1N66xx Series

Switching Diodes

Features

- JAN, JANTX, JANTXV and JANS available per MIL-PRF-19500/578 \&/609

- Non-Cavity Glass Package
- Category I Metallurgically Bonded
- Replacement for 1N4148-1, 1N4150-1, 1N914
- Very Low Capacitance
- Ultra Fast Recovery Time

MELF (US)

Axial

Electrical Specifications

Part \#	$\mathrm{V}_{\mathrm{BR}} @ \mathrm{I}_{\mathrm{R}}$		$\mathrm{V}_{\text {RWM }}$	$\mathrm{V}_{\mathrm{FR}} / \mathrm{t}_{\mathrm{FR}}$		$\mathrm{C}_{\mathrm{T}} 1$	$\mathrm{C}_{\mathrm{T}} 2$	trr	
			@ $\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{R}}=0.0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{R}}=1.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \end{aligned}$			
	V(pk)	$\mu \mathrm{A}$		$\mathrm{V}(\mathrm{pk})$	$\mathrm{V}(\mathrm{pk})$	ns	pF	pF	ns
1N6638, U \& US	150	100	125	5	20	2.5	2.0	4.5	
1N6639, U \& US	100	10	75	5	10	2.5	-	4	
1N6640, U \& US	75	10	50	5	10	2.5	-	4	
1N6641, U \& US	75	10	50	5	10	3.0	-	5	
1N6642, U \& US	100	100	75	5	20	5.0	2.8	5	
1N6643, U \& US	75	100	50	5	20	5.0	2.8	6	

Part \#	I_{R}				$\mathbf{V F}_{\mathrm{F}}$ @ l_{F}				$I_{\text {F }}$
	$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RWM}}$	$\begin{gathered} \mathrm{V}_{\mathrm{R}}=20 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=+150^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RWM},}, \\ \mathrm{~T}_{\mathrm{A}}=+150^{\circ} \mathrm{C} \end{gathered}$			$\mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	
	nA	nA	$\mu \mathrm{A}$	$\mu \mathrm{A}$	V	V	V	V	mA
					Min.	Max.	Max.	Max.	(pulsed)
1N6638, U \& US	35	500	50	100	-	$\begin{aligned} & 1.1 \\ & 0.8 \end{aligned}$	$\overline{0.65}$	1.2	$\begin{gathered} 200 \\ 10 \end{gathered}$
1N6639, U \& US	-	100	-	90	-	1.2	-	1.3	500
1N6640, U \& US	-	100	-	90	$\begin{aligned} & 0.54 \\ & 0.76 \\ & 0.82 \\ & 0.87 \end{aligned}$	$\begin{gathered} 0.62 \\ 0.86 \\ 0.92 \\ 1.0 \\ \hline \end{gathered}$	-	$\frac{-}{\overline{-}}$	$\begin{gathered} \hline 1 \\ 50 \\ 100 \\ 200 \\ \hline \end{gathered}$
1N6641, U \& US	-	100	-	90	0.87	1.1	-	1.2	200
1N6642, U \& US	25	500	50	100	-	$\begin{aligned} & 0.8 \\ & 1.2 \\ & \hline \end{aligned}$	0.8	$\overline{1.2}$	$\begin{gathered} 10 \\ 100 \\ \hline \end{gathered}$
1N6643, U \& US	50	500	75	100	-	$\begin{aligned} & 0.8 \\ & 1.2 \end{aligned}$	0.8	$\overline{1.4}$	$\begin{gathered} 10 \\ 100 \end{gathered}$

Switching Diodes

Absolute Maximum Ratings ${ }^{1,2}$

Parameter	Absolute Maximum
Operating Temperature	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$

1. Exceeding any one or combination of these limits may cause permanent damage to this device.
2. VPT Components does not recommend sustained operation near these survivability limits.

FIGURE 4
Typical Reverse Current vs Reverse Voltage

Note:

All temperatures shown on graphs are junction temperatures

NOTES:

1. All devices are capable of operating at \leq TJ specified on this curve. Any parallel line to this curve will intersect the appropriate current for the desired maximum TJ allowed.
2. Derate design curve constrained by the maximum junction temperatures and current rating specified. (See 1.3.)
3. Derate design curve chosen at $\mathrm{TJ} \leq 150^{\circ} \mathrm{C}$, where the maximum temperature of electrical test is performed.
4. Derate design curves chosen at $\mathrm{TJ} \leq 125^{\circ} \mathrm{C}$, and $110^{\circ} \mathrm{C}$ to show current rating where most users want to limit TJ intheir application.

1N66xx Series

Switching Diodes

FIGURE 7. Thermal imoedance (axial leads).
$R_{\text {eנl }}=150^{\circ} \mathrm{C} / \mathrm{w}$
$Z_{\text {eJX }}=25^{\circ} \mathrm{C} / \mathrm{W}$ maximum at $t_{\mathrm{H}}=10 \mathrm{~ms}$

Lead spacing $=0$ inch mounted to an infinite heat dissipater

Switching Diodes

Outline Drawing

FIGURE 1

Symbol	Dimensions				Notes
	Inches		Millimeters		
	Min	Max	Min	Max	
BD	.056	.080	1.42	2.03	2
BL	.130	.180	3.30	4.57	
LD	.018	.022	.046	0.56	3
LL	1.00	1.50	25.40	38.10	

FIGURE 2

Symbol	Dimensions			
	Inches		Millimeters	
	Min	Max	Min	Max
D	.070	.085	1.78	2.16
B	.165	.195	4.19	4.95
ECT	.019	.028	.048	0.71
S	.003		0.08	

LEADED DESIGN DATA

CASE: D-5D, Hermetically sealed glass case, per MIL-PRF-19500/578 \& /609
LEAD FINISH: Tin/Lead
LEAD MATERIAL: Copper clad steel POLARITY: Cathode end is banded. PACKAGE WEIGHT: 0.150 g

U \& US DESIGN DATA

CASE: D-5D, Hermetically sealed glass case, per MIL-PRF-19500/578 \& /609
LEAD FINISH: Tin/Lead
END CAP MATERIAL (U, US): Copper POLARITY: Cathode end is banded. PACKAGE WEGGHT: 0.095 g
MOUNTING SURFACE SELECTION: The Axial Coefficient of Expansion (COE of this device is approximately $+4 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$. The COE of the Mounting Surface System should be selected to provide a suitable match with this device.

NOTES:

1. Dimensions are in inches. Millimeters are given for general information only.
2. Dimension $B D$ shall be measured at the largest diameter.
3. The specified lead diameter applies in the zone between . 050 inch (1.27 mm) from the diode body to the end of the lead. Outside of this zone lead shall not exceed BD.
4. In accordance with ASME 14.5 M , diameters are equivalent to Φx symbology.
5. U-suffix parts are structurally identical to the US-suffix parts.

Suggested Minimum Footprints
 D-5D (D-BODY) U, US DIODES

FIGURE 8

NOTES:

1. Dimensions are in inches / mm.
2. The dimensions listed will match the device terminals based on worst-case package outline drawings and assuming accuracy of device placements is within 0.005 inches. Footprints also provide for solder filets at the outer ends of the device at least as wide as the terminals.
3. F designates recommendation to fill unused area with an extended copper pad in order to reduce the CTE difference between the device and the PC board. The extended area may be3 coated with a solder mask. the width of F depends upon your PCB design rules.

Switching Diodes

VPT Components All rights reserved.

Information in this document is provided in connection with VPT Components' products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components' Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS' PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components' products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components' customers using or selling VPT Components' products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Rectifiers category:
Click to view products by Aeroflex manufacturer:
Other Similar products are found below :
D91A DA24F4100L DD89N1600K-A DD89N16K-K RL252-TP DLA11C-TR-E DSA17G DSEI2X30-06C 1N4005-TR BAV199-TP UFS120Je3/TR13 JANS1N6640US VS-80-1293 DD89N16K DD89N16K-A 481235F DSP10G-TR-E 067907F MS306 ND104N08K SPA2003-B-D-A01 VS-80-6193 VS-66-9903 VGF0136AB US2JFL-TP UFS105Je3/TR13 A1N5404G-G ACGRA4007-HF ACGRB207-HF RF301B2STL RF501B2STL UES1306 UES1302 BAV199E6433HTMA1 ACGRC307-HF ACEFC304-HF JANTXV1N5660A UES1106 GS2K-LTP D126A45C D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K STTH20P035FP VS-8EWS12S-M3 VS12FL100S10 ACGRA4001-HF

