N-Channel Enhancement Mode Power MOSFET

Drain-Source Voltage: 800V Continuous Drain Current: 8A

DESCRIPTION

The ATM8N80TF is a N-channel mode power MOSFET, it uses ATs advanced technology to provide costumers planar stripe and DMOS technology. This technology allows a minimum on-state resistance, superior switching performance. It also can withstand high energy pulse in the avalanche and commutation mode.

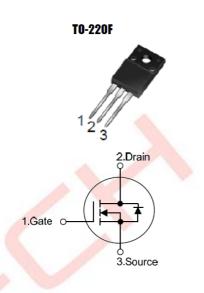
The ATM8N80TF is generally applied in high efficiency switch mode power supplies.

FEATURES

- Typically 35 nC Low Gate Charge
- $R_{DS(ON)} < 1.45\Omega @ V_{GS} = 10V, I_D = 4.0A$
- Typically 13 pF Low C_{RSS}
- Improved dv/dt Capability
- Fast Switching Speed
- ♦ 100% Avalanche Tested
- RoHS–Compliant Product

ABSOLUTE MAXIMUM RATINGS (Tc=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	800	V
Gate-Source Voltage		V _{GSS}	±30	V
Drain Current (Continuou <mark>s) (T</mark> c=25°C)		ID	8	A
Drain Current (Pulsed) (Note1)		I _{DM}	32	А
Avalanche Current (Note 1)		I _{AR}	8	А
Single Pulse Avalanche Energy (Note 3)		E _{AS}	850	mJ
Repetitive Avalanche Energy (Note 1)		E _{AR}	17.8	mJ
Peak Dio <mark>de</mark> Recovery dv/dt (Note 4)		dv/dt	4.5	V/ns
Power Dissipation	TO-220F		59	W
Linear Derating Factor above (Tc=25°C)	TO-220F	PD	0.47	W/°C
Junction Temperature		TJ	+150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C


Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L = 25mH, I_{AS} = 8A, V_DD = 50V, R_G = 25 $\Omega,$ Starting T_J = 25°C
- 4. $I_{SD} \le 8A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

AGERTECH MICROELECTRONICS

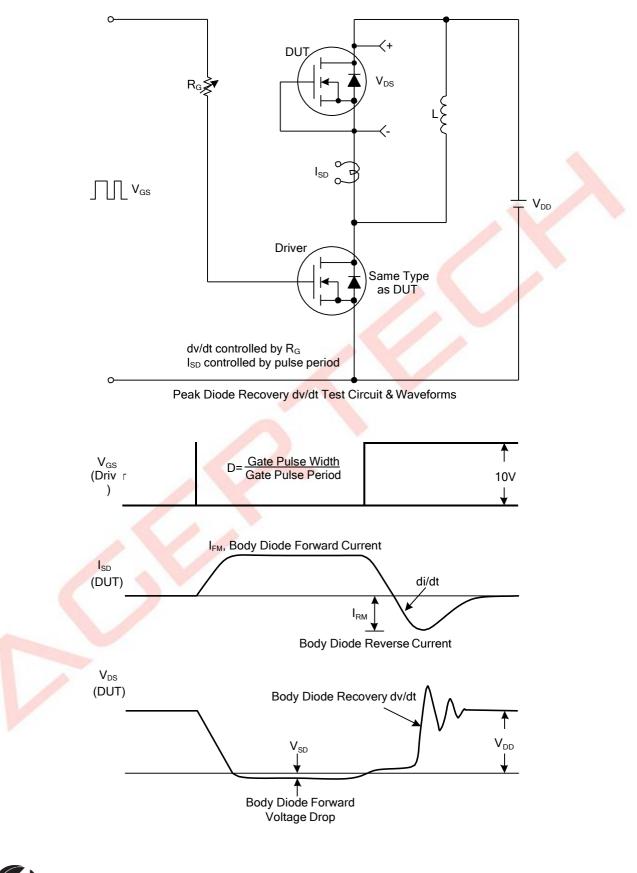
Dated:12/2017 Rev: 2.0

ELECTRICAL CHARACTERISTICS (Tc=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =250μA, V _{GS} =0V	800			V
Breakdown Voltage Temperature Coefficient	∆BV _{DSS} /∆T _J	Reference to 25°C, I⊳=250µA		0.5		V/°C
Drain-Source Leakage Current	I _{DSS}	V _{DS} =800V, V _{GS} =0V V _{DS} =640V, T _C =125°C			10 100	μA
Gate- Source Leakage Current	I _{GSS}	V _{GS} =±30V, V _{DS} =0V			±100	nA
ON CHARACTERISTICS		· · · · · · · · · · · · · · · · · · ·	1			
Gate Threshold Voltage	V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250µA	3.0		5.0	V
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =4A		1.18	1.45	Ω
Forward Transconductance (Note 1)	G FS	V _{DS} =50V, I _D =4A		5.6	1	S
DYNAMIC PARAMETERS					10	
Input Capacitance	CISS			1580	2050	pF
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz	5	135	175	pF
Reverse Transfer Capacitance	C _{RSS}			13	17	pF
SWITCHING PARAMETERS (Note 1, Note	e 2)					
Total Gate Charge	Q_{G}			47	60	nC
Gate to Source Charge	Q _{GS}	V _{GS} =10V, V _{DS} =400V, I <mark>D</mark> =8A R∟=50Ω		10		nC
Gate to Drain Charge	Q _{GD}	112-3022		14		nC
Turn-ON Delay Time	t _{D(ON)}			40	90	ns
Rise Time	t _R	Vpp=400V, Ip=8A, Rg=25Ω		110	230	ns
Turn-OFF Delay Time	$t_{D(OFF)}$	VDD=400V, ID=6A, RG-2502		65	140	ns
Fall-Time	t⊨			70	150	ns
SOURCE- DRAIN DIODE RATINGS AND C	HARACTERIS	TICS		-		
Maximum Continuous Drain-Source Diode Forward Current	Is				8	А
Maximum Pulsed Drain-Source Diode	I _{SM}				32	A
Drain-Source Diode Forward Voltage	V _{SD}	Is=8A, V _{GS} =0V			1.4	V
Reverse Recovery Time (Note 1)	t _{rr}	Is=8A, V _{GS} =0V,		690		ns
Reverse Recovery Charge (Note 1)	Q _{RR}	dl⊧/dt=100A/µs		8.2		μC

Note: 1. Pulse Test: Pulse width \leq 300µs, Duty cycle \leq 2%

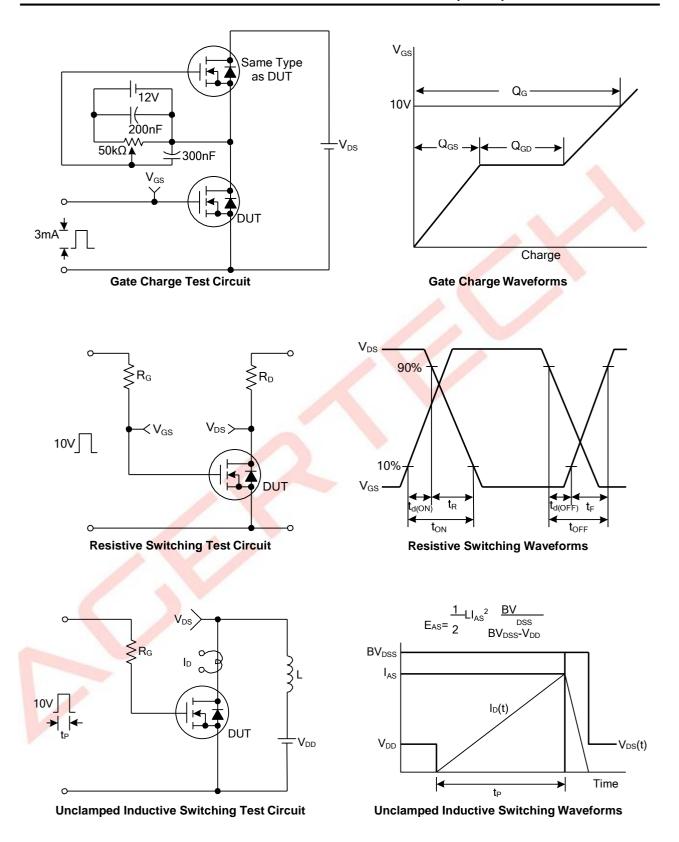
2. Essentially independent of operating temperature



AGERTECH MICROELECTRONICS

Dated:12/2017 Rev: 2.0

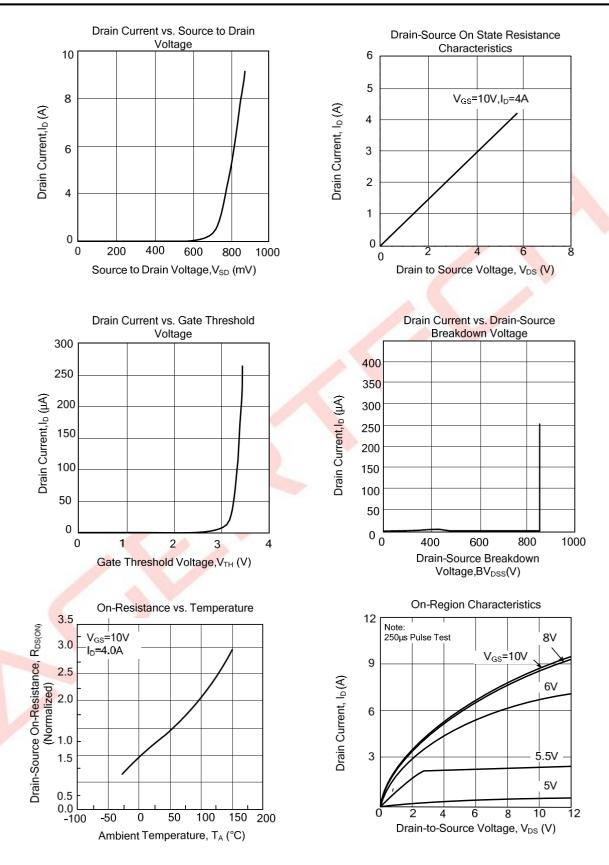
Subsidiary of Sino-Talent International Holdings Ltd. 2/8


AGERTECH MICROELECTRONICS

Dated:12/2017 Rev: 2.0

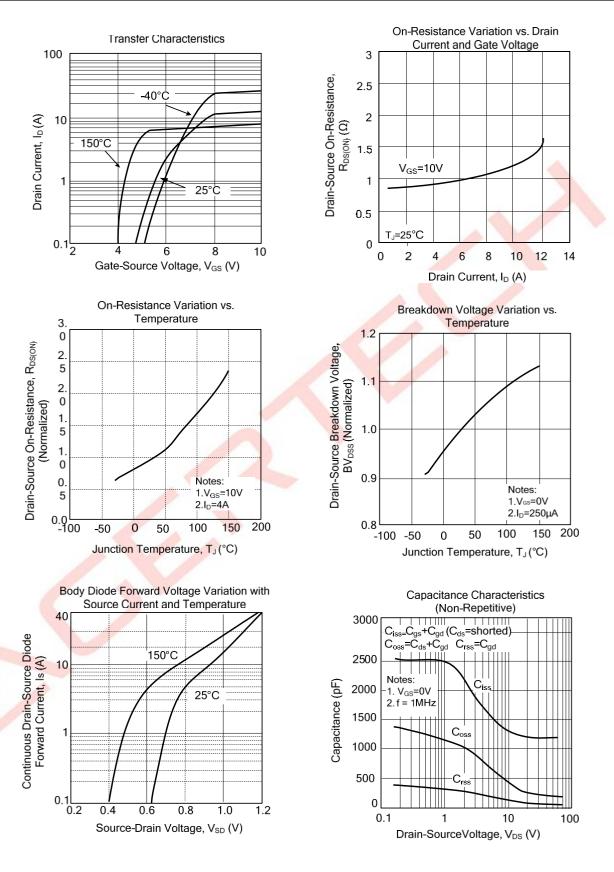
Subsidiary of Sino-Talent International Holdings Ltd. 3/8

<u>ATM8N80TF</u>


TEST CIRCUITS AND WAVEFORMS(Cont.)

AGERTECH MICROELECTRONICS

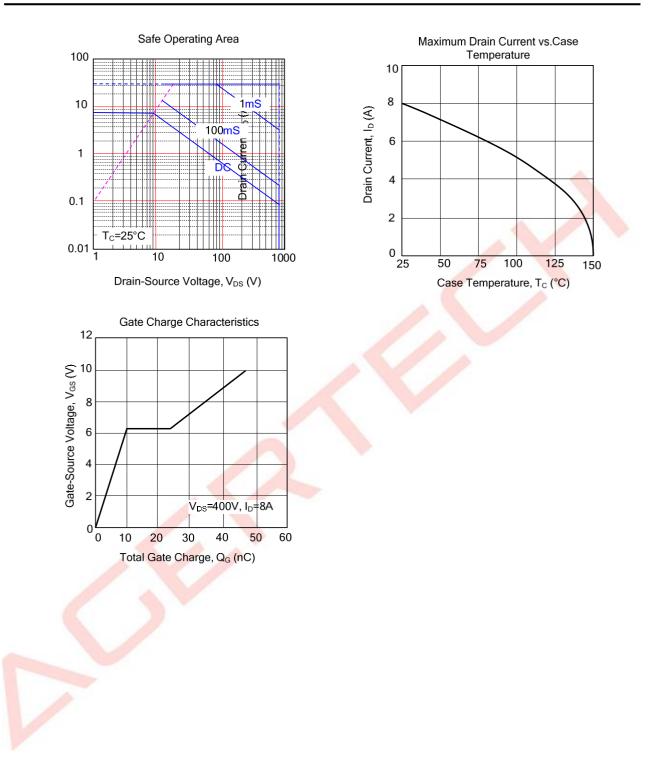
Dated:12/2017 Rev: 2.0



TYPICAL CHARACTERISTICS CURVES

AGERTECH MICROELECTRONICS

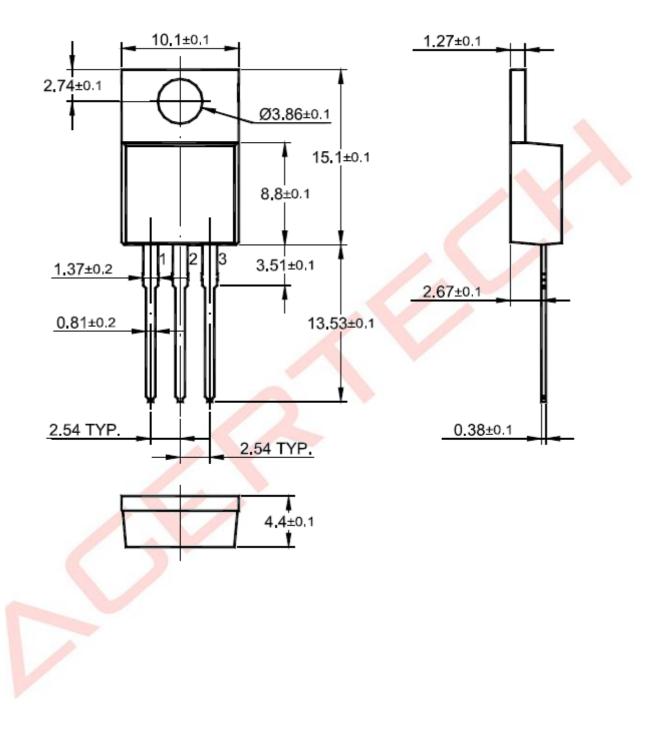
Dated:12/2017 Rev: 2.0


TYPICAL CHARACTERISTICS CURVES (Cont.)

AGERTECH MICROELECTRONICS

Dated:12/2017 Rev: 2.0

TYPICAL CHARACTERISTICS CURVES (Cont.)



AGERTECH MICROELECTRONICS

Dated:12/2017 Rev: 2.0

Package Outline

TO-220F

AGERTECH MICROELECTRONICS

Dated:12/2017 Rev: 2.0

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Agertech manufacturer:

Other Similar products are found below :

614233C 648584F NTNS3A92PZT5G IRFD120 IRFF430 JANTX2N5237 2N7000 2SK2464-TL-E FCA20N60_F109 FDZ595PZ AOD464 2SK2267(Q) 2SK2545(Q,T) 405094E 423220D MIC4420CM-TR VN1206L 614234A 715780A SSM6J414TU,LF(T 751625C IPP60R600P6XKSA1 RJK60S5DPK-M0#T0 PSMN4R2-30MLD TK31J60W5,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE2384 NTE2969 NTE6400A DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO-7B IPS60R3K4CEAKMA1 DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 STU5N65M6 C3M0021120D DMN13M9UCA6-7 BSS340NWH6327XTSA1 MCM3400A-TP DMTH10H4M6SPS-13 IRF40SC240ARMA1