

SPECIFICATION VER. 2.2

ADSemiconductor Confidential

TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

Revision History

Rev.	Description of change	Date	Originator
V1.0	First creation	-	-
V1.1	Register setting value changed	07.09.14.	-
V1.2	Revise the ESD level	08. 02. 27.	-
V2.0	Append the SCL, SDA Timing Specification	08.07.24.	-
V2.1	Fix the ID_SEL Pin Number, CS1 Pin6 -> CS1 Pin4	10.02.10.	KD PARK
	Revise the Spec. sheet format		
V2.2	- Append the Block Diagram	15.01.06.	KD PARK
V 2.2	Revise the ESD Characteristics : Minimum level -> Max.	15.01.00.	KD FAKK
	Revise the maximum supply voltage : 5.0V -> 5.5V		

TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

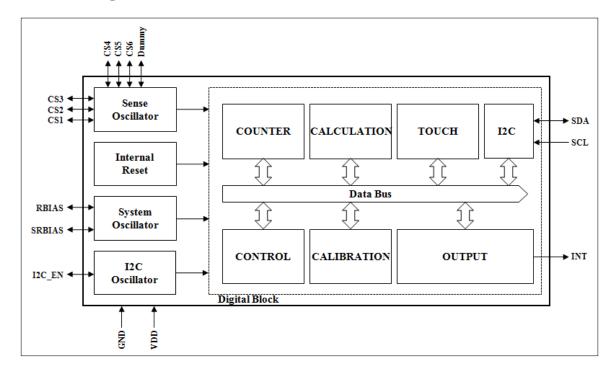
Content

	Revisio	on History	2
1		25	
	1.1	General Features	4
	1.2	Applications	4
2	Block I	Diagram	5
3	Pin Co	nfiguration	6
4	Pin De	scription	7
	4.1	Pin Map	8
5	Absolu	te Maximum Rating	
6		Latch-up Characteristics	
	6.1	ESD Characteristics	9
	6.2	Latch-up Characteristics	9
7	Electric	cal Characteristics	
8	TS06 I	mplementation	11
	8.1	RBIAS & SRBIAS implementation	
	8.2	CS implementation	
	8.3	CS implementation for tact input (CS2, CS3, CS4, CS5, CS6)	13
	8.4	CS implementation for LED drive output (CS4, CS5, CS6)	
	8.5	Internal reset operation	14
	8.6	Pattern Sleep TM	14
	8.7	Power on sequence for SCL & SDA	
9	I ² C Inte	erface	16
	9.1	Start & Stop Condition	
	9.2	Data validity	16
	9.3	Byte format	16
	9.4	Acknowledge	16
	9.5	First byte	17
	9.6	Transferring data	18
	9.7	I ² C write and read operations in normal mode	19
10	TS06 F	Register List	
	10.1	I ² C Register Map	20
	10.2	Details	21
	10.3	Recommended TS06 Power Up Sequence (Example)	29
	10.4	Recommended TS06 Pattern Sleep Sequence (Example)	
11	Recom	mended Circuit Diagram	33
	11.1	Application Example in clean power environment	33
	11.2	Application Example in noisy environment	
12	MECH	ANICAL DRAWING	
13	MARK	ING DESCRIPTION	38
NO	TES:		39

TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

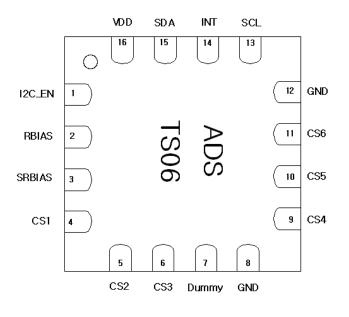
Features 1

General Features 1.1


- 6-Channel capacitive sensor with auto sensitivity calibration
- I2C serial interface
- Selectable output operation (single mode / multi-mode)
- Independently adjustable in 16 step sensitivity
- Adjustable internal frequency with external resister
- Adjustable response time by the control registers
- Embedded high frequency noise elimination circuit
- Available LED drive up to 3 ports
- Controllable LED luminance
- Available tact switch input up to 5 channels
- IDLE mode to save the current consumption
- Programmable wake up sequence from IDLE mode
- RoHS compliant 16QFN package
- Moisture Sensitivity Level 1 (MSL1)

1.2 Applications

- Mobile application (mobile phone / PDA / PMP / MP3 etc)
- Membrane switch replacement
- Sealed control panels, keypads


Block Diagram 2

TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

Pin Configuration 3

[16-QFN]

TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

Pin Description 4

I2C_EN

The internal oscillator for I2C enable or disable control pin.

VDD, GND

Supply voltage and ground pin.

Dummy

Internal noise monitoring input pin.

CS1

Capacitive sensor input pin or the I2C slave ID selection input pin.

CS2, CS3

Capacitive sensor input pins or the tact switch input pins.

CS4, CS5, CS6

Capacitive sensor input pins or the tact switch input pins or LED drive output(open drain) pins.

RBIAS

Internal bias adjust input pin.

SRBIAS

Internal bias adjust input pin for the idle mode.

SCL, SDA

SCL is I²C clock input pin and SDA is I²C data input-output pin. These ports have internal pull-up resistor. In case of not use, this pin must be not connected to any circuitry.

INT

Touch sensing interrupt output pin.

TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

4.1	Pin Map			
Pin Number	Name	I/O	Description	Protection
1	I2C_EN	Digital Input	I ² C enable(Low enable)	VDD/GND
2	RBIAS	Analog Input	Internal bias adjust input	VDD/GND
3	SRBIAS	Analog Input	IDLE Mode Internal bias adjust input	VDD/GND
4	CS1	Analog Input	CH1 capacitive sensor input I ² C slave ID selection input [Note 1]	VDD/GND
5	CS2	Analog Input	CH2 capacitive sensor input Tact switch input [Note 2]	VDD/GND
6	CS3	Analog Input	CH3 capacitive sensor input Tact switch input [Note 2]	VDD/GND
7	Dummy	Analog Input	Internal noise monitoring input Do not connect to anywhere	VDD/GND
8	GND	Ground	Supply ground	VDD
9	CS4	Analog Input /Digital Output	CH4 capacitive sensor input Tact switch input [Note 2] LED Drive output (Open drain) [Note 3]	VDD/GND
10	CS5	Analog Input /Digital Output	CH5 capacitive sensor input Tact switch input [Note 2] LED Drive output (Open drain) [Note 3]	VDD/GND
11	CS6	Analog Input /Digital Output	CH6 capacitive sensor input Tact switch input [Note 2] LED Drive output (Open drain) [Note 3]	VDD/GND
12	GND	Ground	Supply ground	VDD
13	SCL	Digital Input	I ² C clock input	VDD/GND
14	INT	Digital Output	Interrupt output (Open drain)	VDD/GND
15	SDA	Digital Input/Output	I ² C data (Open drain)	VDD/GND
16	VDD	Power	Power (2.5V~5.0V)	GND

Note 1 : Refer to chapter 9. I2C Interface.

Note 2 : Refer to chapter 8.3 CS implementation for tact switch input. Note 3 : Refer to chapter 8.4 CS implementation for LED drive output.

Absolute Maximum Rating 5

Battery supply voltage	5.5V
Maximum voltage on any pin	VDD+0.3
Maximum current on any PAD	100mA
Power Dissipation	800mW
Storage Temperature	-50 ~ 150 ℃
Operating Temperature	-20 ~ 75 °C
Junction Temperature	150°C
Note : Unless any other command is noted, all abo	ove are operated in normal temperature.

ESD & Latch-up Characteristics 6

Mode	Polarity	Max.	Reference
		5000V	VDD
H.B.M	Pos / Neg	3000V	VSS
		5000V	P to P
	Pos / Neg	500V	VDD
M.M		300V	VSS
		500V	P to P
C.D.M	Pos / Nog	500V	Direct
C.D.M	Pos / Neg	800V	Direct

6.1 **ESD** Characteristics

6.2 **Latch-up Characteristics**

Mode	Polarity	Max.	Test Step	
I Test	Positive	200mA	25mA	
I Test	Negative	-200mA	25111A	
V supply over 5.0V	Positive	8.0V	1.0V	

Electrical Characteristics 7

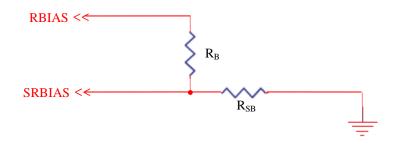
• VDD=3.0V, Rb=510k (Unless otherwise noted), TA = 25 °C

Characteristics	Symbol	Test Condition	Min	Тур	Max	Units
Operating voltage	V _{DD}		2.5	3.0	5.0	V
		V_{DD} = 3.0V R _B =510k R _{SB} =0	-	30	50	
	I _{DD}	V_{DD} = 5.0V R _B =510k R _{SB} =0	-	80	130	uA
Current consumption	IDD	V_{DD} = 3.0V R _B =510k R _{SB} =2M	-	8	-	uA
[Note 4]		V_{DD} = 5.0V R _B =510k R _{SB} =2M	-	28	-	
	I _{DD_I2C}	V _{DD} = 3.0V (1M Bps)	-	1.8	2.2	mA
	IDD_12C	V _{DD} = 5.0V (1M Bps)	-	2.8	3.4	1117 1
Digital output maximum sink current	I _{OUT}	$T_A = 25 $ °C (Normal I ² C Output)	-	-	4.0	mA
LED drive output sink current per 1channel	I _{LED_OUT}	$T_A = 25 \degree C$ (LED Drive Output)	-	-	20.0	mA
LED drive output total sink current	I _{LED_TOT}	$T_A = 25$ °C (LED Drive Output)	-	-	30.0	mA
Tact switch interface input internal pull-up current	I _{TACT}	V_{DD} = 5.0V, T_A = 25 °C	-	8	-	uA
Start supply voltage for internal reset	V _{DD_RST}	$T_{A} = 25 \degree C, R_{B} = 510k$	-	-	$0.3 \cdot V_{DD}$	V
Sense input capacitance range [Note5]	Cs		-	-	100	pF
Minimum detective capacitance difference	ΔC	Cs = 10pF (I ² C default sensitivity select)	0.2	-	-	pF
Output impedance	Zo	$\Delta C > 0.2 pF$, Cs = 10pF, (I ² C default sensitivity select)	-	12	-	Ω
(open drain)	20	$\Delta C < 0.2 \text{pF}, \text{ Cs} = 10 \text{pF},$ (I ² C default sensitivity select)	-	30M	-	52
Self calibration time after	T _{CAL}	$V_{DD} = 3.0V R_B = 510k$	-	100	-	ms
system reset	I CAL	$V_{DD} = 5.0V R_B = 510k$	-	80	-	1115
Sense input resistance	R _S		-	200	1000	Ω
Recommended bias	D	$V_{DD} = 3.0 V$	200	510	820	1-0
resistance range [Note6]	R _B	$V_{DD} = 5.0 V$	330	620	1200	kΩ
IDLE mode resistor range	R _{SB}		-	2	3	MΩ
Intenal reset pulse duration	T _{RST}		2.5	-	-	usec
SCL, SDA rising delay	T_{SCL}, T_{SDA}		0	-	1	usec
Minimum power on SCL, SDA high time Note 4 : Maximum communicati	T _{H_SCL} , T _{H_SDA}		100	-	-	msec

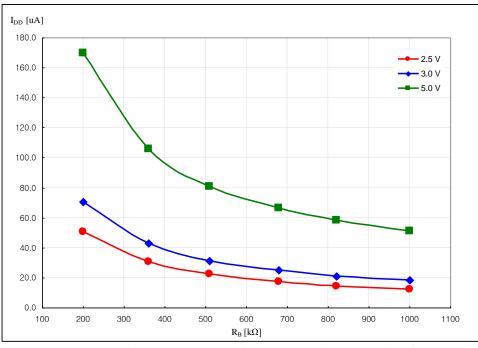
Note 4 : Maximum communication speed is 1Mbps.

Note 5 : The sensitivity can be increased with lower C_S value.

The recommended value of C_S is 10pF when using 3T PC(Poly Carbonate) cover and 10 mm x 7 mm touch pattern.


Note 6 : The lower R_B is recommended in noisy condition.

TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)


TS06 Implementation 8

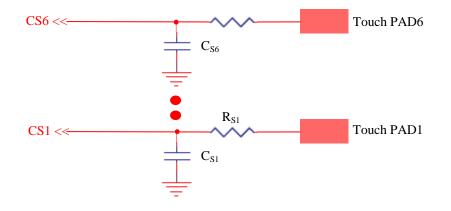
8.1 **RBIAS & SRBIAS implementation**

The RBIAS is connected to the resistor to decide the oscillator and internal bias current. The sensing frequency, internal clock frequency and current consumption are therefore can be adjusted with $R_{\rm B}$.

The R_{SB} should be connected as above figure when the TS06 operates in IDLE Mode to save the current consumption. In this case, not only the current consumption but also internal clock speed depends on the sum of the serial resistors, so that the response time might be longer.

Normal operation current consumption curve (@ Pin1 I2C_EN is High)

The current consumption curve of TS06 is represented in accordance with R_B value as above. The lower R_B requires more current consumption but it is recommended in noisy application. For example, refrigerator, air conditioner and so on.



ADSemiconductor®

" Free from Common Mode Noise

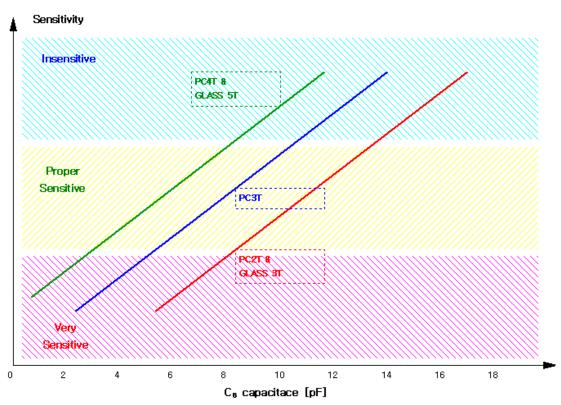
TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

8.2 CS implementation

The TS06 has an available sensing channel up to 6, and each channel has 16 steps sensitivity which is available to control with internal register by I²C interface. The parallel capacitor C_{S1} is added to CS1 and C_{S6} to CS6 to adjust fine sensitivity. The sensitivity would increased when a smaller value of C_S is used. (Refer to the below Sensitivity Example Figure) It could be useful in case detail sensitivity mediation is required. The internal touch decision process of each channel is separated from each other. The six channel touch key board application can therefore be designed by using only one TS06 without coupling problem. The R_s is serial connection resistor to avoid mal-function from external surge and ESD. (It might be optional.) From 200 Ω to 1k Ω is recommended for R_s. The size and shape of PAD might have influence on the sensitivity. The sensitivity will be optimal when the

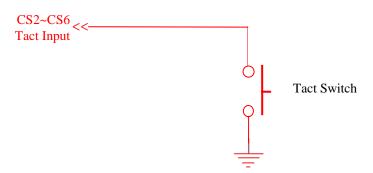
size of PAD is approximately an half of the first knuckle (it's about 10 mm \times 7 mm). The connection line of CS1 ~ CS6 to touch PAD is recommended to be routed as short as possible to prevent from abnormal touch detect caused by connection line.

There are some sensitivity difference among CS1, CS2 and CS3, and CS4, CS5 and CS6 caused by internal parasitic capacitance. That sensitivity difference could be compensated by using different C_S capacitor or sensitivity setting with internal register. To use different touch pattern area could be used for sensitivity compensation but not recommended. The sensitivity of each channel can be represented as below. The unused CS pin must be connected with the ground to prevent the unpredictable mal-function that occurred in the floating CS pin.


Sensitivity of $CS1 \ge$ Sensitivity of CS2, CS3 > Sensitivity of CS4, CS5, CS6 (In case of the external parasitic capacitance value is same on each channel.)

 $C_{CS1_PARA} + about \ 3.5 pF = C_{CS2,3_PARA} + about \ 3pF = C_{CS4,5,6_PARA}$

- * C_{CS1_PARA} : Parasitic capacitance of CS1
- * $C_{CS2,3_PARA}$: Parasitic capacitance of CS2 and CS3
- * $C_{CS4,5,6_PARA}$: Parasitic capacitance of CS4, CS5 and CS6

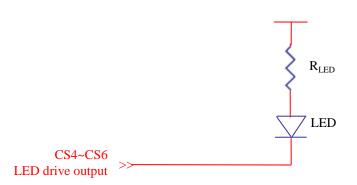


TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

Sensitivity example figure with default sensitivity selection

8.3 CS implementation for tact input (CS2, CS3, CS4, CS5, CS6)

The TS06 has five CS input ports (from CS2 to CS6) for getting tact switch input. When key Input board designed by using touch sensor and tact switch inputs, the input mode might be changed by dedicated registers and the output also could get from output registers. When the CS used for tact switch input, the internal pull-up current source make it possible without external pull-up resistors. Typical internal pull-up current is 8uA independent to external condition.



ADSemiconductor®

" Free from Common Mode Noise '

TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

The ports from CS4 to CS6 are available to use for LED drive output. When the application is required to be designed with LED display, the LED could be driven via CS4, CS5 or CS6. The LED drive output mode selection is available to control with internal register by I^2C interface. 32 steps LED dimming is also available with internal register by I^2C interface control. The maximum current that is sunk by CS is 20mA when the CS is used for LED drive output port.

8.5 Internal reset operation

The TS06 has stable internal reset circuit to offer reset pulse to digital block. The supply voltage for a system start or restart should be under $0.3 \cdot V_{DD}$ of normal operation V_{DD} . No external components required for TS06 power reset, that helps simple circuit design and to realize the low cost application.

8.6 Pattern Sleep TM

The purpose of pattern sleep is to remove unlock key in the application. For example, many mal-functions could happen if the mobile product is in the pocket. But thanks to the pattern sleep, the MCU would be awaken from IDLE mode with a proper touch input only.

The TS06 triggers the interrupt when it is touch on or touch off in normal operation. But the interrupt would be used when the touch inputs correspond with the reserved sequence in pattern sleep mode. And all the touch inputs should arrive within the expire time that is controllable by the dedicated register. As already mentioned, there is an advantage for the material cost as it will accordingly remove the unlock tact switch. The pattern sleep function is allowed for the channel 1, 2, 3 and 4. (See Chapter 10.4)

The pattern sleep function is anowed for the channel 1, 2, 5 and 4. (See Chap

** Pattern sleep setting up **

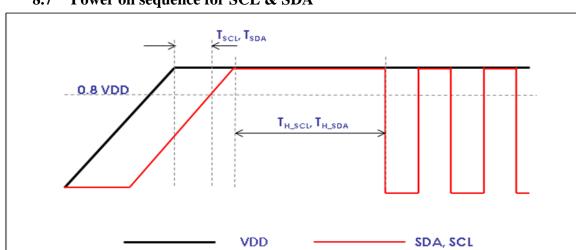
- Two types of pattern s	leep mode c	could be provided	d.
--------------------------	-------------	-------------------	----

Pattern Sleep Mode Type	Description
Slide Type	When the touch input sequence is coming by sliding touch.
	$TP_SEL = 0$
Touch to Touch Type	When the touch input sequence is coming by touch on / off
	$TP_SEL = 1$

- Expire time is available to control with PAT_EXPIRE_TIME register. (See Register Description)

- User defined pattern sequence

TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)


The interrupt generation is done by the OR operation between PAT_Ax and PAT_Bx in pattern sleep mode. The pattern is available to extend up to 8 steps.

pattern is availa	pattern is available to extend up to 8 steps.				
Step1	PATTERN_A1	PATTERN_B1			
Step2	PATTERN_A2	PATTERN_B2			
Step3	PATTERN_A3	PATTERN_B3			
Step4	PATTERN_A4	PATTERN_B4			
Step5	PATTERN_A5	PATTERN_B5			
Step6	PATTERN_A6	PATTERN_B6			
Step7	PATTERN_A7	PATTERN_B7			
Step8	PATTERN_A8	PATTERN_B8			

* ATTENTION: The interrupt would be consecutively occurred if the values of PATTERN_A(1:8) or PATTERN_B(1:8) are same.

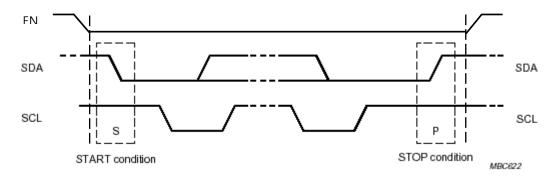
- Application support idea

With our unique sleep pattern set up, it allows mobile phones, MP3 players and other devices to be in IDLE mode and then back to active mode using just a few easy steps. A mobile phone, for example, normally will be in left unattended in our pockets, tables, etc. Using our set up, mobile phones will automatically be in Idle mode without pressing any special keys. Sleep time (length of time before it goes to sleep) will vary depending on the time you input in the system. This will help prevent unnecessary dialed numbers or unwanted calls. Our sleep pattern set up will eliminate the use of special keys (e.g unlock key button) and instead it uses a touch sensors to activate and unlock the phone.

8.7 Power on sequence for SCL & SDA

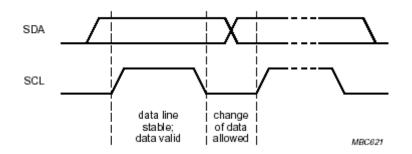
Timing Diagram

			0 0		
Items Description m		min	typ	max	unit
T _{SCL} Settling time for SCL voltage rising to 0.8 VDD		0	-	1.0	usec
T _{SDA} Settling time for SDA voltage rising to 0.8 VDD		0	-	1.0	usec
T_{H_SCL}, T_{H_SDA}	SCL SDA high pulse remain time for power on	100	-	-	msec


TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

I²C Interface 9

9.1 **Start & Stop Condition**

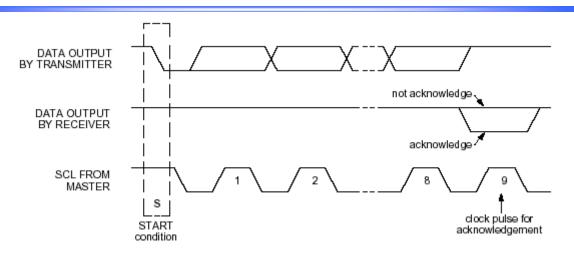

- ◀ Start Condition (S)
- ◀ Stop Condition (P)
- ◀ Repeated Start (Sr)

The EN (Pin1) should be low before START condition and be high after STOP condition. The START condition should be appear after 2usec (minimum) from EN becomes Low. .

9.2 **Data validity**

The SDA should be stable when the SCL is high and the SDA can be changed when the SCL is low.

9.3 Byte format

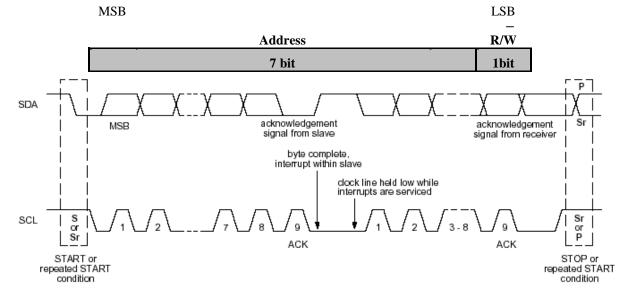

The byte structure is composed with 8Bit data and an acknowledge signal.

9.4 Acknowledge

It is a check bit whether the receiver gets the data from the transmitter without error or not. The receiver will write '0' when it received the data successfully and '1' if not.

TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

9.5 **First byte**


9.5.1 Slave address

It is the first byte from the start condition. It is used to access the slave device.

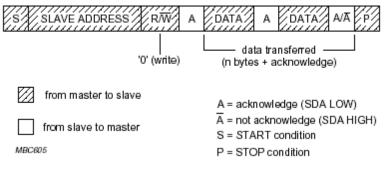
ID_SEL(CS1 Pin4)	Address
SENSING	0xD2
GND	0xF2

R/W 9.5.2

The direction of data is decided by the bit and it follows the address data.

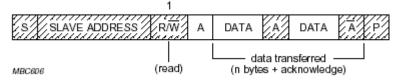
ADSemiconductor®

" Free from Common Mode Noise


TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

9.6 Transferring data

9.6.1 Write operation

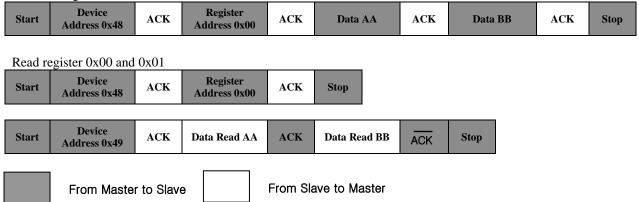

The byte sequence is as follows:

- 1. The first byte gives the device address plus the direction bit (R/W = 0).
- 2. The second byte contains the internal address of the first register to be accessed.
- 3. The next byte is written in the internal register. Following bytes are written in successive internal registers.
- 4. The transfer lasts until stop conditions are encountered.
- 5. The ANAG08 acknowledges every byte transfer.

9.6.2 Read operation

The address of the first register to read is programmed in a write operation without data, and terminated by the stop condition. Then, another start is followed by the device address and R/W= 1. All following bytes are now data to be read at successive positions starting from the initial address.

9.6.3 Read/Write Operation



TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

I²C write and read operations in normal mode 9.7

The following figure represents the I²C normal mode write and read registers.

Write register 0x00 to 0x01 with data AA and BB

TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

10 TS06 Register List

- ▲ Note: The unused bits (defined as reserved) in I²C registers must be kept to zero.
- ▲ Note: The bit0 and bit1 of CTRL2 register must be written by 0b11 after power on during an initialize phase. (Refer to the chapter 9. initialize flow)
- ◀ Note: HS (High Sensitivity) / MS (Middle Sensitivity) / LS (Low Sensitivity)
- ◀ Note: Low Output (light touch) / Middle Output (middle touch) / High Output (hard touch)

Name	Addr.	Reset Value		Register Function and				cription		
Iname	(Hex)	(Bin)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Sensitivity1	00h	0011 0011		SEN	CH2	•		SEN	CH1	•
Sensitivity2	01h	0011 0011		SEN	CH4			SEN	CH3	
Sensitivity3	02h	0011 0011		SEN	CH6			SEN	CH5	
CTRL1	03h	0000 1010	-	-	MS	FI	C		RTC	
CTRL2	04h	0001 0010	-	LED_EN	S/M_SEL	IMP_SEL	SRST	SLEEP	1	1
Ref_Rst	05h	0011 1000	-	-	CH6	CH5	CH4	CH3	CH2	CH1
Ch_Hold	06h	0011 100X	-	-	CH6	CH5	CH4	CH3	CH2	1
Cal_Hold	07h	0000 0000	-	-	CH6	CH5	CH4	CH3	CH2	CH1
Dome_En	08h	0000 0000	-	-	-	CH6	CH5	CH4	CH3	CH2
Cal_Ctrl	09h	1111 1101	BF	UP	BF_D	OWN	BS SLEEP			
Pat_Ctrl	0Ah	0000 0000	SM_SEL	TP_SEL	ETS		PAT_EXPIRE_TIME			
Pat_A0	0Bh	0000 0000		PATTE	RN_A2		PATTERN_A1			
Pat_A1	0Ch	0000 0000		PATTE	RN_A4			PATTERN_A3		
Pat_A2	0Dh	0000 0000		PATTE	RN_A6			PATTE	RN_A5	
Pat_A3	0Eh	0000 0000		PATTE	RN_A8			PATTE	RN_A7	
Pat_B0	0Fh	0000 0000		PATTE	RN_B2			PATTE	RN_B1	
Pat_B1	10h	0000 0000		PATTE	RN_B4			PATTE	RN_B3	
Pat_B2	11h	0000 0000		PATTE	RN_B6			PATTE	RN_B5	
Pat_B3	12h	0000 0000		PATTERN_B8				PATTE	RN_B7	
PWM0	13h	0000 0000	PWM_OUT_CH4							
PWM1	14h	0000 0000	PWM OUT CH5							
PWM2	15h	0000 0000	PWM OUT CH6							
Output0	25h	00000000	-	ND	CH6	CH5	CH4	CH3	CH2	CH1

10.1 I²C Register Map

TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

10.2 Details

10.2.1 Sensitivity Control Register

Sen	sitivity1		Channel 1	& 2 Sensi	tivity Cont	rol	
Address (he	x): 00h						
Type: R/W							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	SEN_C	CH2[3:0]			SEN_C	H1[3:0]	

Description

The sensitivity of channel 1 and 2 are adjustable by Sensitivity1 register.

Bit name	Reset	Function				
		Sensitivity T (= thickness of PC) of Cl	hannel 1 @Cs = 0pF 1000: 4.25 ~ 5.50T 1001: 4.00 ~ 5.25T 1010: 3.75 ~ 5.00T			
SEN_CHx[3:0]	0011	 ↓ 0011: 7.0 ~ 8.5T ↓ 0100: 6.0 ~ 7.5T ↓ 0101: 5.5 ~ 7.0T ↓ 0110: 5.0 ~ 6.5T ↓ 0111: 4.5 ~ 6.0T 	 1011: 3.50 ~ 4.75T 1100: 3.25 ~ 4.50T 1101: 3.00 ~ 4.25T 1110: 2.75 ~ 4.00T 1111: 2.50 ~ 3.75T 			
3EN_CHA[3.0]	0011	Sensitivity T (= thickness of PC) of Cl 0000: 8.0 ~ 11.0T 0001: 7.0 ~ 9.0T 0010: 6.0 ~ 7.5T 0011: 5.0 ~ 6.5T 0100: 4.5 ~ 6.0T 0101: 4.0 ~ 5.5T 0110: 3.75 ~ 5.00T 0111: 3.50 ~ 4.75T	hannel 2 @Cs = $0pF$ 4 1000: 3.25 ~ 4.50T 4 1001: 3.00 ~ 4.25T 4 1010: 2.75 ~ 4.00T 4 1011: 2.50 ~ 3.75T 4 1100: 2.25 ~ 3.50T 4 1101: 2.00 ~ 3.25T 4 1110: 1.80 ~ 3.00T 4 1111: 1.60 ~ 2.75T			

TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

Sens Address (he	sitivity2		Channel 3	& 4 Sensi	tivity Cont	rol	
Type: R/W	x): 01fi						
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	SEN C	H4[3:0]			SEN C	H3[3:0]	

Description

The sensitivity of channel 3 and 4 are adjustable by Sensitivity2 register.

Bit name	Reset	Function					
		Sensitivity T (= thickness of PC) of Ch	nannel 3 @Cs = $0pF$				
		↓ 0000: 8.0 ~ 11.0T	4 1000: 3.25 ~ 4.50T				
		↓ 0001: 7.0 ~ 9.0T	↓ 1001: 3.00 ~ 4.25T				
		↓ 0010: 6.0 ~ 7.5T	↓ 1010: 2.75 ~ 4.00T				
		↓ 0011: 5.0 ~ 6.5T	↓ 1011: 2.50 ~ 3.75T				
		↓ 0100: 4.5 ~ 6.0T	↓ 1100: 2.25 ~ 3.50T				
		↓ 0101: 4.0 ~ 5.5T	↓ 1101: 2.00 ~ 3.25T				
SEN_CHx[3:0]		↓ 0110: 3.75 ~ 5.00T	↓ 1110: 1.80 ~ 3.00T				
SEN_CIIX[5.0]	0011	↓ 0111: 3.50 ~ 4.75T	↓ 1111: 1.60 ~ 2.75T				
	0011	Sensitivity T (= thickness of PC) of Ch	nannel 4 $@Cs = 0pF$				
		↓ 0000: 6.0 ~ 8.0T	↓ 1000: 2.25 ~ 3.50T				
		↓ 0001: 5.0 ~ 6.5T	↓ 1001: 2.00 ~ 3.25T				
		↓ 0010: 4.5 ~ 6.0T	↓ 1010: 1.80 ~ 3.00T				
		↓ 0011: 4.0 ~ 5.5T	↓ 1011: 1.60 ~ 2.75T				
		↓ 0100: 3.5 ~ 5.0T	↓ 1100: 1.40 ~ 2.50T				
		↓ 0101: 3.0 ~ 4.5T	↓ 1101: 1.20 ~ 2.25T				
		↓ 0110: 2.75 ~ 4.00T	↓ 1110: 1.00 ~ 2.00T				
		↓ 0111: 2.50 ~ 3.75T	↓ 1111: 1.00 ~ 1.80T				

Sensitivity3

Channel 5 & 6 Sensitivity Control

Address (hex): 02h Type: R/W

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	SEN_C	H6[3:0]			SEN_C	H5[3:0]	

Description

The sensitivity of channel 5 and 6 are adjustable by Sensitivity3 register.

Bit name	Reset	Function					
		Sensitivity T (= thickness of PC) of Channel 5, 6 @Cs = 0pF 4 0000; 6.0 ~ 8.0T 4 1000; 2.25 ~ 3.50T					
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
SEN_CHx[3:0]	0011	4 0011: 4.0 ~ 5.5T 4 1011: 1.60 ~ 2.75T					
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
		4 0110: 2.75 ~ 4.00T 4 1110: 1.00 ~ 2.00T 4 0111: 2.50 ~ 3.75T 4 1111: 1.00 ~ 1.80T					

TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

10.2.2 General Control Register1

CTI Address (he		TS06 G	eneral Co	ntrol Regis	ter1		
Type: R/W							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	MS	FTC	[1:0]		RTC[2:0]	

Description

The calibration speed just after power on reset is very high during the time which is defined by FTC[1:0] to have a good adoption against unstable external environment.

Bit name	Reset	Function
		Mode Selection
MS	0	0: auto alternate (fast/slow) mode
		1: fast mode
	01	First Touch Control
		Below time stands on VDD = $3V / Rb = 420K\Omega$
FTC[1:0]		00: 5 sec
FIC[1.0]	01	01: 10 sec
		10: 15 sec
		11: 20 sec
DTC[2:0]	010	Response Time Control
RTC[2:0]	010	Response period = $RTC[2:0] + 2$

10.2.3 General Control Register2

CTRL2		TS06 G	TS06 General Control Register2						
Address (he	ex): 04h								
Type: R/W									
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0	LED_EN	S/M_SEL	IMP_SEL	SRST	SLEEP	1	1		

Description

All the digital blocks except analog and I²C block are reset when SRST is set. The SLEEP function allows getting very low current consumption when it is set. But the response time will be longer than normal operation.

Bit name	Reset	Function
		LED Enable / Disable Control
LED_EN	0	0: LED Drive Disable
		1: LED Drive Enable
		Single/Multi Mode Select
S/M_SEL	0	0: Multi Mode
		1: Single Mode
		Impedance Select
IMP_SEL	1	0: Low Impedance
		1: High Impedance
		Software Reset
SRST	0	0: Disable Software Reset
		1: Enable Software Reset
		Sleep Mode Enable
SLEEP	0	0: Disable Sleep Mode
		1: Enable Sleep Mode

10.2.4 Channel Reference Reset Control Register

Ref Address (he Type: R/W			Channel1 [,]	-6 Referen	ce Reset Co	ontrol	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	Ch6	Ch5	Ch4	Ch3	Ch2	Ch1

Description

The reference value of each channel will be renewing when Chx is set.

Bit name	Reset	Function
Ch(1:3)	000	0: Disable reference reset
CII(1.5)	000	1: Enable reference reset
Ch(4:6)	111	0: Disable reference reset
CII(4.0)		1: Enable reference reset

10.2.5 Channel 1~6 Sensing Control Register

Ch_ Address (hez	<mark>hold</mark> x): 06h	Channe	el 1 ~ 6 Ho	ld Enable F	Register		
Type: R/W	,						
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	Ch6	Ch5	Ch4	Ch3	Ch2	X

Description

The operation of each channel is independently available to control. A channel doesn't be worked and the calibration is paused when it is set.

The hold function is not available for channel 1(Bit0).

Bit name	Reset	Function		
Ch(2:3)	000	0: Enable operation (sensing + calibration) 1: Hold operation (No sensing + Stop calibration)		
Ch(4:6)	111	0: Enable operation (sensing + calibration) 1: Hold operation (No sensing + Stop calibration)		

10.2.6 Channel 1~6 Calibration Control Register

Cal Address (he Type: R/W	_hold ex): 07h	Channe	el 1 ~ 6 Cal	ibration E	nable Regis	ster	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	Ch6	Ch5	Ch4	Ch3	Ch2	Ch1

Description

The calibration of each channel is independently available to control. Each channel is working even if a bit is set.

Bit name	Reset	Function
Chy	0	0: Enable reference calibration (sensing + calibration)
Chx		1: Disable reference calibration (sensing + No calibration)

10.2.7 Channel 2~6 Dome Key Input Control Register

	ne_en	Channe	el 2 ~ 6 Doi	ne Key En	able Regist	er	
Address (he: Type: R/W	x): 08n						
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	0	Ch6	Ch5	Ch4	Ch3	Ch2

Description

The tact key input is available to control with Dome_en register.

Bit name	Reset	Function
Chx	0	0: Disable tact key input 1: Enable tact key input

Calibration Speed Control Register 10.2.8

Cal_ctrl Address (hex): 09h Type: R/W		Calibra	Calibration Speed Control Register					
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	BF	UP	BF DOWN		BS		SLEEP	

Description

The calibration speed might be controlled on each operation mode by Cal_ctrl register.

Bit name	Reset	Function
		Calibration speed control upper direction in BF mode
		00: Fastest
BF_UP[1:0]	11	01: Fast
		10: Normal
		11: Slow
		Calibration speed control lower direction in BF mode
		00: Fastest
BF_DOWN[1:0]	11	01: Fast
		10: Normal
		11: Slow
		Calibration speed control in BS mode (up, Down)
		00: Fastest
BS[1:0]	11	01: Fast
		10: Normal
		11: Slow
		Calibration speed control in SLEEP mode (up, Down)
		00: Fast
SLEEP[1:0]	01	01: Normal
		10: Slow
		11: Not Use

TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

10.2.9 Pattern function Control Register

Address (hex): 0Ah		Pattern	n Function Cont	rol Register			
Type: R/W							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SM_SEL	TP_SEL	ETS	PAT_EXPIRE_TIME				

Description

The pattern sleep function is might be controlled by Pat_ctrl register. In case of the sliding type pattern interrupt, $TP_SEL = 0$ selection could have more advantage and $TP_SEL = 1$ selection is useful when the pattern be required to check touch on and off detection.

Bit name	Reset	Function
		Sleep mode select
SM_SEL	0	0: Normal Sleep Mode
		1: Pattern Sleep Mode
		Touch pattern select
TP_SEL	0	0: Compare the pattern with only touch on detection
		1: Compare the pattern with touch on and off detection
		Expire Time Speed control
ETS	0	0: Expire Time Speed = 1
		1: Expire Time Speed = 8
		The intelligent pattern algorithm will wait for the end of pattern input for
PAT_EXPIRE_TIME	00000	the time that is set by pattern expire time register.
[4:0]	00000	Expire Time = Infinite when PAT_EXPIRE_TIME [4:0] is 00000
		Expire Time = PAT_EXPIRE_TIME[4:0] x 80ms x Expire Time Speed

10.2.10 Pattern A Selection Register

Address (hex	A(0~3)): 0Bh		Pattern A	Selection I	Registers		
Type: R/W							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	PATTE	RN_A2		PATTERN_A1			
Address (hex): 0Ch							
Type: R/W							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PATTERN_A4				PATTERN_A3			
Address (hex): 0Dh						
Type: R/W							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PATTERN_A6			PATTERN_A5				
Address (hex): 0Eh						
Type: R/W							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	PATTERN_A8			PATTERN_A7			

Description

The depth of pattern A could be extended up to 8 steps.

Bit name	Reset	Function
PATTERN_An[3:0]	0000	PATTERN_An[3] are pattern data that is compared with CH4 output. PATTERN_An[2] are pattern data that is compared with CH3 output. PATTERN_An[1] are pattern data that is compared with CH2 output. PATTERN_An[0] are pattern data that is compared with CH1 output. * The n of An indicates the number of pattern steps.

TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

10.2.11 Pattern B Selection Register **Pat_B(0~3) Pattern B Selection Registers** Address (hex): 0Fh Type: R/W Bit7 Bit0 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 PATTERN_B2 PATTERN_B1 Address (hex): 10h Type: R/W Bit7 Bit6 Bit4 Bit3 Bit0 Bit5 Bit2 Bit1 PATTERN_B4 PATTERN_B3 Address (hex): 11h Type: R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 PATTERN_B6 PATTERN_B5 Address (hex): 12h Type: R/W Bit7 Bit3 Bit0 Bit5 Bit4 Bit2 Bit1 Bit6 PATTERN_B7 PATTERN_B8

Description

The depth of pattern B could be extended up to 8 steps.

Bit name	Reset	Function
PATTERN_Bn[3:0]	0000	PATTERN_Bn[3] are pattern data that is compared with CH4 output. PATTERN_Bn[2] are pattern data that is compared with CH3 output. PATTERN_Bn[1] are pattern data that is compared with CH2 output. PATTERN_Bn[0] are pattern data that is compared with CH1 output. * The n of Bn indicates the number of pattern steps.

TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

10.2.12 PWM Control Register

PWM(0~2)			LED Dimming Control Registers					
Address (hex): 13h ~ 15h					_			
Type: R/W								
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0	0	0		PWN	A_OUT_CH4 ~	CH6		

Description

The LED could be driven by TS06 within 32 steps.

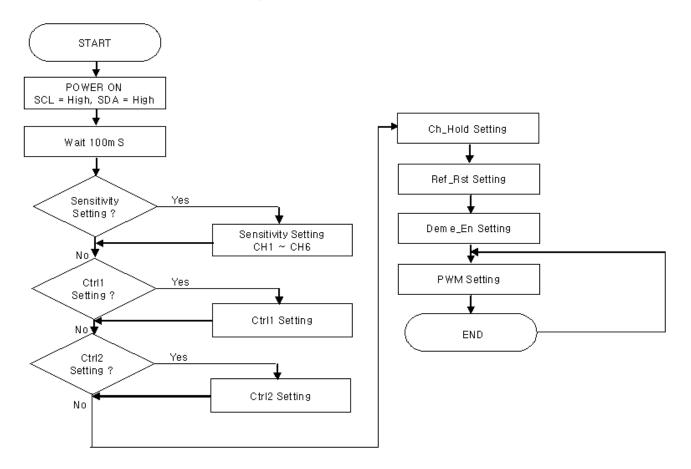
Bit name	Reset	Function
PWM_OUT_CHx[4:0]	00000	LED dimming controllable up to 32 steps. 00000: The minimum luminance 11111: The maximum luminance

10.2.13 Output Register

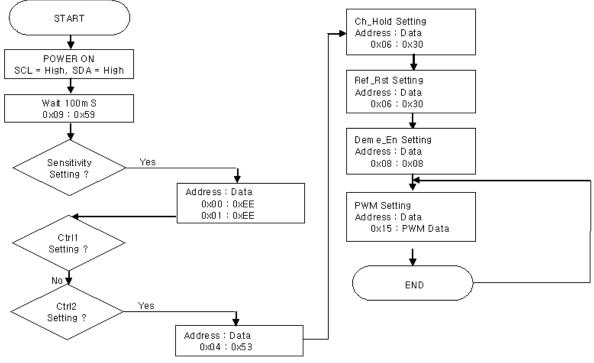
Output		Channel 1 ~ 6 Output Register						
Address (hex): 25h								
Type: R								
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
	ND	CH6	CH5	CH4	CH3	CH2	CH1	

Description

The each channel output of TS06 is provided with 1 bit. It represents to detect result as below table.


Bit name	Reset	Function
		Noise Detect Indication
ND	0	0: Normal State
		1: Noisy State
		Output of channel x
CHx	0	0: No touch
		1: Detected touch

TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)


10.3 Recommended TS06 Power Up Sequence (Example)

10.3.1 Recommended TS06 Power Up Flow Chart

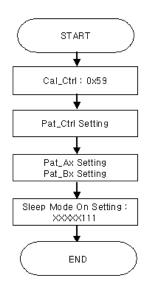
10.3.2 Recommended TS06 Power Up Sequence Sample

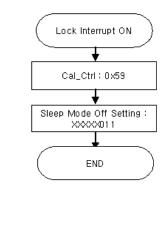
Sample Flow Chart

- CH1 ~ CH4 : Touch Sensor
- Sensitivity : All 2.0%
- CH5 : Tact Switch
- CH6 : LED Driver

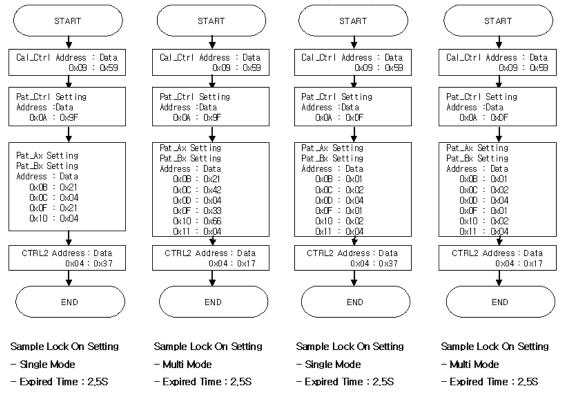
ADSemiconductor®

" Free from Common Mode Noise

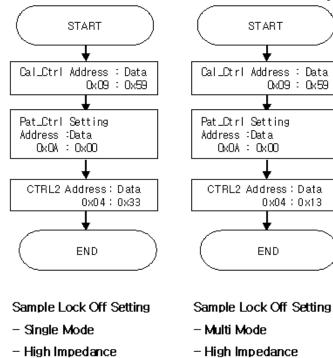

TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)


10.4 Recommended TS06 Pattern Sleep Sequence (Example)

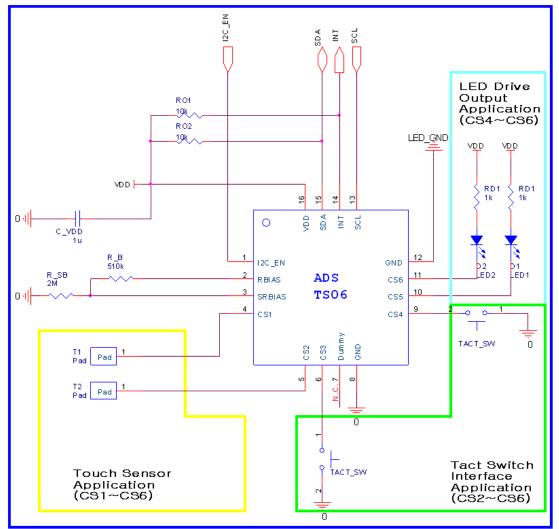
10.4.1 Recommended TS06 Pattern Sleep Flow Chart


Enter into pattern sleep

Exit from pattern sleep

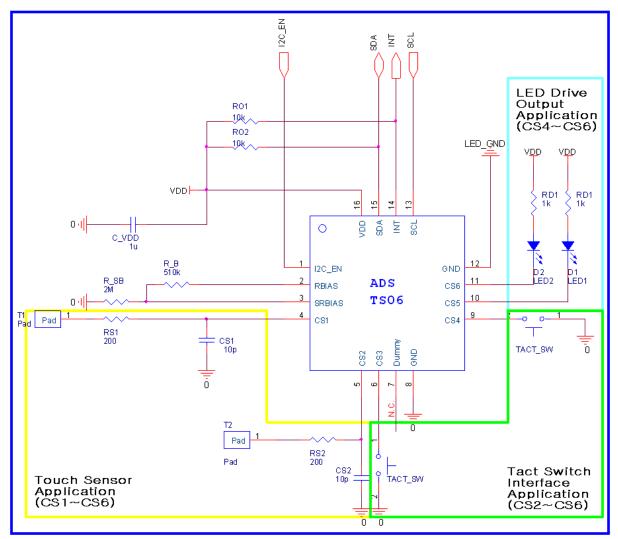


10.4.2 Recommended TS06 Pattern Sleep Sequence to enter


10.4.3 Recommended TS06 Pattern Sleep Sequence to exit

11 Recommended Circuit Diagram

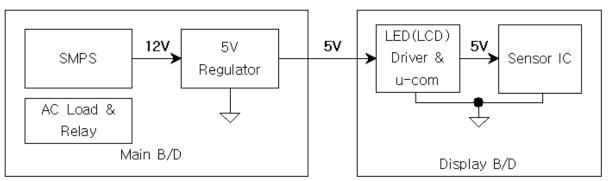
11.1 Application Example in clean power environment


TS06 Application Example Circuit (Clean power environment)

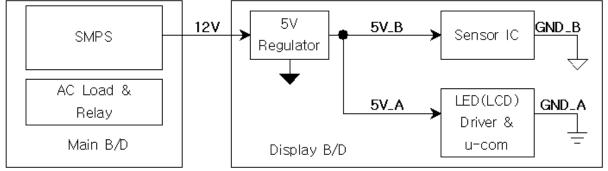
- In PCB layout, R B should not be placed on touch pattern. The R B pattern should be routed as short as \checkmark possible.
- The CS patterns also should be routed as short as possible and the width of line might be about 0.25mm (or narrower line).
- The capacitor that is between VDD and GND is an obligation. It should be located as close as possible from TS06.
- The CS pattern routing should be formed by bottom metal (opposite metal of touch PAD).
- \checkmark The empty space of PCB must be filled with GND pattern to strengthen GND pattern and to prevent external noise from interfere with sensing frequency.
- The TS06 is reset when power rise from 0V to proper VDD
- \checkmark The LED_GND and GND should be short in the system and the lines are recommended to be split from the most low impedance ground point to avoid ground bouncing problems.

TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

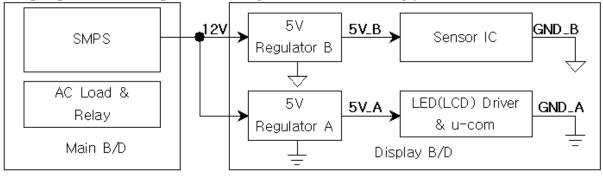
11.2 Application Example in noisy environment


TS06 Application Example Circuit (Noisy environment)

- The VDD periodic voltage ripple over 50mV and the ripple frequency is lower than 10 kHz can cause \checkmark wrong sensitivity calibration. To prevent above problem, power (VDD, GND) line of touch circuit should be separated from other circuit. Especially LED driver power line or digital switching circuit power line certainly should be treated to be separated from touch circuit.
- \checkmark The smaller R_B is recommended in noisy environments.
- \checkmark Thanks to the RS1, RS2, CS1 and CS2, the noise immunity could be improved.
- \checkmark The LED_GND and GND should be short in the system and the lines are recommended to be split from the most low impedance ground point to avoid ground bouncing problems.

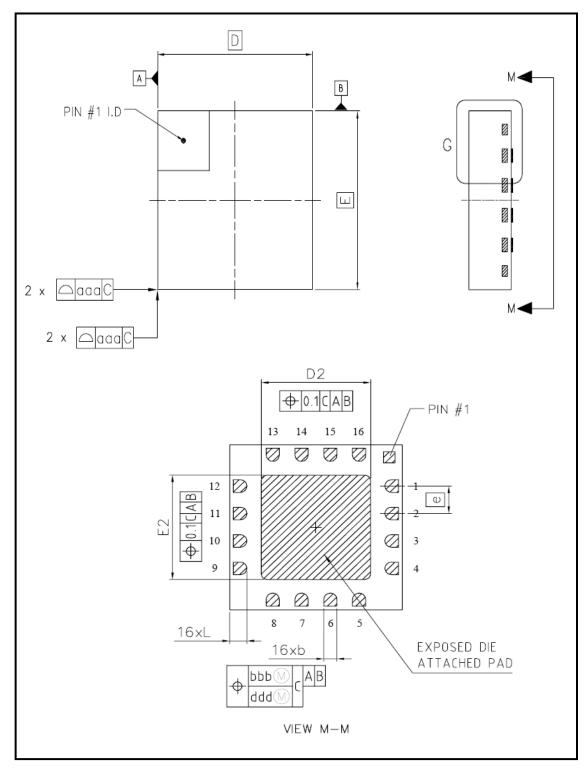

11.3 Example – Power Line Split Strategy PCB Layout

A. Not split power Line (Bad power line design)

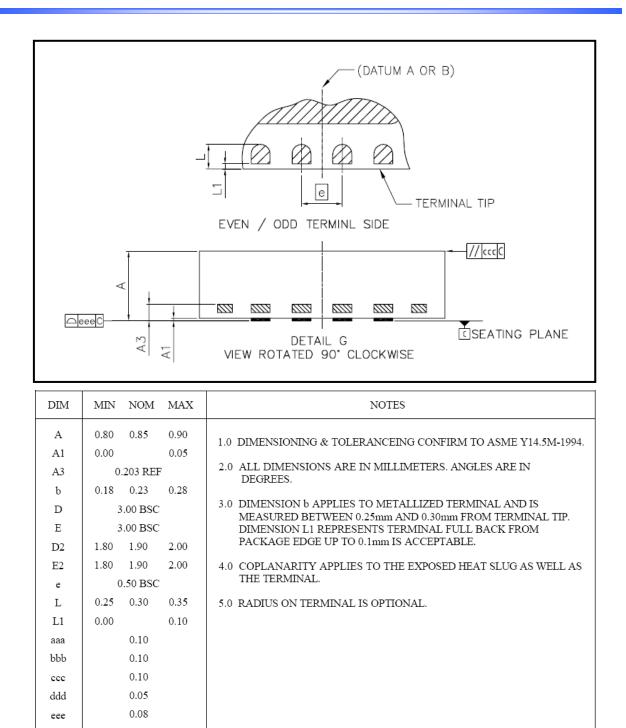


- \checkmark The The noise that is generated by AC load or relay can be loaded at 5V power line.
- ✓ A big inductance might be appeared in case of the connection line between main board and display board is too long, moreover the voltage ripple could be generated by LED (LCD) display driver at VDD (5V).

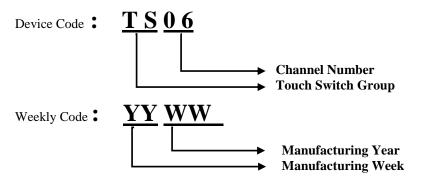
B. Split power Line (One 5V regulator used) – Recommended



C. Split power Line (Separated 5V regulator used) – Strongly recommended



12 MECHANICAL DRAWING


TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

13 MARKING DESCRIPTION

TS06 (6-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

NOTES:

LIFE SUPPORT POLICY

AD SEMICONDUCTOR'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF AD SEMICONDUCTOR CORPORATION

The ADS logo is a registered trademark of ADSemiconductor

© 2006 ADSemiconductor – All Rights Reserved

www.adsemicon.com www.adsemicon.co.kr

AD Semiconductor Confidential 39/39

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Touch Screen Controllers category:

Click to view products by AD Semicon manufacturer:

Other Similar products are found below :

CY8CTMA461AA-33 ATMXT1664T3-C2U CY8CTMA460AS-33 CY8CTMA768AS-33 ATMXT224-MAH CG8526AA FTCU04C CP8667AT CP7598AT TSC2301IPAG AR1021-I/ML BU21025GUL-E2 TSC2046EQPWRQ1 CY8CMBR3116-LQXIT CYTMA445-44LQI33ZZA AR1021T-I/ML TS01S TS02NT TS04 TSM12M AD7877ACPZ-500RL7 AD7873ARUZ AD7843ARUZ-REEL7 AD7843ARUZ AD7843ARQZ-REEL7 AD7843ARQZ APT8L08SE HX612D IQS525-BL-QNR IQS572-BL-QNR SSD6250QN4R AW9203CSR CP2682SS24-A1 CY8CMBR2110-24LQXI CY8CMBR3106S-LQXI CY8CMBR3116-LQXI RH6015CF SD8223LC SD8223LB BS812A-1 SB8223 TTP232-CA6 RH6015D BS8112A-3 BS8116A-3 BS813A-1 BS814A-1 BS83A04A-3 SC04A SC05A