
#### **MMBT3904**

### **NPN Silicon General Purpose Transistor**

for switching and amplifier applications.

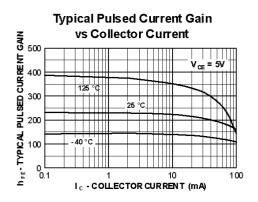


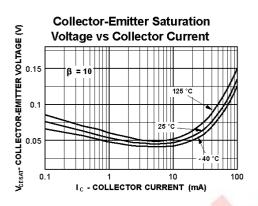
1. Base 2. Emitter 3. Collector SOT-23 Plastic Package

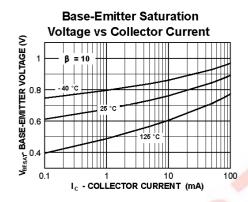
### Absolute Maximum Ratings (T<sub>a</sub> = 25 °C)

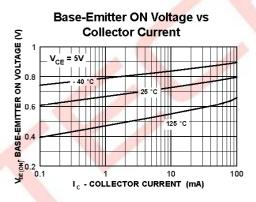
| Parameter                 | Symbol           | Value         | Unit |
|---------------------------|------------------|---------------|------|
| Collector Base Voltage    | V <sub>CBO</sub> | 60            | V    |
| Collector Emitter Voltage | V <sub>CEO</sub> | 40            | V    |
| Emitter Base Voltage      | V <sub>EBO</sub> | 6             | V    |
| Collector Current         | Ic               | 200           | mA   |
| Power Dissipation         | P <sub>tot</sub> | 350           | mW   |
| Junction Temperature      | T <sub>j</sub>   | 150           | °C   |
| Storage Temperature Range | T <sub>stg</sub> | - 55 to + 150 | °C   |

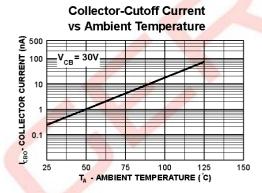


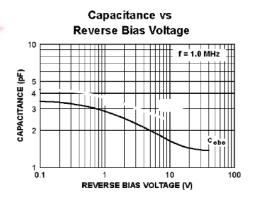

### **MMBT3904**

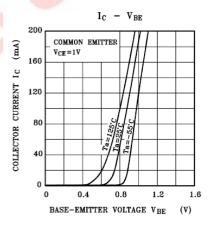

# Characteristics at T<sub>a</sub> = 25 °C

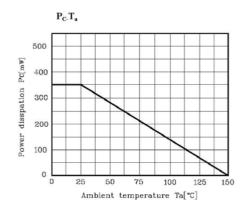

| Parameter                                                                                                                   | Symbol                             | Min.            | Max.          | Unit        |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------|---------------|-------------|
| DC Current Gain<br>at $V_{CE} = 1$ V, $I_C = 0.1$ mA<br>at $V_{CE} = 1$ V, $I_C = 1$ mA<br>at $V_{CE} = 1$ V, $I_C = 10$ mA | h <sub>FE</sub><br>h <sub>FE</sub> | 40<br>70<br>100 | -<br>-<br>300 | -<br>-<br>- |
| at $V_{CE} = 1 \text{ V, } I_C = 50 \text{ mA}$<br>at $V_{CE} = 1 \text{ V, } I_C = 100 \text{ mA}$                         | h <sub>FE</sub><br>h <sub>FE</sub> | 60<br>30        | -             | -           |
| Collector Base Cutoff Current at V <sub>CB</sub> = 30 V                                                                     | I <sub>CBO</sub>                   | -               | 50            | nA          |
| Emitter Base Cutoff Current at V <sub>EB</sub> = 6 V                                                                        | I <sub>EBO</sub>                   | -               | 50            | nA          |
| Collector Base Breakdown Voltage at I <sub>C</sub> = 10 µA                                                                  | V <sub>(BR)CBO</sub>               | 60              | 4             | V           |
| Collector Emitter Breakdown Voltage at I <sub>C</sub> = 1 mA                                                                | V <sub>(BR)CEO</sub>               | 40              | . //          | V           |
| Emitter Base Breakdown Voltage at $I_E = 10 \mu A$                                                                          | $V_{(BR)EBO}$                      | 6               | 7             | V           |
| Collector Emitter Saturation Voltage at $I_C = 10$ mA, $I_B = 1$ mA at $I_C = 50$ mA, $I_B = 5$ mA                          | V <sub>CE(sat)</sub>               |                 | 0.2<br>0.3    | V           |
| Base Emitter Saturation Voltage<br>at $I_C = 10$ mA, $I_B = 1$ mA<br>at $I_C = 50$ mA, $I_B = 5$ mA                         | V <sub>BE(sat)</sub>               | 0.65            | 0.85<br>0.95  | V<br>V      |
| Current Gain Bandwidth Product at $V_{CE} = 20 \text{ V}$ , $I_C = 10 \text{ mA}$ , $f = 100 \text{ MHz}$                   | f⊤                                 | 300             | -             | MHz         |
| Collector Output Capacitance<br>at V <sub>CB</sub> = 5 V, I <sub>E</sub> = 0, f = 1 MHz                                     | C <sub>ob</sub>                    | -               | 4             | pF          |
| Delay Time at $V_{CC} = 3 \text{ V}$ , $V_{BE} = 0.5 \text{ V}$ , $I_C = 10 \text{ mA}$ , $I_{B1} = 1 \text{ mA}$           | t <sub>d</sub>                     | -               | 35            | ns          |
| Rise Time at $V_{CC} = 3 \text{ V}$ , $V_{BE} = 0.5 \text{ V}$ , $I_C = 10 \text{ mA}$ , $I_{B1} = 1 \text{ mA}$            | t <sub>r</sub>                     | -               | 35            | ns          |
| Storage Time at $V_{CC} = 3 \text{ V}$ , $I_C = 10 \text{ mA}$ , $I_{B1} = -I_{B2} = 1 \text{ mA}$                          | t <sub>s</sub>                     | -               | 200           | ns          |
| Fall Time at $V_{CC} = 3 \text{ V}$ , $I_C = 10 \text{ mA}$ , $I_{B1} = -I_{B2} = 1 \text{ mA}$                             | t <sub>f</sub>                     | -               | 50            | ns          |





#### **Typical Characteristics Curves**
















## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Agertech manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MMBT-2369-TR BC546/116 BC557/116 BSW67A NJVMJD148T4G NTE123AP-10 NTE153MCP NTE16

NTE195A NTE92 2N4401-A 2N6728 2SA1419T-TD-H 2SA2126-E 2SB1204S-TL-E 2SC2712S-GR,LF SP000011176 2N2907A 2N3904
NS 2N5769 2SC2412KT146S CPH6501-TL-E MCH4021-TL-E MJE340 Jantx2N5416 US6T6TR NJL0281DG 732314D CPH3121-TL-E

CPH6021-TL-H 873787E IMZ2AT108 MMST8098T146 UMX21NTR MCH6102-TL-E NJL0302DG 30A02MH-TL-E NTE13 NTE26

NTE282 NTE323 NTE350 NTE81 STX83003-AP JANTX2N2920L JANSR2N2222AUB CMLT3946EG TR 2SA1371D-AE