Advanced
Linear
DEVICES, INC.
ALD2701

DUAL MICROPOWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

The ALD2701A/ALD2701B/ALD2701 is a dual monolithic CMOS micropower high slew rate operational amplifier intended for a broad range of analog applications using $\pm 1 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ dual power supply systems, as well as +2 V to +10 V battery operated systems. All device characteristics are specified for +5 V single supply or $\pm 2.5 \mathrm{~V}$ dual supply systems. Supply current is $500 \mu \mathrm{~A}$ maximum at 5 V supply voltage. It is manufactured with Advanced Linear Devices' enhanced ACMOS silicon gate CMOS process.

The ALD2701A/ALD2701B/ALD2701 is designed to offer a trade-off of performance parameters providing a wide range of desired specifications. It has been developed specifically for the +5 V single supply or $\pm 1 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ dual supply user and offers the popular industry standard pin configuration of $\mu \mathrm{A} 741$ and ICL7621 types.

Several important characteristics of the device make application easier to implement at those voltages. First, each operational amplifier can operate with rail-to-rail input and output voltages. This means the signal input voltage and output voltage can be equal to the positive and negative supply voltages. This feature allows numerous analog serial stages and flexibility in input signal bias levels. Second, each device was designed to accommodate mixed applications where digital and analog circuits may operate off the same power supply or battery. Third, the output stage can typically drive up to 50 pF capacitive and $10 \mathrm{~K} \Omega$ resistive loads.

These features, combined with extremely low input currents, high open loop voltage gain of $100 \mathrm{~V} / \mathrm{mV}$, useful bandwidth of 700 KHz , a slew rate of $0.7 \mathrm{~V} / \mu \mathrm{s}$, low power dissipation of 0.5 mW , low offset voltage and temperature drift, make the ALD2701A/ALD2701B/ALD2701 a versatile, micropower dual operational amplifier.

The ALD2701A/ALD2701B/ALD2701, designed and fabricated with silicon gate CMOS technology, offers 1pA typical input bias current. On chip offset voltage trimming allows the device to be used without nulling in most applications.

Due to low voltage and low power operation, reliability and operating characteristics, such as input bias currents and warm up time, are greatly improved. Additionally, robust design and rigorous screening make this device especially suitable for operation in temperature-extreme environments and rugged conditions.

ORDERING INFORMATION ("L" suffix denotes lead-free (RoHS))

Operating Temperature Range		
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
8-Pin	8 -Pin	8-Pin
Small Outline	Plastic Dip	CERDIP
Package (SOIC)	Package	Package
ALD2701ASAL	ALD2701APAL	ALD2701ADA
ALD2701BSAL	ALD2701BPAL	ALD2701BDA
ALD2701SAL	ALD2701PAL	ALD2701DA

FEATURES

- All parameters specified for +5 V single supply or $\pm 2.5 \mathrm{~V}$ dual supply systems
- Rail to rail input and output voltage ranges
- Unity gain stable
- Extremely low input bias currents -- 1.0pA
- High source impedance applications
- Dual power supply $\pm 1.0 \mathrm{~V}$ to $\pm 5.0 \mathrm{~V}$
- Single power supply +2 V to +10 V
- High voltage gain
- Output short circuit protected
- Unity gain bandwidth of 0.7 MHz
- Slew rate of $0.7 \mathrm{~V} / \mu \mathrm{s}$
- Low power dissipation
- Symmetrical output drive
- Suitable for rugged, temperature-extreme environments

APPLICATIONS

- Voltage follower/buffer/amplifier
- Charge integrator
- Photodiode amplifier
- Data acquisition systems
- High performance portable instruments
- Signal conditioning circuits
- Sensor and transducer amplifiers
- Low leakage amplifiers
- Active filters
- Sample/Hold amplifier
- Picoammeter
- Current to voltage converter

PIN CONFIGURATION

[^0]
ABSOLUTE MAXIMUM RATINGS

Supply voltage, ${ }^{+}+$
Differential input voltage range \qquad
\qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Power dissipation
Operating temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage temperature range
\qquad $+260^{\circ} \mathrm{C}$
Lead temperature, 10 seconds
CAUTION: ESD Sensitive Device. Use static control procedures in ESD controlled environment.

OPERATING ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$ unless otherwise specified

Parameter	Symbol	2701A			2701B			2701			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
Supply Voltage	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{S}} \\ \mathrm{~V}+ \end{array}$	$\begin{array}{\|r} \hline \pm 1.0 \\ 2.0 \end{array}$		$\begin{aligned} & \pm 5.0 \\ & 10.0 \end{aligned}$	$\begin{array}{\|r} \hline \pm 1.0 \\ 2.0 \end{array}$		$\begin{aligned} & \pm 5.0 \\ & 10.0 \end{aligned}$	$\begin{array}{r} \pm 1.0 \\ 2.0 \end{array}$		$\begin{aligned} & \hline \pm 5.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	Dual Supply Single Supply
Input Offset Voltage	Vos			$\begin{aligned} & 2.0 \\ & 2.8 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.8 \end{aligned}$			$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$
Input Offset Current	los		1.0	$\begin{array}{r} 25 \\ 240 \end{array}$		1.0	$\begin{array}{r} 25 \\ 240 \end{array}$		1.0	$\begin{array}{r} 30 \\ 450 \end{array}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$
Input Bias Current	IB_{B}		1.0	$\begin{array}{r} 30 \\ 300 \end{array}$		1.0	$\begin{array}{r} 30 \\ 300 \end{array}$		1.0	$\begin{array}{r} 50 \\ 600 \end{array}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$
Input Voltage Range	V_{IR}	$\begin{aligned} & -0.3 \\ & -2.8 \end{aligned}$		$\begin{aligned} & 5.3 \\ & 2.8 \end{aligned}$	$\begin{array}{\|l\|} \hline-0.3 \\ -2.8 \end{array}$		$\begin{aligned} & 5.3 \\ & 2.8 \end{aligned}$	$\begin{array}{\|l\|} \hline-0.3 \\ -2.8 \end{array}$		$\begin{aligned} & 5.3 \\ & 2.8 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}=+5 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V} \\ & \hline \end{aligned}$
Input Resistance	RIN		10^{12}			10^{12}			10^{12}		Ω	
Input Offset Voltage Drift	TCVos		5			5			7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega$
Power Supply Rejection Ratio	PSRR	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$		$\begin{aligned} & d B \\ & d B \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$
Common Mode Rejection Ratio	CMRR	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 83 \\ & 83 \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 83 \\ & 83 \end{aligned}$		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 83 \\ & 83 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$
Large Signal Voltage Gain	A_{V}	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 100 \\ & 300 \end{aligned}$		$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 100 \\ & 300 \end{aligned}$		$\begin{array}{r} 10 \\ 7 \end{array}$	$\begin{array}{r} 80 \\ 300 \end{array}$		V / mV V / mV V / mV	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{M} \Omega \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$
Output Voltage Range	Vo low V_{0} high	4.99	$\begin{aligned} & 0.001 \\ & 4.999 \end{aligned}$	0.01	4.99	$\begin{aligned} & 0.001 \\ & 4.999 \end{aligned}$	0.01	4.99	$\begin{aligned} & 0.001 \\ & 4.999 \end{aligned}$	0.01	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{M} \Omega \quad \mathrm{~V}^{+}=+5 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$
	Vo low V_{0} high	2.40	$\begin{array}{r} -2.48 \\ 2.48 \end{array}$	-2.40	2.40	$\begin{array}{r} -2.48 \\ 2.48 \\ \hline \end{array}$	-2.40	2.40	$\begin{array}{r} -2.48 \\ 2.48 \end{array}$	-2.40	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=100 \mathrm{~K} \Omega \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$
Output Short Circuit Current	Isc		1			1			1		mA	
Supply Current	Is		240	500		240	500		240	500	uA	$\begin{aligned} & V_{I N}=0 V \\ & \text { No Load } \end{aligned}$
Power Dissipation	P_{D}			2.5			2.5			2.5	mW	Both amplifiers $\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$

OPERATING ELECTRICAL CHARACTERISTICS (cont'd)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$ unless otherwise specified

Parameter	Symbol	2701A			2701B			2701			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
Input Capacitance	$\mathrm{C}_{\text {IN }}$		1			1			1		pF	
Bandwidth	BW	400	700		400	700			700		KHz	
Slew Rate	S_{R}		0.7			0.7			0.7		V/us	$\begin{aligned} & A_{V}=+1 \\ & R_{L}=100 \mathrm{~K} \Omega \end{aligned}$
Rise time	tr_{r}		0.2			0.2			0.2		$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega$
Overshoot Factor			20			20			20		\%	$\begin{aligned} & R_{\mathrm{L}}=100 \mathrm{~K} \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$
Settling Time	t_{s}		10.0			10.0			10.0		$\mu \mathrm{S}$	$\begin{aligned} & 0.1 \% \\ & \mathrm{AV}_{\mathrm{V}}=-1 \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega \end{aligned}$
Channel Separation	C_{S}		120			120			120		dB	AV $=100$

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}$ unless otherwise specified

Parameter	Symbol	2701A			2701B			2701			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
Power Supply Rejection Ratio	PSRR		83			83			83		dB	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega$
Common Mode Rejection Ratio	CMRR		83			83			83		dB	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega$
Large Signal Voltage Gain	Av		250			250			250		V / mV	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega$
Output Voltage Range	Volow V_{O} high	4.90	$\begin{array}{r} -4.98 \\ 4.98 \end{array}$	-4.90	4.90	$\begin{array}{r} -4.98 \\ 4.98 \end{array}$	-4.90	4.90	$\begin{array}{r} -4.98 \\ 4.98 \end{array}$	-4.90	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega$
Bandwidth	BW		1.0			1.0			1.0		MHz	
Slew Rate	S_{R}		1.0			1.0			1.0		V/us	$\begin{aligned} & A_{V}=+1 \\ & C_{L}=50 \mathrm{pF} \end{aligned}$

$\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	2701ADA			2701BDA			2701DA			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
Input Offset Voltage	VOS			3.0			6.0			15.0	mV	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega$
Input Offset Current	los			8.0			8.0			8.0	nA	
Input Bias Current	I_{B}			10.0			10.0			10.0	nA	
Power Supply Rejection Ratio	PSRR	60	75		60	75		60	75		dB	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega$
Common Mode Rejection Ratio	CMRR	60	83		60	83		60	83		dB	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega$
Large Signal Voltage Gain	A_{V}	10	50		10	50		7	50		V/mV	$\mathrm{R}_{\mathrm{L}} \leq 100 \mathrm{~K} \Omega$
Output Voltage Range	V_{O} low V_{O} high	2.35	$\begin{aligned} & -2.47 \\ & 2.45 \end{aligned}$	-2.40	2.35	$\begin{array}{r} -2.47 \\ 2.45 \end{array}$	-2.40	2.35	$\begin{array}{r} -2.47 \\ 2.45 \end{array}$	-2.40	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$R_{L} \leq 100 \mathrm{~K} \Omega$

Design \& Operating Notes:

1. The ALD2701A/ALD2701B/ALD2701 CMOS operational amplifier uses a 3 gain stage architecture and an improved frequency compensation scheme to achieve large voltage gain, high output driving capability, and better frequency stability. In a conventional CMOS operational amplifier design, compensation is achieved with a pole splitting capacitor together with a nulling resistor. This method is, however, very bias dependent and thus cannot accommodate the large range of supply voltage operation as is required from a stand alone CMOS operational amplifier. The ALD2701A/ALD2701B/ALD2701 is internally compensated for unity gain stability using a novel scheme that does not use a nulling resistor. This scheme produces a clean single pole roll off in the gain characteristics while providing for more than 70 degrees of phase margin at the unity gain frequency.
2. The ALD2701A/ALD2701B/ALD2701 has complementary p-channel and n-channel input differential stages connected in parallel to accomplish rail to rail input common mode voltage range. This means that with the ranges of common mode input voltage close to the power supplies, one of the two differential stages is switched off internally. To maintain compatibility with other operational amplifiers, this switching point has been selected to be about 1.5 V below the positive supply voltage. Since offset voltage trimming on the ALD2701A/ALD2701B/ ALD2701 is made when the input voltage is symmetrical to the supply voltages, this internal switching does not affect a large variety of applications such as an inverting amplifier or non-inverting amplifier with a gain larger than 2.5 (5 V operation), where the common mode voltage does not make excursions above this switching point. The user should however, be aware that this switching does take place if the operational amplifier is connected as a unity gain buffer, and should make provision in his design to allow for input offset voltage variations.
3. The input bias and offset currents are essentially input protection diode reverse bias leakage currents, and are typically less than 1 pA at room
temperature. This low input bias current assures that the analog signal from the source will not be distorted by input bias currents. Normally, this extremely high input impedance of greater than $10^{12} \Omega$ would not be a problem as the source impedance would limit the node impedance. However, for applications where source impedance is very high, it may be necessary to limit noise and hum pickup through proper shielding.
4. The output stage consists of class $A B$ complementary output drivers, capable of driving a low resistance load. The output voltage swing is limited by the drain to source on-resistance of the output transistors as determined by the bias circuitry, and the value of the load resistor. When connected in the voltage follower configuration, the oscillation resistant feature, combined with the rail to rail input and output feature, makes an effective analog signal buffer for medium to high source impedance sensors, transducers, and other circuit networks.
5. The ALD2701A/ALD2701B/ALD2701 operational amplifier has been designed to provide full static discharge protection. Internally, the design has been carefully implemented to minimize latch up. However, care must be exercised when handling the device to avoid strong static fields that may degrade a diode junction, causing increased input leakage currents. In using the operational amplifier, the user is advised to power up the circuit before, or simultaneously with, any input voltages applied and to limit input voltages not to exceed 0.3 V of the power supply voltage levels.
6. The ALD2701A/ALD2701B/ALD2701, with its micropower operation, offers numerous benefits in reduced power supply requirements, less noise coupling and current spikes, less thermally induced drift, better overall reliability due to lower self heating, and lower input bias current. It requires practically no warm up time as the chip junction heats up to only $0.2^{\circ} \mathrm{C}$ above ambient temperature under most operating conditions.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS (cont'd)

INPUT OFFSET VOLTAGE AS A FUNCTION OF AMBIENT TEMPERATURE REPRESENTATIVE UNITS

INPUT OFFSET VOLTAGE AS A FUNCTION OF COMMON MODE INPUT VOLTAGE

LARGE - SIGNAL TRANSIENT RESPONSE

OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE

OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY

LARGE - SIGNAL TRANSIENT RESPONSE

SMALL - SIGNAL TRANSIENT RESPONSE

TYPICAL APPLICATIONS

RAIL-TO-RAIL VOLTAGE FOLLOWER/BUFFER

$0 \leq \mathrm{V}_{\text {IN }} \leq 5 \mathrm{~V}$

* See Rail to Rail Waveform

HIGH INPUT IMPEDANCE RAIL-TO-RAIL PRECISION DC SUMMING AMPLIFIER

RIN $=10 \mathrm{M} \Omega$ Accuracy limited by resistor tolerances and input offset voltage

WIEN BRIDGE OSCILLATOR (RAIL-TO-RAIL) SINE WAVE GENERATOR

[^1]PHOTO DETECTOR CURRENT TO VOLTAGE CONVERTER

RAIL-TO-RAIL WAVEFORM

Performance waveforms.
Upper trace is the output of a Wien Bridge Oscillator. Lower trace is the output of Rail-to-Rail voltage follower.

RAIL-TO-RAIL WINDOW COMPARATOR

LOW VOLTAGE INSTRUMENTATION AMPLIFIER

SOIC-8 PACKAGE DRAWING

8 Pin Plastic SOIC Package

Dim	Millimeters		Inches			
	Min	Max	Min	Max		
A	1.35	1.75	0.053	0.069		
$\mathbf{A}_{\mathbf{1}}$	0.10	0.25	0.004	0.010		
b	0.35	0.45	0.014	0.018		
\mathbf{C}	0.18	0.25	0.007	0.010		
D-8	4.69	5.00	0.185	0.196		
E	3.50	4.05	0.140	0.160		
e	1.27		BSC	0.050		BSC
\mathbf{H}	5.70	6.30	0.224	0.248		
\mathbf{L}	0.60	0.937	0.024	0.037		
$\boldsymbol{\varnothing}$	0°	8°	0°	8°		
\mathbf{S}	0.25	0.50	0.010	0.020		

PDIP-8 PACKAGE DRAWING

8 Pin Plastic DIP Package

Dim	Millimeters		Inches	
	Min	Max	Min	Max
\mathbf{A}	3.81	5.08	0.105	0.200
$\mathbf{A}_{\mathbf{1}}$	0.38	1.27	0.015	0.050
$\mathbf{A}_{\mathbf{2}}$	1.27	2.03	0.050	0.080
\mathbf{b}	0.89	1.65	0.035	0.065
$\mathbf{b}_{\mathbf{1}}$	0.38	0.51	0.015	0.020
\mathbf{c}	0.20	0.30	0.008	0.012
$\mathbf{D - 8}$	9.40	11.68	0.370	0.460
\mathbf{E}	5.59	7.11	0.220	0.280
$\mathbf{E}_{\mathbf{1}}$	7.62	8.26	0.300	0.325
\mathbf{e}	2.29	2.79	0.090	0.110
\mathbf{e}	7.37	7.87	0.290	0.310
\mathbf{L}	2.79	3.81	0.110	0.150
$\mathbf{S}-\mathbf{8}$	1.02	2.03	0.040	0.080
$\boldsymbol{\varnothing}$	0°	15°	0°	15°

CERDIP-8 PACKAGE DRAWING

8 Pin CERDIP Package

Dim	Millimeters		Inches	
	Min	Max	Min	Max
\mathbf{A}	3.55	5.08	0.140	0.200
$\mathbf{A}_{\mathbf{1}}$	1.27	2.16	0.050	0.085
\mathbf{b}	0.97	1.65	0.038	0.065
$\mathbf{b}_{\mathbf{1}}$	0.36	0.58	0.014	0.023
\mathbf{C}	0.20	0.38	0.008	0.015
$\mathbf{D - 8}$	--	10.29	--	0.405
\mathbf{E}	5.59	7.87	0.220	0.310
$\mathbf{E}_{\mathbf{1}}$	7.73	8.26	0.290	0.325
\mathbf{e}	2.54 BSC		0.100 BSC	
$\mathbf{e}_{\mathbf{1}}$	7.62 BSC		0.300 BSC	
\mathbf{L}	3.81	5.08	0.150	0.200
$\mathbf{L}_{\mathbf{1}}$	3.18	--	0.125	--
$\mathbf{L}_{\mathbf{2}}$	0.38	1.78	0.015	0.070
\mathbf{S}	--	2.49	--	0.098
$\boldsymbol{\varnothing}$	0°	15°	0°	15°

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by Advanced Linear Devices manufacturer:
Other Similar products are found below :
NCV33072ADR2G LM258AYDT LM358SNG 430227FB LT1678IS8 042225DB 058184EB UPC822G2-A NCV33202DMR2G NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17TE/MNY MCP6V19-E/ST MXD8011HF MCP6V17T-E/MS SCY6358ADR2G ADA4523-1BCPZ LTC2065HUD\#PBF ADA4523-1BCPZRL7 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR LM2902M/TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7 NCS20282FCTTAG NCV4333DTBR2G

[^0]: * Contact factory for leaded (non-RoHS) or high temperature versions.

[^1]: *See Rail to Rail Waveform

