GPS.angle, GPS.altitude (in centimeters) and GPS.satellites (number

of satellites)

This should make it much easier to have location-based projects. We suggest keeping

the update rate at 1Hz and request that the GPS only output RMC and GGA as the

parser does not keep track of other data anyways.

CircuitPython & Python Setup

You can easily use a GPS module with Python or CircuitPython code in addition to

Arduino. Python code is well suited for parsing and processing the text output from

GPS modules, and this Adafruit CircuitPython GPS (https://adafru.it/BuR) module

handles most of the work for you!

CircuitPython MicroController Wiring

First make sure to wire up the GPS module to your CircuitPython board so that the

hardware UART pins are used. Here's an example with the Metro M0 Express:

Board 5V or 3.3V to GPS module

VIN.

Board GND to GPS module GND.

Board serial TX to GPS module RX.

Board serial RX to GPS module TX.

•

•

•

•

©Adafruit Industries Page 24 of 48

Python Computer Wiring

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported (https://adafru.it/BSN).

Here you have two options: An external USB-to-serial converter, or the built-in UART

on the Pi's TX/RX pins. Here's an example of wiring up the USB-to-serial converter (ht

tps://adafru.it/dDd):

GPS Vin to USB 5V or 3V (red wire

on USB console cable)

GPS Ground to USB Ground (black

wire)

GPS RX to USB TX (green wire)

GPS TX to USB RX (white wire)

You can also skip the USB console cable,

and just plug a Micro B cable directly

from your computer to the Ultimate GPS

USB

Here's an example using the Pi's built-in UART:

•

•

•

•

For single board computers other than the Raspberry Pi, the serial port may be

tied to the console or not be available to the user. Please see the board

documentation to see how the serial port may be used

©Adafruit Industries Page 25 of 48

GPS Vin to 3.3V (red wire)

GPS Ground to Ground (black wire)

GPS RX to TX (green wire)

GPS TX to RX (white wire)

If you want to use the built-in UART, you'll need to disable the serial console and

enable the serial port hardware in raspi-config. See the UART/Serial section of the

CircuitPython on Raspberry Pi guide (https://adafru.it/CEk) for detailed instructions on

how to do this.

CircuitPython Installation of GPS Library

Next you'll need to install the Adafruit CircuitPython GPS (https://adafru.it/BuR) library

on your CircuitPython board. Remember this module is for Adafruit CircuitPython

firmware and not MicroPython.org firmware!

First make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/tBa) for your board.

Next you'll need to install the necessary libraries to use the hardware. Carefully follow

the steps to find and install this library (https://adafru.it/ABU) from Adafruit's

CircuitPython library bundle (https://adafru.it/zdx).

adafruit_gps.mpy

You can also download the adafruit_gps.mpy file from the Adafruit CircuitPython GPS

releases page (https://adafru.it/BuS).

Before continuing make sure your board's lib folder has the adafruit_gps.mpy file

copied over.

•

•

•

•

•

©Adafruit Industries Page 26 of 48

Python Installation of GPS Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may require verifying you are running Python 3. Since each

platform is a little different, and Linux changes often, please visit the CircuitPython on

Linux guide to get your computer ready (https://adafru.it/BSN)!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-gps

CircuitPython & Python UART Usage

To demonstrate the usage of the GPS module in CircuitPython using UART, let's look

at a complete program example, the gps_simpletest.py file from the module's

examples.

CircuitPython Microcontroller

With a CircuitPython microcontroller, save this file as code.py on your board, then

open the serial console to see its output.

Linux/Computer/Raspberry Pi with Python

On the Raspberry Pi, comment out the uart = busio(...) line, and uncomment

the import serial and uart = serial.Serial(...) lines, changing /dev/

ttyUSB0 to the appropriate serial port. Now you can run the program with the

following command:

python3 gps_simpletest.py

If you're running gps_simpletest.py on the Raspberry Pi (or any computer), you'll

have to make some changes.

©Adafruit Industries Page 27 of 48

Example Parsing Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

Simple GPS module demonstration.
Will wait for a fix and print a message every second with the current location
and other details.
import time
import board
import busio

import adafruit_gps

Create a serial connection for the GPS connection using default speed and
a slightly higher timeout (GPS modules typically update once a second).
These are the defaults you should use for the GPS FeatherWing.
For other boards set RX = GPS module TX, and TX = GPS module RX pins.
uart = busio.UART(board.TX, board.RX, baudrate=9600, timeout=10)

for a computer, use the pyserial library for uart access
import serial
uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=10)

If using I2C, we'll create an I2C interface to talk to using default pins
i2c = board.I2C()

Create a GPS module instance.
gps = adafruit_gps.GPS(uart, debug=False) # Use UART/pyserial
gps = adafruit_gps.GPS_GtopI2C(i2c, debug=False) # Use I2C interface

Initialize the GPS module by changing what data it sends and at what rate.
These are NMEA extensions for PMTK_314_SET_NMEA_OUTPUT and
PMTK_220_SET_NMEA_UPDATERATE but you can send anything from here to adjust
the GPS module behavior:
https://cdn-shop.adafruit.com/datasheets/PMTK_A11.pdf

Turn on the basic GGA and RMC info (what you typically want)
gps.send_command(b"PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0")
Turn on just minimum info (RMC only, location):
gps.send_command(b'PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')
Turn off everything:
gps.send_command(b'PMTK314,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')
Turn on everything (not all of it is parsed!)
gps.send_command(b'PMTK314,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0')

Set update rate to once a second (1hz) which is what you typically want.
gps.send_command(b"PMTK220,1000")
Or decrease to once every two seconds by doubling the millisecond value.
Be sure to also increase your UART timeout above!
gps.send_command(b'PMTK220,2000')
You can also speed up the rate, but don't go too fast or else you can lose
data during parsing. This would be twice a second (2hz, 500ms delay):
gps.send_command(b'PMTK220,500')

Main loop runs forever printing the location, etc. every second.
last_print = time.monotonic()
while True:
 # Make sure to call gps.update() every loop iteration and at least twice
 # as fast as data comes from the GPS unit (usually every second).
 # This returns a bool that's true if it parsed new data (you can ignore it
 # though if you don't care and instead look at the has_fix property).
 gps.update()
 # Every second print out current location details if there's a fix.
 current = time.monotonic()

©Adafruit Industries Page 28 of 48

 if current - last_print >= 1.0:
 last_print = current
 if not gps.has_fix:
 # Try again if we don't have a fix yet.
 print("Waiting for fix...")
 continue
 # We have a fix! (gps.has_fix is true)
 # Print out details about the fix like location, date, etc.
 print("=" * 40) # Print a separator line.
 print(
 "Fix timestamp: {}/{}/{} {:02}:{:02}:{:02}".format(
 gps.timestamp_utc.tm_mon, # Grab parts of the time from the
 gps.timestamp_utc.tm_mday, # struct_time object that holds
 gps.timestamp_utc.tm_year, # the fix time. Note you might
 gps.timestamp_utc.tm_hour, # not get all data like year, day,
 gps.timestamp_utc.tm_min, # month!
 gps.timestamp_utc.tm_sec,
)
)
 print("Latitude: {0:.6f} degrees".format(gps.latitude))
 print("Longitude: {0:.6f} degrees".format(gps.longitude))
 print("Fix quality: {}".format(gps.fix_quality))
 # Some attributes beyond latitude, longitude and timestamp are optional
 # and might not be present. Check if they're None before trying to use!
 if gps.satellites is not None:
 print("# satellites: {}".format(gps.satellites))
 if gps.altitude_m is not None:
 print("Altitude: {} meters".format(gps.altitude_m))
 if gps.speed_knots is not None:
 print("Speed: {} knots".format(gps.speed_knots))
 if gps.track_angle_deg is not None:
 print("Track angle: {} degrees".format(gps.track_angle_deg))
 if gps.horizontal_dilution is not None:
 print("Horizontal dilution: {}".format(gps.horizontal_dilution))
 if gps.height_geoid is not None:
 print("Height geoid: {} meters".format(gps.height_geoid))

When the code runs it will print a message every second, either an update that it's still

waiting for a GPS fix:

Note: Due to the antenna being built in, the PA1010D Mini GPS module may need a

more unobstructed view of the sky than other GPS modules with eternal antennae.

With any GPS module, if you are having trouble getting a fix, try moving it to a more

ideal location.

Once a fix has been established, it will print details about the current location and

other GPS data:

©Adafruit Industries Page 29 of 48

Let's look at the code in a bit more detail to understand how it works. First the

example needs to import a few modules like the built-in busio and board modules

that access serial ports and other hardware:

import board
import busio
import time

Next the GPS module is imported:

import adafruit_gps

Now a serial UART (https://adafru.it/BuT) is created and connected to the serial port

pins the GPS module will use, this is the low level transport layer to communicate with

the GPS module:

Define RX and TX pins for the board's serial port connected to the GPS.
These are the defaults you should use for the GPS FeatherWing.
For other boards set RX = GPS module TX, and TX = GPS module RX pins.
RX = board.RX
TX = board.TX

Create a serial connection for the GPS connection using default speed and
a slightly higher timeout (GPS modules typically update once a second).
uart = busio.UART(TX, RX, baudrate=9600, timeout=3000)

for a computer, use the pyserial library for uart access
#import serial
#uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=3000)

Once a UART object is available with a connected GPS module you can create an

instance of the GPS parsing class. You need to pass this class the UART instance and

it will internally read new data from the GPS module connected to it:

gps = adafruit_gps.GPS(uart)

©Adafruit Industries Page 30 of 48

GPS Example Code Explained

Before reading GPS data the example configures the module by sending some custo

m NMEA GPS commands (https://adafru.it/qif) that adjust the amount and rate of data.

Read the comments to see some options for adjust the rate and amount of data, but

typically you want the defaults of core location info at a rate of once a second:

Initialize the GPS module by changing what data it sends and at what rate.
These are NMEA extensions for PMTK_314_SET_NMEA_OUTPUT and
PMTK_220_SET_NMEA_UPDATERATE but you can send anything from here to adjust
the GPS module behavior:
https://cdn-shop.adafruit.com/datasheets/PMTK_A11.pdf

Turn on the basic GGA and RMC info (what you typically want)
gps.send_command(b'PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')
Turn on just minimum info (RMC only, location):
#gps.send_command(b'PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')
Turn off everything:
#gps.send_command(b'PMTK314,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')
Tuen on everything (not all of it is parsed!)
#gps.send_command(b'PMTK314,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0')

Set update rate to once a second (1hz) which is what you typically want.
gps.send_command(b'PMTK220,1000')
Or decrease to once every two seconds by doubling the millisecond value.
Be sure to also increase your UART timeout above!
#gps.send_command(b'PMTK220,2000')
You can also speed up the rate, but don't go too fast or else you can lose
data during parsing. This would be twice a second (2hz, 500ms delay):
#gps.send_command(b'PMTK220,500')

If you want you can send other custom commands to the GPS module with the send

_command function shown above. You don't need to worry about adding a NMEA

checksum to your command either, the function will do this automatically (or not, set

add_checksum=False as a parameter and it will skip the checksum addition).

Now we can jump into a main loop that continually updates data from the GPS module

and prints out status. The most important part of this loop is calling the GPS update

function:

 # Make sure to call gps.update() every loop iteration and at least twice
 # as fast as data comes from the GPS unit (usually every second).
 # This returns a bool that's true if it parsed new data (you can ignore it
 # though if you don't care and instead look at the has_fix property).
 gps.update()

©Adafruit Industries Page 31 of 48

Like the comments mention, you must call update every loop iteration and ideally

multiple times a second. Each time you call update , it allows the GPS library code to

read new data from the GPS module and update its state. Since the GPS module is

always sending data you have to be careful to constantly read data or else you might

start to lose data as buffers are filled.

You can check the has_fix property to see if the module has a GPS location fix, and

if so there are a host of attributes to read like latitude and longitude (available

in degrees):

 if not gps.has_fix:
 # Try again if we don't have a fix yet.
 print('Waiting for fix...')
 continue
 # We have a fix! (gps.has_fix is true)
 # Print out details about the fix like location, date, etc.
 print('=' * 40) # Print a separator line.
 print('Fix timestamp: {}/{}/{} {:02}:{:02}:{:02}'.format(
 gps.timestamp_utc.tm_mon, # Grab parts of the time from the
 gps.timestamp_utc.tm_mday, # struct_time object that holds
 gps.timestamp_utc.tm_year, # the fix time. Note you might
 gps.timestamp_utc.tm_hour, # not get all data like year, day,
 gps.timestamp_utc.tm_min, # month!
 gps.timestamp_utc.tm_sec))
 print('Latitude: {} degrees'.format(gps.latitude))
 print('Longitude: {} degrees'.format(gps.longitude))
 print('Fix quality: {}'.format(gps.fix_quality))
 # Some attributes beyond latitude, longitude and timestamp are optional
 # and might not be present. Check if they're None before trying to use!
 if gps.satellites is not None:
 print('# satellites: {}'.format(gps.satellites))
 if gps.altitude_m is not None:
 print('Altitude: {} meters'.format(gps.altitude_m))
 if gps.track_angle_deg is not None:
 print('Speed: {} knots'.format(gps.speed_knots))
 if gps.track_angle_deg is not None:
 print('Track angle: {} degrees'.format(gps.track_angle_deg))
 if gps.horizontal_dilution is not None:
 print('Horizontal dilution: {}'.format(gps.horizontal_dilution))
 if gps.height_geoid is not None:

Notice some of the attributes like altitude_m are checked to be None before

reading. This is a smart check to put in your code, because those attributes are

sometimes not sent by a GPS module. If an attribute isn't sent by the module it will be

given a None /null value and attempting to print or read it in Python will fail. The core

attributes of latitude , longitude , and timestamp are usually always available (if

you're using the example as-is) but they might not be if you turn off those outputs with

a custom NMEA command!

That's all there is to reading GPS location with CircuitPython code!

©Adafruit Industries Page 32 of 48

CircuitPython Datalogging

Datalogging Example

Another handy task with GPS is logging all the raw output of the GPS module to a file.

This is useful if you're importing the GPS data into a tool like Google Earth which can

process raw NMEA sentences. You can perform this datalogging very easily with

CircuitPython.

To store data you'll need to choose one of two options:

Wire up a SD card holder to your board's SPI bus, or use a board with SD card

holder built-in like the Feather M0 Adalogger (https://adafru.it/weP). This is the

recommended approach as it gives you a lot of space to store data and you can

easily copy the data to your computer from the card.

Store data in your board's internal filesystem. This requires a little more setup

but allows you to save to a file on the internal filesystem of your CircuitPython

board, right next to where code and other data files live. This is more limited

because depending on your board you might only have a few kilobytes or

megabytes of space available and GPS sentences will quickly add up (easily

filling multiple megabytes within a few hours of logging).

Install SD Card Library

If you're storing data on a SD card you must ensure the SD card is wired to your

board and you have installed the Adafruit SD card library. Luckily there's an entire

guide to follow to learn about this process of connecting a SD card and installing the

necessary library (https://adafru.it/BuU). Be sure to carefully follow the guide so the

card is connected, library installed, and you can confirm you're able to manually write

data to the card from the Python prompt.

Enable Internal Filesystem Writes

If you're storing data on the internal filesystem you must carefully follow the steps in

the CPU temperature logging guide to enable writing to internal storage (https://

adafru.it/BuV). If you're writing to a SD card skip these steps and move on to look at

the datalogging code below. Edit the boot.py on your board (creating it if it doesn't

exist) and add these lines:

•

•

©Adafruit Industries Page 33 of 48

import digitalio
import board
import storage

switch = digitalio.DigitalInOut(board.D5)
switch.direction = digitalio.Direction.INPUT
switch.pull = digitalio.Pull.UP

If the D5 is connected to ground with a wire
you can edit files over the USB drive again.
storage.remount("/", not switch.value)

Remember once you remount("/") you cannot edit code over the USB drive anymore!

That means you can't edit boot.py which is a bit of a conundrum. So we configure

the boot.py to selectively mount the internal filesystem as writable based on a switch

or even just alligator clip connected to ground. Like the CPU temperature guide

shows (https://adafru.it/BuV) . In this example we're using D5 but select any available

pin.

This code will look at the D5 digital input when the board starts up and if it's

connected to ground (use an alligator clip or wire, for example, to connect from D5 to

board ground) it will disable internal filesystem writes and allow you to edit code over

the USB drive as normal. Remove the alligator clip, reset the board, and the boot.py

will switch to mounting the internal filesystem as writable so you can log images to it

again (but not write any code!).

Remember when you enable USB drive writes (by connecting D5 to ground at startup)

you cannot write files to the internal filesystem and any code in your main.py that

attempts to do so (like the example below) will fail. Keep this in mind as you edit

code--once you modify code you need to remove the alligator clip, reset the board to

re-enable internal filesystem writes, and then watch the output of your program.

Datalogging Example Code

The GPS library examples have a datalogging.py file you can edit and save as a main.

py on your board:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

Simple GPS datalogging demonstration.
This example uses the GPS library and to read raw NMEA sentences

If you ever get stuck, you can follow the steps mentioned in https://

learn.adafruit.com/cpu-temperature-logging-with-circuit-python/writing-to-the-

filesystem to remove boot.py from the REPL if you need to go back and edit code!

©Adafruit Industries Page 34 of 48

over I2C or UART from the GPS unit and dumps them to a file on an SD card
(recommended), microcontroller internal storage (be careful as only a few
kilobytes are available), or to a filesystem.
If you are using a microcontroller, before writing to internal storage you
MUST carefully follow the steps in this guide to enable writes to the
internal filesystem:
https://learn.adafruit.com/adafruit-ultimate-gps-featherwing/circuitpython-
library
import board
import busio
import adafruit_gps

Path to the file to log GPS data. By default this will be appended to
which means new lines are added at the end and all old data is kept.
Change this path to point at internal storage (like '/gps.txt') or SD
card mounted storage ('/sd/gps.txt') as desired.
LOG_FILE = "gps.txt" # Example for writing to internal path gps.txt

File more for opening the log file. Mode 'ab' means append or add new lines
to the end of the file rather than erasing it and starting over. If you'd
like to erase the file and start clean each time use the value 'wb' instead.
LOG_MODE = "ab"

If writing to SD card on a microcontroller customize and uncomment these
lines to import the necessary library and initialize the SD card:
NOT for use with a single board computer like Raspberry Pi!
"""
import adafruit_sdcard
import digitalio
import storage

SD_CS_PIN = board.D10 # CS for SD card using Adalogger Featherwing
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
sd_cs = digitalio.DigitalInOut(SD_CS_PIN)
sdcard = adafruit_sdcard.SDCard(spi, sd_cs)
vfs = storage.VfsFat(sdcard)
storage.mount(vfs, '/sd') # Mount SD card under '/sd' path in filesystem.
LOG_FILE = '/sd/gps.txt' # Example for writing to SD card path /sd/gps.txt
"""

Create a serial connection for the GPS connection using default speed and
a slightly higher timeout (GPS modules typically update once a second).
These are the defaults you should use for the GPS FeatherWing.
For other boards set RX = GPS module TX, and TX = GPS module RX pins.
uart = busio.UART(board.TX, board.RX, baudrate=9600, timeout=10)

If using a USB/Serial converter, use pyserial and update the serial
port name to match the serial connection for the GPS!
import serial
uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=10)

If using I2C, we'll create an I2C interface to talk to using default pins
i2c = board.I2C()

Create a GPS module instance.
gps = adafruit_gps.GPS(uart) # Use UART/pyserial
gps = adafruit_gps.GPS_GtopI2C(i2c) # Use I2C interface

Main loop just reads data from the GPS module and writes it back out to
the output file while also printing to serial output.
with open(LOG_FILE, LOG_MODE) as outfile:
 while True:
 sentence = gps.readline()
 if not sentence:
 continue
 print(str(sentence, "ascii").strip())
 outfile.write(sentence)
 outfile.flush()

©Adafruit Industries Page 35 of 48

By default this example expects to log GPS NMEA sentences to a file on the internal

storage system at /gps.txt. New sentences will be appended to the end of the file

every time the example starts running.

If you'd like to instead write to the SD card take note to uncomment the appropriate

lines mentioned in the comments:

Path to the file to log GPS data. By default this will be appended to
which means new lines are added at the end and all old data is kept.
Change this path to point at internal storage (like '/gps.txt') or SD
card mounted storage ('/sd/gps.txt') as desired.
#LOG_FILE = '/gps.txt' # Example for writing to internal path /gps.txt
LOG_FILE = '/sd/gps.txt' # Example for writing to SD card path /sd/gps.txt

And further below:

Should all be uncommented and look as above. This will configure the code to write

GPS NMEA data to the /sd/gps.txt file, appending new data to the end of the file.

Once the example is running as a main.py on your board open the serial REPL and

you should see the raw NMEA sentences printed out:

Check the gps.txt file (either under the root or /sd path depending on how you setup

the example) in a text editor and you'll see the same raw NMEA sentences:

©Adafruit Industries Page 36 of 48

Awesome! That's all there is to basic datalogging of NMEA sentences with a GPS

module and CircuitPython!

Python Docs

Python Docs (https://adafru.it/C4M)

Built In Logging

One of the nice things about the MTK3339 is the built in data-logger. This basic data-

logging capability can store date, time, latitude, longitude and altitude data into a 64K

flash chip inside. Its not a high resolution logger - it only logs once every 15 seconds

when there is a fix - but for 99% of projects that want to track location, this can be a

great low power way to log data - no SD card or other EEPROM required! It can store

up to 16 hours of data.

The GPS module does require a microcontroller to 'kick start' the logger by

requesting it to start. If power is lost it will require another 'kick' to start. If you already

have some data in the FLASH, a new trace will be created (so you wont lose old data)

and if you run out of space it will simply halt and not overwrite old data. Despite this

annoyance, its still a very nice extra and we have some library support to help you

use it

©Adafruit Industries Page 37 of 48

For more details check out the LOCUS (built-in-datalogging system) user guide (https:

//adafru.it/uoc)

First, we should try getting the logger to run.Open up the File→Examples→Adafruit_

GPS→locus_start sketch. This will demonstrate how to start the logger (called LOCUS)

The key part is here:

Serial.print("STARTING LOGGING....");
 if (GPS.LOCUS_StartLogger())
 Serial.println(" STARTED!");
 else
 Serial.println(" no response :(");
 delay(1000);

You should start the logger and then check the response:

Logging Status

Once you've seen that the GPS is OK with logging, you can load up the status sketch

which will also give you more data. Upload File→Examples→Adafruit_GPS→locus_sta

tus

©Adafruit Industries Page 38 of 48

This output gives you some more information. the first entry is the Log #. This is how

many log traces are in the memory. Every time you start and save data, a new log is

made. Full Stop means that once the logger has run out of memory it will stop. Next

the output indicates that we are logging only during fix data and at set intervals, with

an interval delay of 15 seconds. We are not logging based on distance or speed. The

current status is LOGGING (active), there's also the number of records we've stored.

Each record is a timestamped location. We log once every 15 seconds, you can see

the records increment from 344 to 345 here. Lastly, we can see how much of the

internal flash storage is used, only 4% at this point

In real use, you'll probably want to start the loggging and then have your

microcontroller go to sleep to reserve power, waking up once in a while to check up

on the logging status.

Downloading Data

Finally, once we're done logging we need to extract the data. To do this we need to

first get the raw data out of the FLASH and then decode the sentences. UploadFile→E

xamples→Adafruit_GPS→locus_dump to the Arduino and open up the serial monitor

PLEASE NOTE: Asking the Arduino, with 2K RAM buffer to handle 64KB of FLASH

data and spit it out from the GPS can sometimes over-tax the processor. If you

are having hiccups, check the GPS tool instructions below

©Adafruit Industries Page 39 of 48

Copy and paste all the text after the —-'s (starting with $PMTKLOX,0,86*67 and

ending with $PMTK001,622,3*36) then paste it into the box located on this page (http

s://adafru.it/cFg)

OR

you can try this python tool that don has kindly donated (https://adafru.it/emj) to the

community!

Using the GPS Tool

If you are having difficulty with the Arduino/javascript tool, you can also try using the

GPS tool. The tool runs only under Windows but it is very powerful.

Connect the GPS module to an Arduino (connected with the Direct Wiring example) (h

ttps://adafru.it/aOP) , FTDI adapter or other TTL converter and download the GPS

Tool (https://adafru.it/uod) - connect to the GPS via the COM port of the Arduino/FTDI

/TTL cable. You can then query, dump and delete the log memory

LOCUS Parser

LOCUS Parser (https://adafru.it/cFg)

Resources

Datasheets

MTK3329/MTK3339 command set sheet (https://adafru.it/e7A) for changing the

fix data rate, baud rate, sentence outputs, etc!

PMTK 'complete' data (https://adafru.it/uoe)sheet (like the above but with even

more commands)

Datasheet for the PA6B (MTK3329) GPS module itself (https://adafru.it/aMo)

Datasheet for the PA6C (MTK3339) GPS module itself (https://adafru.it/aMp)

Datasheet for the PA6H (MTK3339) GPS module itself (https://adafru.it/aPO)

MT3339 GPS PC Tool (windows only) (https://adafru.it/uof) and the PC Tool

manual (https://adafru.it/uoA)

Sample code and spec sheet for the LOCUS built-in logger (https://adafru.it/aTi)

LOCUS (built-in-datalogging system) user guide (https://adafru.it/uoc)

Mini GPS tool (windows only) (https://adafru.it/aMs)

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 40 of 48

More reading:

Trimble's GPS tutorial (https://adafru.it/emh)

Garmin's GPS tutorial (https://adafru.it/aMv)

Adafruit GPS Library for Arduino

https://github.com/adafruit/Adafruit-GPS-Library/ (https://adafru.it/emi)

EPO files for AGPS use

Data format for EPO files (https://adafru.it/uoB)

MTK_EPO_Nov_12_2014.zip

https://adafru.it/eb1

F.A.Q.

Can the Ultimate GPS be used for High Altitude? How can

I know?

Modules shipped in 2013+ (and many in the later half of 2012) have firmware that

has been tested by simulation at the GPS factory at 40km.

You can tell what firmware you have by sending the firmware query command

$PMTK605*31 (you can use the echo demo to send custom sentences to your GPS)

If your module replies with AXN_2.10_3339_2012072601 5223 that means you

have version #5223 which is the 40Km-supported firmware version. If the number

is higher then 5223 then its even more recent, and should include the 40Km

support as well

HOWEVER these modules are not specifically designed for high-altitude balloon

use. People have used them successfully but since we (at Adafruit) have not

personally tested them for hi-alt use, we do not in any way guarantee they are

suitable for high altitude use.

•

•

©Adafruit Industries Page 41 of 48

Please do not ask us to 'prove' that they are good for high altitude use, we do not

have any way to do so

If you want to measure high altitude with a GPS, please find a module that can

promise/guarantee high altitude functionality

Is the Ultimate GPS affected by the 2019 Week Rollover

issue?

The ultimate GPS (all firmware versions from 20110922_GTOP_EVK01_A2.10 and

higher - any sold after 2011) have been tested to work fine through 2019.

They do not pass the 2038 rollover test, so you may need to update the firmware

between now and 2038. This does not affect the 2019 rollover (there's one every

~20 years)

OK I want the latest firmware!

Here is the binary of the 5632 firmware (https://adafru.it/dR5), you can use this tool

to upload it using an FTDI or USB-TTL cable (or direct wiring with FTDI) (https://

adafru.it/uoF). We do not have a tutorial for updating the firmware, if you update

the firmware and somehow brick the GPS, we do not offer replacements! Keep this

in mind before performing the update process!

I've adapted the example code and my GPS NMEA

sentences are all garbled and incomplete!

We use SoftwareSerial to read from the GPS, which is 'bitbang' UART support. It

isn't super great on the Arduino and does work but adding too many delay()s and

not calling the GPS data parser enough will cause it to choke on data.

If you are using Leonardo (or Micro/Flora/ATmega32u4) or Mega, consider using a

HardwareSerial port instead of SoftwareSerial!

My GPS is giving me data but the location is wrong!

People often get confused because the GPS is working but is "5 miles off" - this is

because they are not parsing the lat/long data correctly. Despite appearances, the

geolocation data is NOT in decimal degrees. It is in degrees and minutes in the

following format: Latitude: DDMM.MMMM (The first two characters are the

degrees.) Longitude: DDDMM.MMMM (The first three characters are the degrees.)

©Adafruit Industries Page 42 of 48

How come I can't get the GPS to output at 10Hz?

The default baud rate to the GPS is 9600 - this can only do RMC messages at

10Hz. If you want more data output, you can increase the GPS baud rate (to 57600

for example) or go with something like 2 or 5Hz. There is a trade off with more data

you want the GPS to output, the GPS baud rate, Arduino buffer/processing

capability and update rate!

Experimentation may be necessary to get the optimal results. We suggest RMC

only for 10Hz since we've tested it.

How come I can't set the RTC with the Adafruit RTC

library?

The real time clock in the GPS is NOT 'writable' or accessable otherwise from the

Arduino. Its in the GPS only! Once the battery is installed, and the GPS gets its first

data reception from satellites it will set the internal RTC. Then as long as the

battery is installed, you can read the time from the GPS as normal. Even without a

proper "gps fix" the time will be correct.

The timezone cannot be changed, so you'll have to calculate local time based on

UTC!

Do all GPS modules emit PPS pulses at the same time?

Under ideal conditions, GPS modules emit a PPS signal within 10ns of the

beginning of each GPS second. That's only a best-case value though.

In practice, each GPS module's sync to the GPS clock system depends on the

quality of the fix, how long the GPS module has had a fix, and the group of

satellites the module uses for its fix. We've observed offsets of about 300ns

between modules that have just acquired a fix, improving to less than 100ns after

the modules have had a good fix (Signal-to-Noise ratio higher than 20 for the

satellites the modules use for their fix) for ten minutes.

When two GPS modules used the same group of satellites for their fix, there was

less than 30ns of offset between PPS pulses as soon as the modules acquired a

fix.

©Adafruit Industries Page 43 of 48

Why am I not seeing anything on the PPS pin?

The PPS pin only starts outputting after a 3D fix. In our testing, it truly wants a 3D

fix, not just a 2D fix. Therefore, the PPS output may not happen even though the

FIX LED and pin are indicating a fix.

You can check the current mode via the $GPGSA sentence. The second value must

be a 3, as shown below:

$GPGSA,A,3,19,28,14,18,27,22,31,39,,,,,1.7,1.0,1.3*35

If the value is a 1 (Fix not available) or a 2 (2D), then the PPS pin may not output.

How can I read the PPS signal on the Ultimate GPS USB?

The PPS line is tied to the serial port RI (Ring Indicator) pin. You can read this with

your serial-port interface code. for example here's a version in Python using

pyserial:

import serial

ser = serial.Serial('/dev/ttyS34') # open serial port

print(ser.name) # check which port was really used

last_ri = ser.ri

while True:

 if ser.ri != last_ri:

 last_ri = ser.ri

 if last_ri:

 print("\n---------- Pulse high ----------")

 else:

 print("\n---------- Pulse low ----------")

 if ser.in_waiting:

 print(ser.read(ser.in_waiting).decode('utf-8'), end="")

©Adafruit Industries Page 44 of 48

Downloads

Files

MTK3329/MTK3339 command set sheet (https://adafru.it/qif) for changing the fix

data rate, baud rate, sentence outputs, etc!

LOCUS (built-in-datalogging system) user guide (https://adafru.it/uoC)

Datasheet for the PA6B (MTK3329) GPS module itself - used in version 1 of this

module (https://adafru.it/s0B)

Datasheet for the PA6C (MTK3339) GPS module itself - used in version 2 of this

module (https://adafru.it/s0C)

Datasheet for the PA6H (MTK3339) GPS module itself - used in version 3 of this

module (https://adafru.it/ria)

Datasheet for the PA1616S (MTK3339) GPS module itself - used in version 3.1 of

this module (https://adafru.it/UXB)

MT3339 GPS PC Tool (windows only) (https://adafru.it/uoD) and the PC Tool

manual (https://adafru.it/uoE)

Mini GPS tool (windows only) (https://adafru.it/rid)

EagleCAD PCB files on GitHub (https://adafru.it/s0D)

Fritzing object in the Adafruit Fritzing Library (https://adafru.it/aP3)

Ultimate GPS v3 Schematic

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 45 of 48

Ultimate GPS Fabrication Print

Dimensions in Inches

©Adafruit Industries Page 46 of 48

Ultimate GPS USB Schematic

©Adafruit Industries Page 47 of 48

Ultimate GPS USB Fabrication Print

©Adafruit Industries Page 48 of 48

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for GPS Development Tools category:

Click to view products by Adafruit manufacturer:

Other Similar products are found below :

MAX2769EVKIT A9G SKY65725-11EK1 SKY65728-11EK1 TAU1201-EVK-A00 1059 1090 MIKROE-2045 1272 MDEV-GNSS-TM

TEL0051 M20050-EVB-1 GPS-14414 SIM808 EVK-M8BZOE-0 EVK-M8N-0 EVK-M8U SIM868 746 2324 4279 4415 M10578-A2-U1

 ASX00017 AS-RTK2B-F9P-L1L2-NH-02 AS-RTK2B-LIT-L1L2-SMA-00 AS-STARTKIT-BASIC-L1L2-NH-02 AS-STARTKIT-LITE-

L1L2-HS-00 AS-STARTKIT-LR-L1L2-EUNH-00 AS-STARTKIT-LR-L1L2-NANH-00 AS-STARTKIT-MCPIE-L1L2-0-00 AS-

STARTKIT-MR-L1L2-NH-00 A2235HB04 M5310A-MBR M5312 EVA2035-H EVA2100-A EVA2200-A MAX2659EVKIT+

MAX2669EVKIT+ MIKROE-4673 MIKROE-1032 MIKROE-1714 MIKROE-1850 MIKROE-1887 MIKROE-1895 MIKROE-1912

MIKROE-2382 ML302 MOD-GPS

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/communication-development-tools/rf-wireless-development-tools/gps-development-tools
https://www.x-on.com.au/manufacturer/adafruit
https://www.x-on.com.au/mpn/maxim/max2769evkit
https://www.x-on.com.au/mpn/ai-thinker/a9g
https://www.x-on.com.au/mpn/skyworks/sky6572511ek1
https://www.x-on.com.au/mpn/skyworks/sky6572811ek1
https://www.x-on.com.au/mpn/allystar/tau1201evka00
https://www.x-on.com.au/mpn/adafruit/1059
https://www.x-on.com.au/mpn/adafruit/1090
https://www.x-on.com.au/mpn/mikroelektronika/mikroe2045
https://www.x-on.com.au/mpn/adafruit/1272
https://www.x-on.com.au/mpn/linxtechnologies/mdevgnsstm
https://www.x-on.com.au/mpn/dfrobot/tel0051
https://www.x-on.com.au/mpn/antenova/m20050evb1
https://www.x-on.com.au/mpn/sparkfun/gps14414
https://www.x-on.com.au/mpn/simcom/sim808
https://www.x-on.com.au/mpn/u-blox/evkm8bzoe0
https://www.x-on.com.au/mpn/u-blox/evkm8n0
https://www.x-on.com.au/mpn/u-blox/evkm8u
https://www.x-on.com.au/mpn/simcom/sim868
https://www.x-on.com.au/mpn/adafruit/746
https://www.x-on.com.au/mpn/adafruit/2324
https://www.x-on.com.au/mpn/adafruit/4279
https://www.x-on.com.au/mpn/adafruit/4415
https://www.x-on.com.au/mpn/antenova/m10578a2u1
https://www.x-on.com.au/mpn/arduino/asx00017
https://www.x-on.com.au/mpn/ardusimple/asrtk2bf9pl1l2nh02
https://www.x-on.com.au/mpn/ardusimple/asrtk2blitl1l2sma00
https://www.x-on.com.au/mpn/ardusimple/asstartkitbasicl1l2nh02
https://www.x-on.com.au/mpn/ardusimple/asstartkitlitel1l2hs00
https://www.x-on.com.au/mpn/ardusimple/asstartkitlitel1l2hs00
https://www.x-on.com.au/mpn/ardusimple/asstartkitlrl1l2eunh00
https://www.x-on.com.au/mpn/ardusimple/asstartkitlrl1l2nanh00
https://www.x-on.com.au/mpn/ardusimple/asstartkitmcpiel1l2000
https://www.x-on.com.au/mpn/ardusimple/asstartkitmrl1l2nh00
https://www.x-on.com.au/mpn/ardusimple/asstartkitmrl1l2nh00
https://www.x-on.com.au/mpn/lantronix/a2235hb04
https://www.x-on.com.au/mpn/chinamobile/m5310ambr
https://www.x-on.com.au/mpn/chinamobile/m5312
https://www.x-on.com.au/mpn/lantronix/eva2035h
https://www.x-on.com.au/mpn/lantronix/eva2100a
https://www.x-on.com.au/mpn/lantronix/eva2200a
https://www.x-on.com.au/mpn/maxim/max2659evkit
https://www.x-on.com.au/mpn/maxim/max2669evkit
https://www.x-on.com.au/mpn/mikroelektronika/mikroe4673
https://www.x-on.com.au/mpn/mikroelektronika/mikroe1032
https://www.x-on.com.au/mpn/mikroelektronika/mikroe1714
https://www.x-on.com.au/mpn/mikroelektronika/mikroe1850
https://www.x-on.com.au/mpn/mikroelektronika/mikroe1887
https://www.x-on.com.au/mpn/mikroelektronika/mikroe1895
https://www.x-on.com.au/mpn/mikroelektronika/mikroe1912
https://www.x-on.com.au/mpn/mikroelektronika/mikroe2382
https://www.x-on.com.au/mpn/chinamobile/ml302
https://www.x-on.com.au/mpn/olimex/modgps

