PRECISION P-CHANNEL EPAD ${ }^{\circledR}$ MOSFET ARRAY QUAD NANOPOWER ${ }^{\text {™ }}$ MATCHED PAIR

GENERAL DESCRIPTION

ALD310702A/ALD310702 high precision monolithic quad P-Channel MOSFET arrays are matched at the factory using ALD's proven EPAD ${ }^{\circledR}$ CMOS technology. This device is available in a quad version and is a member of the EPAD ${ }^{\circledR}$ Matched Pair MOSFET Family. The ALD310702A/ALD310702 is a P-channel version of the popular ALD110802A/ALD110802 Precision Threshold device. Together, these two MOSFET series enable complementary precision N -Channel and P Channel MOSFET array based circuits.

Intended for low voltage and low power small signal applications, the ALD310702A/ALD310702 features precision -0.20V Gate Threshold Voltage, which enables circuit designs with very low operating voltages such as $<+0.5 \mathrm{~V}$ power supplies where the circuits operate below the threshold voltage of the ALD310702A/ALD310702. This feature also enhances input/output signal operating ranges, especially in very low operating voltage environments. With these low threshold precision devices, a circuit with multiple cascading stages can be constructed to operate at extremely low supply or bias voltage levels. ALD310702A/ ALD310702 also features high input impedance ($2.5 \times 10^{10} \Omega$) and high DC current gain ($>10^{8}$).

ALD310702A/ALD310702 MOSFETs are designed for exceptional matching of device electrical characteristics. The Gate Threshold Voltage $\mathrm{VGS}(\mathrm{th})$ is set precisely at $-0.20 \mathrm{~V}+/-0.02 \mathrm{~V}$, featuring a typical offset voltage of only $+/-0.001 \mathrm{~V}(1 \mathrm{mV})$. As these devices are on the same monolithic chip, they also exhibit excellent temperature tracking characteristics. They are versatile design components for a broad range of precision analog applications such as basic building blocks for current mirrors, matching circuits, current sources, differential amplifier input stages, transmission gates, and multiplexers. These devices also excel in limited operating voltage applications such as very low level precision voltage-clamps. In addition to matched pair electrical characteristics, each individual MOSFET exhibits individual well controlled manufacturing characteristics, enabling the user to depend on tight design limits from different production batches.
(Continued on next page)

BLOCK DIAGRAM

ORDERING INFORMATION ("L" suffix denotes lead-free (RoHS))

Operating Temperature Range * $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
16-Pin SOIC Package	16-Pin Plastic Dip Package
ALD310702ASCL	ALD310702APCL
ALD310702SCL	ALD310702PCL

APPLICATIONS

- 0.5% precision current mirrors and current sources
- Low Tempco (<=50ppm/ ${ }^{\circ} \mathrm{C}$) current mirrors/sources
- Energy harvesting circuits
- Very low voltage analog and digital circuits
- Backup battery circuits \& power failure detectors
- Precision low level voltage-clamps
- Low level zero-crossing detector
- Source followers and buffers
- Precision capacitive probes and sensor interfaces
- Precision charge detectors and charge integrators
- Discrete differential amplifier input stage
- Peak-detectors and level-shifters
- High-side switches and Sample-and-Hold switches
- Precision current multipliers
- Discrete analog switches / multiplexers
- Discrete voltage comparators

FEATURES \& BENEFITS

- Precision matched Gate Threshold Voltages
- Precision offset voltages (VOS):

$$
\text { ALD310702A: } 1 \mathrm{mV} \text { typical }
$$

ALD310702: 2mV typical

- Sub-threshold voltage operation
- Low min. operating voltage of less than 0.2 V
- Ultra low min. operating current of less than 1nA
- Nano-power operation
- Wide dynamic operating current ranges
- Exponential operating current ranges
- Matched transconductance and output conductance
- Matched and tracked temperature characteristics
- Tight lot-to-lot parametric control
- Positive, zero, and negative $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$ tempco bias currents
- Low input capacitance
- Low input/output leakage currents

PIN CONFIGURATION

*Contact factory for industrial temp. range or user-specified threshold voltage values.

GENERAL DESCRIPTION (cont.)

These devices are builtto offer minimum offset voltage and differential thermal response, and they can also be used for switching and amplifying applications in -0.40 V to $-8.0 \mathrm{~V}(+/-0.20 \mathrm{~V}$ to $+/-4.0 \mathrm{~V}$) powered systems where low input bias current, low input capacitance, and fast switching speed are desired. These devices, exhibiting well controlled turn-off and sub-threshold characteristics, operate the same as standard enhancement mode P-Channel MOSFETs. However, the precision of the Gate Threshold Voltage enable two key additional characteristics, or operating features. First, the operating current level varies exponentially with gate bias voltage at
or below the Gate Threshold Voltage (subthreshold region). Second, the circuit can be biased and operated in the subthreshold region with nA of bias current and nW of power dissipation.

For most general applications, connect the V+ pin to the most positive voltage and the V - and IC (internally-connected) pins to the most negative voltage in the system. All other pins must have voltages within these voltage limits at all times. Standard ESD protection facilities and procedures for static sensitive devices are required when handling these devices.

ABSOLUTE MAXIMUM RATINGS

Drain-Source voltage, $V_{D S}$	
Gate-Source voltage, $V_{G S}$	
Operating Current	
Power dissipation	
Operating temperature range $\mathrm{SCL}, \mathrm{PCL}$	
Storage temperature range -80.0 V	
Lead temperature, 10 seconds	-8.0 VA

CAUTION: ESD Sensitive Device. Use static control procedures in ESD controlled environment.

OPERATING ELECTRICAL CHARACTERISTICS

$\mathrm{V}+=+5 \mathrm{~V} \quad \mathrm{~V}-=\mathrm{GND} \quad \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	ALD310702A			ALD310702			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
Gate Threshold Voltage	VGS(th)	-0.22	-0.20	-0.18	-0.22	-0.20	-0.18	V	$\mathrm{I} D S=-1 \mu \mathrm{~A}, \mathrm{~V} D S=-0.1 \mathrm{~V}$
Offset Voltage	VOS		1	5		2	20	mV	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th}) \mathrm{M} 1$ - $\mathrm{V}_{\mathrm{GS}}($ th $) \mathrm{M} 2$ or VGS(th)M3 - VGS(th)M4
Gate Threshold Temperature	TCVGS(th)		-2			-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
Drain Source On Current	IDS(ON)		-2.03			-2.03		mA	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}=-5.0 \mathrm{~V}$
Transconductance Current ${ }^{2}$	GFS		570			570		$\mu \mathrm{A} / \mathrm{V}$	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}=-5.0 \mathrm{~V}$
Transconductance Mismatch	Δ GFS		1			1		\%	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}=-5.0 \mathrm{~V}$
Output Conductance ${ }^{2}$	Gos		48			48		$\mu \mathrm{A} / \mathrm{V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}(\mathrm{th})=-4.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DS}}=-5.0 \mathrm{~V} \end{aligned}$
Drain Source On Resistance	RDS(ON)		1.14			1.14		$\mathrm{K} \Omega$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-5.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DS}}=-0.1 \mathrm{~V} \end{aligned}$
Drain Source On Resistance Mismatch	$\Delta \mathrm{RDS}(\mathrm{ON})$		1			1		\%	
Drain Source Breakdown	$B V_{\text {DSX }}$	-8.0			-8.0			V	
Drain Source Leakage Current ${ }^{1}$	IDS (OFF)			400			400	pA	
Gate Leakage Current	IGSS			200			200	pA	
Input Capacitance ${ }^{2}$	CISS		2.5			2.5		pF	

Notes: $\quad{ }^{1}$ Consists of junction leakage currents
${ }^{2}$ Sample tested parameters

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL APPLICATIONS

LOW VOLTAGE CURRENT SOURCE MIRROR

1/2 ALD2108xx,
ALD1109xx or
ALD2129xx

LOW VOLTAGE CURRENT SOURCE W/ GATE CONTROL

LOW VOLTAGE DIFFERENTIAL AMPLIFIER

M_{1}, M_{2} : N-Channel MOSFET
$\mathrm{M}_{3}, \mathrm{M}_{4}$: P-Channel MOSFET
0.5\% PRECISION LOW VOLTAGE CURRENT SOURCE MULTIPLICATION

MNSET: MN1, MN2..MNX: N-Channel MOSFET
Mpset: Mp1, Mp2..Mpy: P-Channel MOSFET

TYPICAL APPLICATIONS (cont.)

0.5\% LOW VOLTAGE PRECISION CURRENT MIRRORS

0.5\% PRECISION LOW VOLTAGE CASCODE CURRENT SOURCES

MPA1 $^{\text {...MPA4 }}$: ALD310702 P-Channel MOSFET (1st individual pkg) MPB1...MPB4: ALD310702 P-Channel MOSFET (2nd individual pkg)
0.5\% PRECISION LOW TEMPCO CASCODE CURRENT SOURCES

$M_{1}, M_{2}, M_{3}, M_{4}$: N-Channel MOSFET

$\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}$: P-Channel MOSFET

SOIC-16 PACKAGE DRAWING

16 Pin Plastic SOIC Package

Dim	Millimeters		Inches			
	Min	Max	Min	Max		
A	1.35	1.75	0.053	0.069		
$\mathbf{A}_{\mathbf{1}}$	0.10	0.25	0.004	0.010		
b	0.35	0.45	0.014	0.018		
C	0.18	0.25	0.007	0.010		
D-16	9.80	10.00	0.385	0.394		
E	3.50	4.05	0.140	0.160		
\mathbf{e}	1.27		BSC	0.050		BSC
H	5.70	6.30	0.224	0.248		
\mathbf{L}	0.60	0.937	0.024	0.037		
\varnothing	0°	8°	0°	8°		
\mathbf{S}	0.25	0.50	0.010	0.020		

PDIP-16 PACKAGE DRAWING

16 Pin Plastic DIP Package

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by Advanced Linear Devices manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D
TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C
IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI
DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384
NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956
NTE2911 US6M2GTR TK10A80W,S4X(S SSM6P69NU,LF

