

PRECISION MICROPOWER CMOS OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

The ALD1721/ALD1721G is a monolithic CMOS micropower high slew rate operational amplifier intended for a broad range of precision applications requiring exremely low input signal power. Input signal power is the product of input offset voltage and input bias current, which represents the minimum required power draw from the signal source in order to drive the input of the operational amplifier. Input signal power is also a figure of merit in source loading and its associated error, and is a measure of the basic signal resolution possible through the operational amplifier for a given signal source. For certain types of signal sources, signal loading directly translates into a significant distortion or "interface noise equivalent" term.

The ALD1721/ALD1721G is designed to set a new standard in low input signal power requirements. The typical input loading at its input is 0.05 mV offset voltage and 0.01 pA input bias current at 25C, resulting in 0.0005 fW input signal power draw. This input characteristic virtually eliminates any loading effects on most types of signal sources, offering unparalled accuracy and signal integrity and fidelity. Obviously, for capacitive and high sensitivity, high impedance signal sources, the ALD1721/ALD1721G is ideally suited. It is readily suited for +5V single supply (or $\pm 1 \text{V}$ to $\pm 5 \text{V}$) systems, with low operating power dissipation, a traditional strength of CMOS technology. It is offered with industry standard pin configuration of μA741 and ICL7611 types.

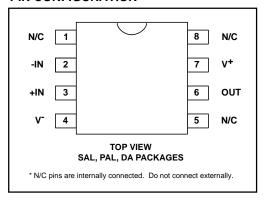
The ALD1721/ALD1721G can operate with rail to rail large signal input and output voltages with relatively high slew rate. The input voltage can be equal to or exceed the positive and negative supply voltages while the output voltage can swing close to these supply voltage rails. This feature significantly reduces the supply overhead voltage required to operate the operational amplifier and allows numerous analog serial stages to operate in a low power supply environment. In addition, the device can accommodate mixed applications where digital and analog circuits may operate off the same power supply or battery. Finally, the output stage can typically drive up to 50pF capacitive and $10 \mathrm{K}\Omega$ resistive loads.

These features make the ALD1721/ALD1721G a versatile, micropower high precision operational amplifier that is user friendly and easy to use with virtually no source loading and zero input-loading induced source errors. Additionally, robust design and rigorous screening make this device especially suitable for operation in temperature-extreme environments and rugged conditions.

ORDERING INFORMATION ("L" suffix denotes lead-free (RoHS))

Ор	Operating Temperature Range							
0°C to +70°C	0°C to +70°C	-55°C to +125°C						
8-Pin	8-Pin	8-Pin						
Small Outline	Plastic Dip	CERDIP						
Package (SOIC)	Package	Package						
ALD1721SAL	ALD1721PAL	ALD1721DA						
ALD1721GSAL	ALD1721GPAL	ALD1721GDA						

^{*} Contact factory for leaded (non-RoHS) or high temperature versions.


FEATURES & BENEFITS

- · Lead Free RoHS compatible
- Robust high-temperature operation
- Guaranteed extremely low input signal power of 1.5 fW
- Input offset voltage of 0.05 mV typical (0.15 mV max.)
- Low input bias currents of 0.01pA typical (10pA max.)
- Rail to rail input and output voltage ranges
- All parameters specified for +5V single supply or ±2.5V dual supplies
- Unity gain stable, no compensation needed
- High voltage gain -- typically 100V/mV @ ±2.5V(100dB)
- Drive as low as 10KΩ load
- Output short circuit protected
- · Unity gain bandwidth of 0.7MHz
- Slew rate of 0.7V/μs
- · Micro power dissipation
- Suitable for rugged, temperature-extreme environments

APPLICATIONS

- · Voltage amplifier
- Voltage follower/buffer
- · Charge integrator
- · Photodiode amplifier
- Data acquisition systems
- High performance portable instruments
- · Signal conditioning circuits
- Sensor and transducer amplifiers
- Low leakage amplifiers
- Active filters
- Sample/Hold amplifier
- Picoammeter
- Current to voltage converter

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Supply voltage, V+	10.6V
Differential input voltage range	-0.3V to V++0.3V
Power dissipation	600 mW
Operating temperature range SAL, PAL packages	0°C to +70°C
DA package	55°C to +125°C
Storage temperature range	65°C to +150°C
Lead temperature, 10 seconds	+260°C

CAUTION: ESD Sensitive Device. Use static control procedures in ESD controlled environment.

OPERATING ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C\ V_S = \pm 2.5V$ unless otherwise specified

			1721			1721G			Test
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Conditions
Supply Voltage	Vs V+	±1.0 2.0		±5.0 10.0	±1.0 2.0		±5.0 10.0	V	Dual Supply Single Supply
Input Offset Voltage	Vos		0.05	0.15 0.6		0.15	0.35 1.0	mV mV	$\begin{aligned} R_S &\leq 100 K \Omega \\ 0^{\circ} C &\leq T_A \leq +70^{\circ} C \end{aligned}$
Input Offset Current	los		0.01	10 240		0.01	10 240	pA pA	$T_A = 25^{\circ}C$ $0^{\circ}C \le T_A \le +70^{\circ}C$
Input Bias Current	I _B		0.01	10 240		0.01	10 240	pA pA	$T_A = 25^{\circ}C$ $0^{\circ}C \le T_A \le +70^{\circ}C$
Input Voltage Range	V _{IR}	-0.3 -2.8		5.3 2.8	-0.3 -2.8		5.3 2.8	V V	V+ = +5V V _S = ±2.5V
Input Resistance	R _{IN}		10 ¹⁴			10 ¹⁴		Ω	
Input Offset Voltage Drift	TCV _{OS}		5			7		μV/°C	R _S ≤100KΩ
Power Supply Rejection Ratio	PSRR	65 65	80 80		65 65	80 80		dB dB	$R_{S} \leq 100K\Omega$ $0^{\circ}C \leq T_{A} \leq +70^{\circ}C$
Common Mode Rejection Ratio	CMRR	65 65	83 83		65 65	83 83		dB dB	$R_S \le 100 K\Omega$ $0^{\circ}C \le T_A \le +70^{\circ}C$
Large Signal Voltage Gain	Av	32 20	100 1000		32 20	100 1000		V/ mV V/ mV V/ mV	$R_L = 100 K\Omega$ $R_L \ge 1 M\Omega$ $R_L = 100 K\Omega$ $0^{\circ}C \le T_A \le +70^{\circ}C$
Output Voltage	VO low	4.99	0.001 4.999	0.01	4.99	0.001 4.999	0.01	V V	$R_L = 1M\Omega V^+ = +5V$ $0^{\circ}C \le T_A \le +70^{\circ}C$
Range	VO high	2.40	-2.48 2.48	-2.40	2.40	-2.48 2.48	-2.40	V V	R _L =100KΩ 0° C ≤ T _A ≤ +70°C
Output Short Circuit Current	I _{SC}		1			1		mA	
Supply Current	Is		110	200		110	200	μА	V _{IN} = 0V No Load
Power Dissipation	PD		0.6	1.0		0.6	1.0	mW	V _S = ±2.5V

OPERATING ELECTRICAL CHARACTERISTICS (cont'd)

 $T_A = 25^{\circ}C$ $V_S = \pm 2.5V$ unless otherwise specified (cont'd)

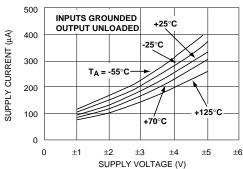
		1721		1721G				Test	
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Conditions
Input Capacitance	C _{IN}		1			1		pF	
Bandwidth	B _W	400	700		400	700		KHz	
Slew Rate	S _R	0.33	0.7		0.33	0.7		V/µs	$A_V = +1$ $R_L = 100 K\Omega$
Rise time	tr		0.2			0.2		μs	R _L = 100KΩ
Overshoot Factor			20			20		%	R _L =100KΩ C _L = 50pF
Settling Time	t _S		10.0			10.0		μs	0.1% $A_V = -1R_L = 100K\Omega$ $C_L = 50pF$

 $T_A = 25^{\circ}C$ $V_S = \pm 5.0V$ unless otherwise specified

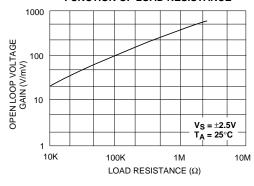
•		1721				1721G			Test
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Conditions
Power Supply Rejection Ratio	PSRR		83			83		dB	R _S ≤ 100KΩ
Common Mode Rejection Ratio	CMRR		83			83		dB	R _S ≤ 100KΩ
Large Signal Voltage Gain	A _V		250			250		V/mV	R _L =100KΩ
Output Voltage Range	V _O low V _O high	4.90	-4.98 4.98	-4.90	4.90	-4.98 4.98	-4.90	V V	R _L =100KΩ
Bandwidth	B _W		1.0			1.0		MHz	
Slew Rate	S _R		1.0			1.0		V/µs	A _V = +1 C _L = 50pF

 V_S = $\pm 2.5 V$ -55°C \leq T_A \leq +125°C unless otherwise specified

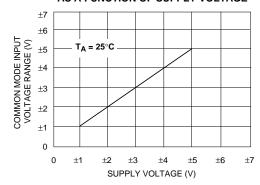
			1721		1721G				Test
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Conditions
Input Offset Voltage	Vos			1.0			2.0	mV	$R_S \le 100 K\Omega$
Input Offset Current	los			2.0			2.0	nA	
Input Bias Current	Ι _Β			2.0			2.0	nA	
Power Supply Rejection Ratio	PSRR	60	75		60	75		dB	R _S ≤100KΩ
Common Mode Rejection Ratio	CMRR	60	83		60	83		dB	R _S ≤100KΩ
Large Signal Voltage Gain	A _V	15	50		15	50		V/ mV	R _L = 100KΩ
Output Voltage Range	V _O low V _O high	2.35	-2.47 2.45	-2.40	2.35	-2.47 2.45	-2.40	V V	R _L = 100KΩ

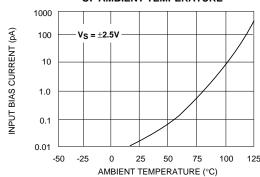

Design & Operating Notes:

- 1. The ALD1721/ALD1721G CMOS operational amplifier uses a 3 gain stage architecture and an improved frequency compensation scheme to achieve large voltage gain, high output driving capability, and better frequency stability. The ALD1721/ALD1721G is internally compensated for unity gain stability. This compensation produces a clean single pole roll off in the gain characteristics while providing for more than 70 degrees of phase margin at the unity gain frequency, reducing or eliminating low levels of oscillation or ringing with many types of loading conditions.
- 2. The ALD1721/ALD1721G has complementary p-channel and nchannel input differential stages connected in parallel to accomplish rail to rail input common mode voltage range. With different ranges of common mode input voltage, one or both of the two differential stages is active. The transition between the two input stages takes place at about 1.5V below the positive supply voltage. Input offset voltage trimming on the ALD1721/ALD1721G is made when the input voltage is symmetrical to the supply voltages, this internal transition switching does not affect a variety of applications such as an inverting amplifier or non-inverting amplifier with a gain larger than 2.5 (5V operation), where the common mode voltage does not make excursions above this switching point. If the operational amplifier is connected as a unity gain buffer, and full input and/or output rail to rail range is used, then provision should be made to allow for slight input offset voltage variations. Likewise the output has push-pull(source-sink) output stages working in tandem to provide full (see note 4) rail to rail output. In addition, the source and sink currents are designed to provide symmetrical drives to the load.
- 3. The input bias and offset currents are essentially input protection diode reverse bias leakage currents, and are typically less than 0.01pA at room temperature. This low input bias current assures that the analog signal from the source will not be distorted by input bias currents. Normally, this extremely high input impedance of greater than 10¹⁴Ω would be limited by the source impedance which

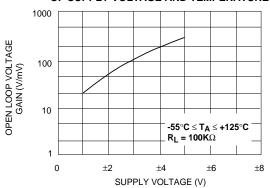

- would limit the node impedance. However, for applications where source impedance is also very high, it may be necessary to limit noise and hum pickup through proper ground shielding.
- 4. The output stage consists of class AB complementary output drivers, capable of driving a low resistance load to either supply rail. The output voltage swing is limited by the drain to source on-resistance of the output transistors as determined by the bias circuitry, and the value of the load resistor. When connected in the voltage follower configuration, the oscillation resistant feature, combined with the rail to rail input and output feature, makes an effective analog signal buffer for medium to high source impedance sensors, transducers, and other circuit networks.
- 5. The ALD1721/ALD1721G operational amplifier has been designed to provide static discharge protection. Internally, the design has been carefully implemented to minimize latch up. However, care must be exercised when handling the device to avoid strong static fields that may degrade a diode junction, causing increased input leakage currents. The user is advised to power up the circuit before, or simultaneously with any input voltages applied, and to limit input voltages not to exceed 0.3V of the power supply voltage levels at all times, including during power up and power down cycles.
- 6. The ALD1721/ALD1721G, with its micropower operation, offers benefits in reduced power supply requirements, less noise coupling and current spikes, less thermally induced drift, better overall reliability due to lower self heating, and lower input bias current. It requires practically no warm up time as the chip junction heats up to 0.1°C or less above ambient temperature under most operating conditions.
- The ALD1721/ALD1721G has an internal design architecture that provides robust high temperature operation. Contact factory for custom screening versions.

TYPICAL PERFORMANCE CHARACTERISTICS

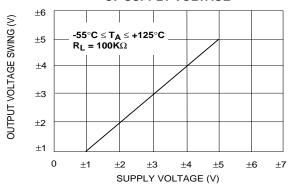

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF LOAD RESISTANCE

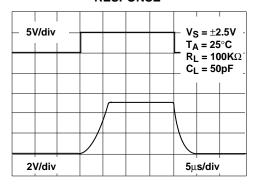
COMMON MODE INPUT VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE

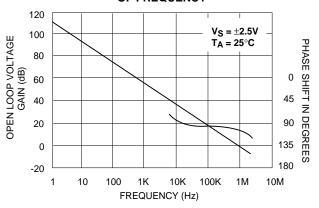


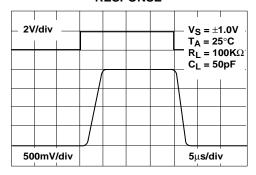
INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

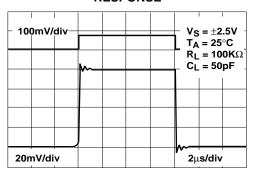


TYPICAL PERFORMANCE CHARACTERISTICS (cont'd)

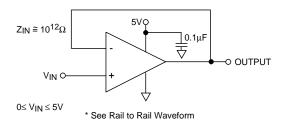

OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE AND TEMPERATURE


OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE

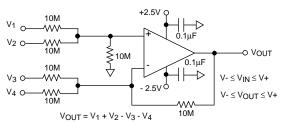

LARGE - SIGNAL TRANSIENT RESPONSE


OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY

LARGE - SIGNAL TRANSIENT RESPONSE

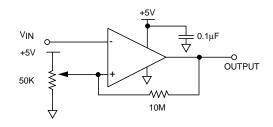


SMALL - SIGNAL TRANSIENT RESPONSE

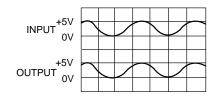


TYPICAL APPLICATIONS

RAIL-TO-RAIL VOLTAGE FOLLOWER/BUFFER

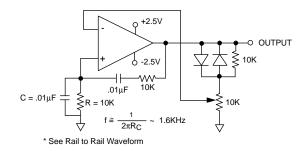


HIGH INPUT IMPEDANCE RAIL-TO-RAIL PRECISION DC SUMMING AMPLIFIER

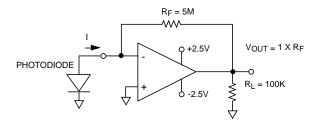


 R_{IN} = 10M Ω Accuracy limited by resistor tolerances and input offset voltage

RAIL-TO-RAIL VOLTAGE COMPARATOR



RAIL-TO-RAIL WAVEFORM



Performance waveforms.Upper trace is the output of a Wien Bridge Oscillator. Lower trace is the output of Rail-to-rail voltage follower.

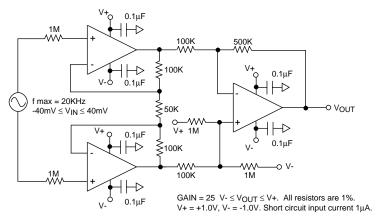
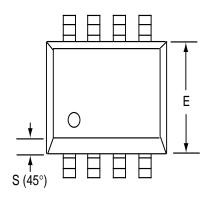
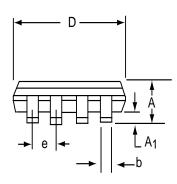
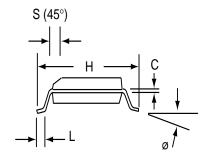

WIEN BRIDGE OSCILLATOR (RAIL-TO-RAIL) SINE WAVE GENERATOR

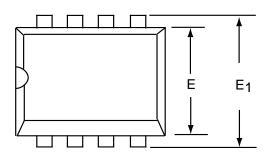
PHOTO DETECTOR CURRENT TO VOLTAGE CONVERTER

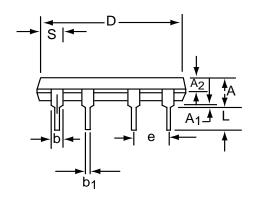


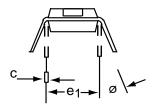

LOW VOLTAGE INSTRUMENTATION AMPLIFIER


SOIC-8 PACKAGE DRAWING

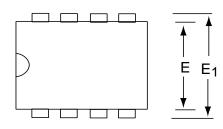
8 Pin Plastic SOIC Package

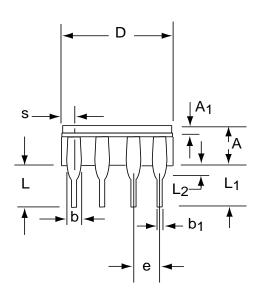


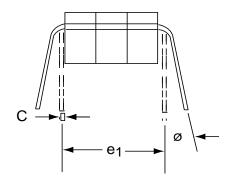

	Millin	neters	Inc	hes	
Dim	Min	Max	Min	Max	
Α	1.35	1.75	0.053	0.069	
A ₁	0.10	0.25	0.004	0.010	
b	0.35	0.45	0.014	0.018	
С	0.18	0.25	0.007	0.010	
D-8	4.69	5.00	0.185	0.196	
E	3.50	4.05	0.140	0.160	
е	1.27	BSC	0.050 BSC		
н	5.70	6.30	0.224	0.248	
L	0.60	0.937	0.024	0.037	
Ø	0°	8°	0°	8°	
S	0.25	0.50	0.010	0.020	


PDIP-8 PACKAGE DRAWING

8 Pin Plastic DIP Package




	Millim	eters	Inches		
Dim	Min	Max	Min	Max	
Α	3.81	5.08	0.105	0.200	
A ₁	0.38	1.27	0.015	0.050	
A ₂	1.27	2.03	0.050	0.080	
b	0.89	1.65	0.035	0.065	
b ₁	0.38	0.51	0.015	0.020	
С	0.20	0.30	0.008	0.012	
D-8	9.40	11.68	0.370	0.460	
E	5.59	7.11	0.220	0.280	
E ₁	7.62	8.26	0.300	0.325	
е	2.29	2.79	0.090	0.110	
e ₁	7.37	7.87	0.290	0.310	
L	2.79	3.81	0.110	0.150	
S-8	1.02	2.03	0.040	0.080	
Ø	0°	15°	0°	15°	



CERDIP-8 PACKAGE DRAWING

8 Pin CERDIP Package

	Millim	neters	Inc	hes
Dim	Min	Max	Min	Max
Α	3.55	5.08	0.140	0.200
A ₁	1.27	2.16	0.050	0.085
b	0.97	1.65	0.038	0.065
b ₁	0.36	0.58	0.014	0.023
С	0.20	0.38	0.008	0.015
D-8		10.29		0.405
E	5.59	7.87	0.220	0.310
E ₁	7.73	8.26	0.290	0.325
е	2.54 E	BSC	0.100	BSC
e ₁	7.62 E	BSC	0.300	BSC
L	3.81	5.08	0.150	0.200
L ₁	3.18		0.125	
L ₂	0.38	1.78	0.015	0.070
S		2.49		0.098
Ø	0°	15°	0°	15°

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Precision Amplifiers category:

Click to view products by Advanced Linear Devices manufacturer:

Other Similar products are found below:

561681F LT6005HGN#PBF LT6238CGN#PBF LT6238HGN#PBF OP05CN8#PBF OP227GN#PBF LT6020IDD-1#PBF LT1124CS8#TR
NCV20166SN2T1G NCS21802MUTBG LT1637MPS8 LT1498IS8 LT1492CS8 TLC27L7CP TLV2473CDR LMP2234AMA/NOPB
LMP7707MA/NOPB 5962-8859301M2A LMP2231AMAE/NOPB LMP2234AMTE/NOPB LMC6022IM/NOPB LMC6024IM/NOPB
LMC6081IMX/NOPB LMP2011MA/NOPB LMP2231AMFE/NOPB LMP2232BMA/NOPB LMP2234AMAE/NOPB LMP7715MFE/NOPB
LMP7717MAE/NOPB LMV2011MA/NOPB TLC2201AMDG4 TLE2024BMDWG4 TLV2474AQDRG4Q1 TLV2472QDRQ1
TLC4502IDR TLC27M2ACP TLC2652Q-8DG4 OPA2107APG4 TL054AIDR TLC272CD AD8539ARMZ LTC6084HDD#PBF
LT1638CMS8#TRPBF LTC1050CN8#PBF LT1112ACN8#PBF LT1996AIDD#PBF LT1112CN8#PBF LTC6087CDD#PBF
LT1078S8#PBF LT1079ACN#PBF