PC401 #### ■ Features - 1. Mini-flat package - 2. "High" output during light emission - 3. Isolation voltage between input and output $(V_{iso}: 3750V_{rms})$ - 4. TTL and LSTTL compatible output - 5. Recognized by UL(No.64380) ## ■ Applications - 1. Hybrid substrate which requires high density mounting - 2. Personal computers, office computers and peripheral equipment - 3. Electronic musical instruments ## ■ Package Specifications | Model No. | Package specifications | Diameter of reel | Tape width | | |-----------|------------------------------------|------------------|------------|--| | PC401 | Taping package (Net : 3 000pcs.) | 370mm | 12mm | | | PC401T | Taping package (Net: 750pcs.) | 178mm | 12mm | | | PC401Z | Sleeve package (Net : 100pcs.) | ı | - | | ## **Compact, Surface Mount Type OPIC Photocoupler** #### ■ Outline Dimensions * "OPIC" (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ## ■ Absolute Maximum Ratings $(Ta = 25^{\circ}C)$ | | Parameter | Symbol | Rating | Unit | | |--------------------------|---------------------------|------------------|---------------|------------------|--| | Input | Forward current | I_F | 50 | mA | | | | Reverse voltage | V _R | 6 | V | | | | Power dissipation | P | 70 | mW | | | Output | Supply voltage | V _{CC} | 16 | V | | | | High level output voltage | V OH | 16 | V | | | | Low level output current | IoL | 50 | mA | | | | Power dissipation | Po | 130 | mW | | | Total power dissipation | | P _{tot} | 150 | mW | | | *1 Isolation voltage | | V iso | 3 750 | V _{rms} | | | Operating temperature | | T opr | - 25 to + 85 | °C | | | Storage temperature | | T stg | - 40 to + 125 | °C | | | *2 Soldering temperature | | T sol | 260 | °C | | ^{*1} AC for 1 minute, 40 to 60% RH ^{*2} For 10 seconds ## **■** Electro-optical Characteristics ($Ta = 0 \text{ to} + 70^{\circ}\text{C}$ unless otherwise specified.) | Parameter | | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |----------------------------------|--|------------------|--|----------------------|------|------|------| | Input | | V _F | $I_F = 4mA$ | - | 1.1 | 1.4 | V | | | Forward voltage | | $I_F = 0.3 \text{mA}$ | 0.7 | 1.0 | - | | | | Reverse current | I_R | $Ta = 25^{\circ}C, V_R = 3V$ | - | - | 10 | μΑ | | | Terminal capacitance | Ct | $Ta = 25^{\circ}C, V = 0, f = 1kHz$ | - | 30 | 250 | pF | | Output | Operating supply voltage | V _{CC} | | 3 | - | 15 | V | | | Low level output voltage | V _{OL} | $I_F = 0, V_{CC} = 5V, I_{OL} = 16mA$ | - | 0.2 | 0.4 | V | | | High level output current | Іон | $I_F = 4mA, V_{CC} = V_O = 15V$ | - | - | 100 | μΑ | | | Low level supply current | Iccl | $I_F = 0, V_{CC} = 5V$ | - | 2.5 | 5.0 | mA | | | High level supply current | Icch | $I_F = 4mA, V_{CC} = 5V$ | - | 2.7 | 5.5 | mA | | Transfer
charac-
teristics | *3 "H→L" threshold | I | $Ta = 25^{\circ}C, V_{CC} = 5V, R_{L} = 280\Omega$ | 0.4 | 0.8 | - | mA | | | input current | I FHL | $V_{\rm CC} = 5$ V, $R_{\rm L} = 280\Omega$ | 0.3 | - | - | | | | *4 "L→H" threshold | T | $Ta = 25^{\circ}C$, $V_{CC} = 5V$, $R_L = 280\Omega$ | - | 1.1 | 2.0 | A | | | input current | IFLH | $V_{CC} = 5V, R_L = 280\Omega$ | - | - | 4.0 | mA | | | *5Hysteresis | I FHL /I FLH | $V_{CC} = 5V, R_L = 280\Omega$ | 0.5 | 0.7 | 0.9 | | | | Isolation resistance | R _{ISO} | Ta= 25°C,DC500V,40 to 60% RH | 5 x 10 ¹⁰ | 1011 | - | Ω | | | u "H→L" propagation
delay time | t PHL | | - | 2 | 6 | | | | "L→H" propagation
delay time | t PLH | $Ta = 25^{\circ}C, V_{CC} = 5V$ | - | 1 | 3 | | | | See time | t_{f} | $R_L = 280\Omega$, $I_F = 4mA$ | - | 0.05 | 0.5 | μs | | | Rise time | tr | | - | 0.1 | 0.5 | | ^{*3} I FHL represents forward current when output gose from high to low. #### **Test Circuit for Response Time** V_{IN} t_{PLH} t_{PHL} - 50% V_O 1.5V - 10% V_O t_r t_r V_OL Fig. 2 Power Dissipation vs. Ambient Temperature ^{*4} I FLH represents forward current when output goes from low to high. ^{*5} Hysteresis stands for I_{FHL} /I _{FLH} . ^{*6} Test circuit for response time is shown below. Fig. 3 Forward Current vs. Forward Voltage Fig. 5 Relative Threshold Input Current vs. Ambient Temperature Fig. 7 Low Level Output Voltage vs. Ambient Temperature Fig. 4 Relative Threshold Input Current vs. Supply Voltage Fig. 6 Low Level Output Voltage vs. Low Level Output Current Fig. 8 High Level Output Current vs. Forward Current Fig. 9 High Level Output Current vs. Ambient Temperature Fig.11 Propagation Delay Time vs. Forward Current Fig.10 Supply Current vs. Supply Voltage Fig.12 Rise Time, Fall Time vs. Load Resistance #### ■ Preautions for Use - (1) It is recommended that a by-pass capacitor of more than 0.01μ F is added between V_{cc} and GND near the device in order to stabilize power supply line. - (2) Handle this product the same as with other integrated circuits against static electricity. - (3) As for other general cautions, refer to the chapter "Precautions for Use" #### **NOTICE** - •The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices. - •Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice. - Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions: - (i) The devices in this publication are designed for use in general electronic equipment designs such as: - Personal computers - Office automation equipment - Telecommunication equipment [terminal] - Test and measurement equipment - Industrial control - Audio visual equipment - Consumer electronics - (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as: - Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.) - Traffic signals - Gas leakage sensor breakers - Alarm equipment - Various safety devices, etc. - (iii) SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as: - Space applications - Telecommunication equipment [trunk lines] - Nuclear power control equipment - Medical and other life support equipment (e.g., scuba). - •Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications other than those recommended by SHARP or when it is unclear which category mentioned above controls the intended use. - •If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices. - •This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party. - Contact and consult with a SHARP representative if there are any questions about the contents of this publication. ## **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Other Tools category: Click to view products by AIRTAC manufacturer: Other Similar products are found below: 899-2-KT46 CR-0AFL4--332K 568681-1 5800-0090 58061-1 59085 00-8273-RDPP 593033 593072 593564100 593575 593593 010-0003-0000 011349-000 CRCW08052740FRT1 LUC-012S070DSM LUC-018S070DSP LUC-024S105DSP 599-2021-3-NME 599-JJ-2021-03 CRCW2010331JR02 601-JJ-06 601-SPB 601YSY 602-JJ-03 602SPB 603-JJ-07-FP 603-JJY-04 CRTN1013 CS16 6-1579014-0 6203 6240-1 M43435 TY 1 SZ 3 FIN B BLK M43435 TY 2 SZ 3 FIN C BLK M43435 TY 5 SZ 3 FIN C NAT M-5Z M6816 660-29ABT1 662508-1 CVHD-950X-93.333 CW104-01X 671-GP-04-KT39-73207 CW307-01A CW30901A CW6211201A 679793-1 690191-1 690191-3 690317-2