EWM-W158F01E Datasheet

ADIANTECH Emb'Core

CONTENTS

1. Overview 4
2. Key Features 5
3. Block Diagram 5
4. Pin Definitions 6
5. Specifications 8
6. Hardward Dimension: 9
Appendix: Part Number Table 10

Revision History

Rev.	Date	
1.0	$2014 / 4 / 28$	1. $1^{\text {st }}$ release
1.1	$2015 / 5 / 9$	1. Add module picture
1.2	$2019 / 03 / 01$	1. Update new lable for REVB

Advantech reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Advantech is believed to be accurate and reliable. However, Advantech does not assure any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.
Copyright © 1983-2014 Advantech Co., Ltd. All rights reserved.

1. Overview

EWM-W158F01E is an Industrial-Grade $802.11 \mathrm{a} / \mathrm{b} / \mathrm{g} / \mathrm{n} 2.4 \mathrm{GHz}+5 \mathrm{GHz}$ Mini Card based on Qualcomm Atheros AR9592-AR1B chipset. It supports 2T2R (2x2) MIMO spatial multiplexing technology, which runs up to 300 Mbps and delivers superior WiFi output power up to 19 dBm .

EWM-W158F01E is able to function under severe weather condition $\left(-40 \sim 85^{\circ} \mathrm{C}\right)$, which is ideal for manufacturers to integrate with their devices that are designed for wide-temperature range. Incorporated with advanced security encryption, such as 64/128-bits WEP, WPA, and WPA2, it helps prevent users' devices from malicious attacks.

2. Key Features

- Standard: $802.11 \mathrm{a} / \mathrm{b} / \mathrm{g} / \mathrm{n}$
- Interface: Mini PCI Express
- Chipset: Qualcomm Atheros AR9592-AR1B
- Industrial-Grade Temperature: - $40 \sim 85{ }^{\circ} \mathrm{C}$
- Antenna: $2 \times$ U.FL connectors
- Data rate up to 300 Mbps
- Enhanced wireless security: 64/128-bits WEP, WPA, WPA2, 802.1x

3. Block Diagram

4. Pin Definitions

\#	Pin Name	Description	\#	Pin Name	Description
1	WAKE_L (NA)	Output and Open Drain active Low signal. This signal is used to request that the system return from a sleep/suspended state to service a function initiated wake event.	2	+3.3V	+3.3V
3	GPIO 12 (OPT)	This pin is reserved for definition with future revisions of this specification.	4	GND	GND
5	No Connection	-	6	No Connection	-
7	CLKREQ_L	Output for reference clock request signal	8	No Connection	-
9	GND	GND	10	No Connection	-
11	REFCLK-	Input signal for PCI Express differential reference clock $\text { (} 100 \mathrm{MHz} \text {) }$	12	No Connection	-
13	REFCLK+	Input signal for PCI Express differential reference clock $(100 \mathrm{MHz})$	14	No Connection	-
15	GND	GND	16	No Connection	-
17	No Connection	-	18	GND	GND
19	No Connection	-	20	W_DISABLE_L (OPT)	NA
21	GND	GND	22	PERST_L	Input signal for unctional reset to the card
23	PERn0	PCI Express x1 data interface: one differential receive pair	24	No Connection	-
25	PERpO	PCI Express x1 data interface: one differential receive pair	26	GND	GND
27	GND	GND	28	No Connection	-
29	GND	GND	30	No Connection	-
31	PETn0	PCI Express x1 data interface: one differential receive pair	32	No Connection	-
33	PETp0	PCI Express x1 data interface: one differential receive pair	34	GND	GND
35	GND	GND	36	No Connection	-
37	No Connection	-	38	No Connection	-
39	3.3 V	+3.3V	40	No Connection	-
41	3.3 V	+3.3V	42	No Connection	-

$\#$	Pin Name	Description	$\#$	Pin Name	Description
43	GND	GND		Output and open drain active low signal. This signal is used to allow the PCI Express Mini Card add-in card to provide status indicators via LED devices that will be provided by the system	
45	GPIO 13 (OPT)	No Connection	These pins are reserved for definition with future revisions of this specification	48	No Connection

NA \rightarrow No active, OPT \rightarrow Optional
5. Specifications

Standard	IEEE $802.11 \mathrm{a} / \mathrm{b} / \mathrm{g} / \mathrm{n}$
Chipset solution	AR9592-AR1B
Radio stream	2T2R
Antenna Type/ connector	2 U.FL connectors
Bus Interface	PCI Express
Form Factor	Mini-PCle
Data Rate	802.11b: 1, 2, 5.5, 11Mbps 802.11g: 6, 9, 12, 18, 24, 36, 48, 54Mbps 802.11a: 6, 9, 12, 18, 24, 36, 48, 54Mbps 802.11 n: MCS 0 to 15 for HT20MHz MCS 0 to 15 for HT40MHz
Spreading/ Modulation Techniques	802.11a: OFDM (BPSK, QPSK, 16-QAM, 64-QAM) 802.11b: DSSS (DBPSK, DQPSK, CCK) 802.11g: OFDM (BPSK,QPSK,16-QAM,64-QAM) 802.11n: OFDM (BPSK,QPSK,16-QAM,64-QAM)
Frequency Range	$2.4 \mathrm{GHz}: 11 \mathrm{~b} / \mathrm{g} / \mathrm{n}: 2.400 \mathrm{GHz} \sim 2.4835 \mathrm{GHz}$ $5 \mathrm{GHz}: 11 \mathrm{a} / \mathrm{n}: 5.150 \mathrm{GHz} \sim 5.825 \mathrm{GHz}$
Transmit Output Power (Tolerance: +/-2dBm)	802.11a: 14dBm@54Mbps 802.11b: 19dBm@11Mbps 802.11g: 16dBm@54Mbps 802.11gn HT20: 15dBm@MCS7 802.11gn HT40: 14dBm@MCS7 802.11an HT20: 12dBm@MCS7 802.11an HT40: 11dBm@MCS7
Receiver Sensitivity	802.11a: $\leq-77 \mathrm{dBm} @ 54 \mathrm{Mbps}$ 802.11b: $\leq-85 d B m @ 11 \mathrm{Mbps}$ 802.11g: $\leq-77 \mathrm{dBm} @ 54 \mathrm{Mbps}$ 802.11gn HT20: $\leq-74 d B m @ M C S 7$ 802.11gn HT40: $\leq-71 \mathrm{dBm} @$ MCS7 802.11an HT20: $\leq-73 \mathrm{dBm} @ M C S 7$

	802.11 an HT40: $\leq-70 \mathrm{dBm@MCS7}$
Operating Voltage	3.3 V
Power Consumption	TX Mode: 700 mA
	RX Mode: 300 mA
Temperature Range	$-40 \sim+85^{\circ} \mathrm{C}$ (Operating), $-50^{\circ} \sim+95^{\circ} \mathrm{C}$ (Storing)
Humidity (non-condensing)	$10 \sim 85 \%$ (Operating), 5~90\% (Storing)
Security	WEP / WPA / WPA2, 802.1x

- For Radio stream with diversity or MIMO design, all RF connectors on the module must be fitting antennas in order to guarantee the module performance.
- The frequency range is subject to local regulations.
- The storing condition is only for product functionality, no included for parts appearance.

6. Hardward Dimension:

Dimension (L x W x H): $29.85 \times 50.8 \times 2.86 \mathrm{~mm}(\pm 0.5 \mathrm{~mm})$

Appendix: Part Number Table

Product	Advantech PN
$802.11 \mathrm{a} / \mathrm{b} / \mathrm{g} / \mathrm{n}$, Atheros AR9592-AR1B, 2T2R, wide temperature,	
Full-size Mini-PCle card	

Label for REVB
Model No: EWM-W158F01E
FCC ID:RYK-WPEA252NIRB
 IC:6158A-WPEA252NIRB

R 020-180168

W52 and W53 is for indoor use only

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for WiFi Modules -802.11 category:
Click to view products by Advantech manufacturer:

Other Similar products are found below :
KBPC10/15/2506WP SX-PCEAN2C-SP 849WM520100E WIFI-AT2350 7265.NGWG.SW HDG204-DN-3 FXX-3061-MIX EMIO-153300A2 7265.NGWWB.W PPC-WL-KIT02-R11 RC-CC2640-B E70-433T14S WH-NB73-BA NF-02-PA EAR00364 3168.NGWG MY-

WF003U AX210.NGWG.NV ESP-15F32Mbit ESP32-S32Mb TG-01M ESP-13 ESP-01F-2M ESP-01E-2M ESP-20 ESP32-SL ESP-12K-
PSRAM ESP-12K-PSRAM-IPEX ESP-12H BW18 BW12-16Mb BW14 BW15 BW16 TG-12F SIM7600CE-L1S CB3S(tjrl) CB3S(hvk9)
CB3S(qh6) WB2S(csyd) WB3S(ppty) WB3S(h238) WB3S(uvmz) 10058691012 QCA4004X-BL3B 32-2006-BU WT51822-S4AT WT8266-S2 DWM1000

