1N66xx Series

Switching Diodes

Rev. V6

Features

- JAN, JANTX, JANTXV and JANS available per MIL-PRF-19500/578 &/609
- Non-Cavity Glass Package
- Category I Metallurgically Bonded
- Replacement for 1N4148-1, 1N4150-1, 1N914
- Very Low Capacitance
- Ultra Fast Recovery Time

Electrical Specifications

	V _{BR} @ I _R		V	V _{FR} / t _{FR}		C _T 1	C _T 2	trr
Part #			V _{RWM}	@ I _F = 200 mA		V _R = 0.0 V	V _R = 1.5 V	I _R = 10 mA, I _F = 10 mA
	V(pk)	μΑ	V(pk)	V(pk)	ns	pF	pF	ns
1N6638, U & US	150	100	125	5	20	2.5	2.0	4.5
1N6639, U & US	100	10	75	5	10	2.5		4
1N6640, U & US	75	10	50	5	10	2.5	_	4
1N6641, U & US	75	10	50	5	10	3.0	_	5
1N6642, U & US	100	100	75	5	20	5.0	2.8	5
1N6643, U & US	75	100	50	5	20	5.0	2.8	6

	I _R				V _F @ I _F				I _F
Part #	V _R = 20 V	V _R = V _{RWM}	V _R = 20 V T _A = +150°C	$V_R = V_{RWM},$ $T_A = +150$ °C			T _A = +150°C	T _A = -55°C	
					٧	V	V	V	mA
	nA	nA	μΑ	μA	Min.	Max.	Max.	Max.	(pulsed)
1N6638, U & US	35	500	50	100	_	1.1 0.8	<u> </u>	1.2 —	200 10
1N6639, U & US	_	100	_	90	_	1.2	_	1.3	500
1N6640, U & US	_	100	_	90	0.54 0.76 0.82 0.87	0.62 0.86 0.92 1.0	_ _ _ _	 _ _ 1.1	1 50 100 200
1N6641, U & US	_	100	_	90	0.87	1.1	_	1.2	200
1N6642, U & US	25	500	50	100	_	0.8 1.2	0.8	— 1.2	10 100
1N6643, U & US	50	500	75	100	_	0.8 1.2	0.8	— 1.4	10 100

Rev. V6

Absolute Maximum Ratings^{1,2}

Parameter	Absolute Maximum			
Operating Temperature	-65°C to +175°C			

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- VPT Components does not recommend sustained operation near these survivability limits.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

FIGURE 3
Typical Forward Current vs
Forward Voltage

FIGURE 4
Typical Reverse Current vs
Reverse Voltage

Note:

All temperatures shown on graphs are junction temperatures

Rev. V6

NOTES:

- All devices are capable of operating at ≤ TJ specified on this curve. Any parallel line to this curve will intersect the appropriate current for the desired maximum TJ allowed.
- Derate design curve constrained by the maximum junction temperatures and current rating specified. (See 1.3.)
- Derate design curve chosen at TJ ≤ 150°C, where the maximum temperature of electrical test is performed.
- Derate design curves chosen at TJ ≤ 125°C, and 110°C to show current rating where most users want to limit TJ intheir application.

Rev. V6

FIGURE 6. Thermal impedance – all U and US devices.

R_{OJL}= 40°C/W

Z_{OJX} = 25°C/W maximum at t_H = 10ms

Lead spacing = .375 inch mounted to an infinite heat dissipater

FIGURE 7. Thermal impedance (axial leads).

R_{⊖JL}= 150°C/W

 $Z_{\mbox{OJX}} = 25^{\circ}\mbox{C/W}$ maximum at $t_{\mbox{H}} = 10\mbox{ms}$

Lead spacing = 0 inch mounted to an infinite heat dissipater

Rev. V6

Outline Drawing

FIGURE 1

Symbol	Inc	hes	Millin	Notes	
	Min	Max	Min	Max	
BD	.056	.080	1.42	2.03	2
BL	.130	.180	3.30	4.57	
LD	.018	.022	.046	0.56	3
LL	1.00	1.50	25.40	38.10	

LEADED DESIGN DATA

CASE: D-5D, Hermetically sealed glass case, per MIL-PRF-19500/578 & /609

LEAD FINISH: Tin/Lead

LEAD MATERIAL: Copper clad steel **POLARITY**: Cathode end is banded.

PACKAGE WEIGHT: 0.150g

FIGURE 2

	Dimensions						
Symbol	Inc	hes	Millimeters				
	Min	Max	Min	Max			
D	.070	.085	1.78	2.16			
В	.165	.195	4.19	4.95			
ECT	.019	.028	.048	0.71			
S	.003		0.08				

U & US DESIGN DATA

CASE: D-5D, Hermetically sealed glass case, per MIL-PRF-19500/578 & /609

LEAD FINISH: Tin/Lead

END CAP MATERIAL (U, US): Copper POLARITY: Cathode end is banded.

PACKAGE WEIGHT: 0.095g

MOUNTING SURFACE SELECTION: The Axial Coefficient of Expansion (COE) of this device is approximately +4PPM/°C. The COE of the Mounting Surface System should be selected to provide a suitable match with this device.

NOTES:

- Dimensions are in inches. Millimeters are given for general information only.
- Dimension BD shall be measured at the largest diameter.
- The specified lead diameter applies in the zone between .050 inch (1.27 mm) from the diode body to the end of the lead. Outside of this zone lead shall not exceed BD.
- In accordance with ASME V14.5M, diameters are equivalent to Φx symbology.
- U-suffix parts are structurally identical to the US-suffix parts.

Rev. V6

Suggested Minimum Footprints D-5D (D-BODY) U, US DIODES

FIGURE 8

NOTES:

- 1. Dimensions are in inches / mm.
- The dimensions listed will match the device terminals based on worst-case package outline drawings and assuming accuracy of device placements is within 0.005 inches. Footprints also provide for solder filets at the outer ends of the device at least as wide as the terminals.
- F designates recommendation to fill unused area with an extended copper pad in order to reduce the CTE difference between the device and the PC board. The extended area may be3 coated with a solder mask, the width of F depends upon your PCB design rules.

1N66xx Series

Switching Diodes

Rev. V6

VPT Components All rights reserved.

Information in this document is provided in connection with VPT Components' products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components' Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS' PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components' products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components' customers using or selling VPT Components' products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by Aeroflex manufacturer:

Other Similar products are found below:

D91A DA24F4100L DD89N1600K-A DD89N16K-K RL252-TP DLA11C-TR-E DSA17G DSEI2X30-06C 1N4005-TR BAV199-TP UFS120Je3/TR13 JANS1N6640US VS-80-1293 DD89N16K DD89N16K-A 481235F DSP10G-TR-E 067907F MS306 ND104N08K SPA2003-B-D-A01 VS-80-6193 VS-66-9903 VGF0136AB US2JFL-TP UFS105Je3/TR13 A1N5404G-G ACGRA4007-HF ACGRB207-HF RF301B2STL RF501B2STL UES1306 UES1302 BAV199E6433HTMA1 ACGRC307-HF ACEFC304-HF JANTXV1N5660A UES1106 GS2K-LTP D126A45C D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K STTH20P035FP VS-8EWS12S-M3 VS-12FL100S10 ACGRA4001-HF