#### P-Channel Enhancement Mode Field Effect Transistor

#### Description

The ATM1205PSI uses advanced trench technology to provide excellent  $R_{DS(ON)}$ , low gate charge and operation with gate voltages as low as 1.8V. This device is suitable for use as a load switch or in PWM applications. Standard Product ATM1205PSI is Pb-free.

#### Feature

- ◆ V<sub>DS</sub> (V) = -12V
- ◆ I<sub>D</sub> = -1.7 A (V<sub>GS</sub> = -4.5V)
- $R_{DS(ON)} < 100 m\Omega (V_{GS} = -4.5V)$
- R<sub>DS(ON)</sub> < 130mΩ (V<sub>GS</sub> = -3.6V)
- $R_{DS(ON)} < 150 m\Omega (V_{GS} = -2.5V)$
- RDS(ON) < 250mΩ (VGS = -1.8V)</p>



| Absolute Maximum Ratings (T <sub>A</sub> =25°C, unless otherwise noted) |                      |                                   |            |     |       |  |  |  |
|-------------------------------------------------------------------------|----------------------|-----------------------------------|------------|-----|-------|--|--|--|
| Parameter                                                               |                      | Symbol                            | Maximum    |     | Units |  |  |  |
| Drain-Source Voltage                                                    |                      | V <sub>DS</sub>                   | -12        |     | V     |  |  |  |
| Gate-Source Voltage                                                     |                      | V <sub>GS</sub>                   | ±12        |     | V     |  |  |  |
| Continuous Drain Current NOET 1                                         | T <sub>A</sub> =25°C | l <sub>D</sub>                    | -1.7       |     |       |  |  |  |
|                                                                         | T <sub>A</sub> =70°C |                                   | -1.4       |     | A     |  |  |  |
| Pulsed Drain Current NOET 2                                             |                      | I <sub>DM</sub>                   | -20        |     | A     |  |  |  |
|                                                                         | T <sub>A</sub> =25°C | PD                                | 0.47       |     |       |  |  |  |
| Power Dissipation NOET                                                  | T <sub>A</sub> =70°C |                                   | 0.30       |     | VV    |  |  |  |
| Junction and Storage Temperature Range                                  |                      | T <sub>J</sub> , T <sub>STG</sub> | -55 to 150 |     | °C    |  |  |  |
| Thermal Characteristics                                                 |                      |                                   |            |     |       |  |  |  |
| Parameter                                                               |                      | Symbol                            | Тур        | Мах | Units |  |  |  |
| Maximum Junction-to-Ambient NOET 1                                      | t≤ 10s               |                                   | 215        | 265 | °C/W  |  |  |  |
| Maximum Junction-to-Ambient NOET 1                                      | Steady-State         | R <sub>eja</sub>                  | 240        | 300 | °C/W  |  |  |  |
| Maximum Junction-to-Lead NOET 3                                         | Steady-State         | R <sub>eJL</sub>                  | 105        | 130 | °C/W  |  |  |  |



AGERTECH MICROELECTRONICS

Dated:10/2019 Rev: 1.0

Subsidiary of Sino-Talent International Holdings Ltd. 1/5

| Electrical Characteristics (T <sub>A</sub> =25°C unless otherwise noted) |                     |                                                |       |       |      |       |  |  |
|--------------------------------------------------------------------------|---------------------|------------------------------------------------|-------|-------|------|-------|--|--|
| Parameter                                                                | Symbol              | Conditions                                     | Min   | Тур   | Мах  | Units |  |  |
| Static Characteristics                                                   |                     |                                                |       |       |      |       |  |  |
| Drain-Source Breakdown Voltage                                           | BV <sub>DSS</sub>   | I <sub>D</sub> =-250µA, V <sub>GS</sub> =0V    | -12   |       |      | V     |  |  |
| Zero Gate Voltage Drain Current                                          | ldss                | V <sub>DS</sub> =-9.6V, V <sub>GS</sub> =0V    |       |       | -1   | μA    |  |  |
| Gate-Body leakage current                                                | lgss                | $V_{DS}$ =0V, $V_{GS}$ =±12V                   |       |       | ±100 | nA    |  |  |
| Gate Threshold Voltage                                                   | VGS(th)             | Vds=Vgs, Id=-250µA                             | -0.45 | -0.75 | -1.0 | V     |  |  |
|                                                                          | R <sub>DS(ON)</sub> | V <sub>GS</sub> =-4.5V, I <sub>D</sub> =-1.7A  |       | 75    | 100  | mΩ    |  |  |
|                                                                          |                     | V <sub>GS</sub> =-3.6V, I <sub>D</sub> =-1.0A  |       | 80    | 130  | mΩ    |  |  |
| Static Drain-Source On-Resistance                                        |                     | V <sub>GS</sub> =-2.5V, I <sub>D</sub> =-1.0A  |       | 103   | 150  | mΩ    |  |  |
|                                                                          |                     | V <sub>GS</sub> =-1.8V, I <sub>D</sub> =-0.6A  |       | 150   | 250  | mΩ    |  |  |
| Forward Transconductance                                                 | <b>g</b> fs         | V <sub>DS</sub> =-1.8V, I <sub>D</sub> =-1.0A  |       | 4.8   |      | S     |  |  |
| Diode Forward Voltage                                                    | V <sub>SD</sub>     | I <sub>S</sub> =-1.0A,V <sub>GS</sub> =0V      |       | -0.85 | -1.2 | V     |  |  |
| Dynamic Characteristics                                                  | 1                   |                                                |       |       |      |       |  |  |
| Input Capacitance                                                        | Ciss                |                                                |       | 618   |      | pF    |  |  |
| Output Capacitance                                                       | Coss                | V <sub>GS</sub> =0V, V <sub>DS</sub> =-10V,    |       | 172   |      | pF    |  |  |
| Reverse Transfer Capacitance                                             | C <sub>rss</sub>    | f=100KHz                                       |       | 134   |      | pF    |  |  |
| Switching Characteristics                                                |                     |                                                |       |       |      |       |  |  |
| Total Gate Charge                                                        | Qgtot               |                                                |       | 8.7   |      | nC    |  |  |
| Gate Source Charge                                                       | Q <sub>gs</sub>     | V <sub>GS</sub> =-4.5V, V <sub>DS</sub> =-10V, |       | 1.5   |      | nC    |  |  |
| Gate Drain Charge                                                        | Q <sub>gd</sub>     | I <sub>D</sub> =-1.7A                          |       | 2.9   |      | nC    |  |  |
| Turn-On Delay Time                                                       | td(on)              |                                                |       | 15.8  |      | ns    |  |  |
| Turn-On Rise Time                                                        | tr                  | Vcs=-4.5V Vpp=-10V                             |       | 19.8  |      | ns    |  |  |
| Turn-Off Delay Time                                                      | td(off)             | Id=-1.7А. Rgen=60                              |       | 92.4  |      | ns    |  |  |
| Turn-Off Fall Time                                                       | tf                  |                                                |       | 139.6 |      | ns    |  |  |

Note:

The value of R<sub>θJA</sub> is measured with the device mounted on 1in <sup>2</sup> FR-4 board with 2oz. Copper, in a still air environment withT<sub>A</sub> =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.

- 2. Repetitive rating, pulse width limited by junction temperature.
- 3. The  $R_{BJA}$  is the sum of the thermal impedence from junction to lead R  $_{BJL}$  and lead to ambient.
- 4. The static characteristics in Figures 1 to 6 are obtained using 80 µs pulses, duty cycle 0.5% max.
- 5. These tests are performed with the device mounted on 1 in<sup>2</sup> FR-4 board with 2oz. Copper, in a still air environment with  $T_A=25^{\circ}$ C. The SOA curve provides a single pulserating.



AGERTECH MICROELECTRONICS

Subsidiary of Sino-Talent International Holdings Ltd. 2/5

#### **RATINGS AND CHARACTERISTIC CURVES**





AGERTECH MICROELECTRONICS

Subsidiary of Sino-Talent International Holdings Ltd. 3/5



Figure 11: Normalized Maximum Transient Thermal Impedance



AGERTECH MICROELECTRONICS

Subsidiary of Sino-Talent International Holdings Ltd. 4/5

## Package Outline Dimension (Units: mm)

SOT-323



#### **Recommended Soldering Footprint**



#### Packing information

| Package | Tape Width<br>(mm) | Pitch   |               | Reel Size |      |                           |  |
|---------|--------------------|---------|---------------|-----------|------|---------------------------|--|
|         |                    | mm      | inch          | mm        | inch | Per Reel Packing Quantity |  |
| SOT-323 | 8                  | 4 ± 0.1 | 0.157 ± 0.004 | 178       | 7    | 3,000                     |  |



## AGERTECH MICROELECTRONICS

Subsidiary of Sino-Talent International Holdings Ltd. 5/5

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Agertech manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 IRFF430 JANTX2N5237 2N7000 FCA20N60\_F109 FDZ595PZ AOD464 2SK2267(Q) 2SK2545(Q,T) 405094E 423220D MIC4420CM-TR VN1206L 614234A 715780A SSM6J414TU,LF(T 751625C BSC884N03MS G BSF024N03LT3 G PSMN4R2-30MLD TK31J60W5,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE2384 NTE2969 NTE6400A DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO-7B IPS60R3K4CEAKMA1 DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 STU5N65M6 C3M0021120D DMN13M9UCA6-7 BSS340NWH6327XTSA1 MCM3400A-TP DMTH10H4M6SPS-13 IRF40SC240ARMA1 IPS60R1K0PFD7SAKMA1