APPROVAL SHEET

Customer	Name	$:$
Customer P / N	$:$	
Frequency	$: 12.000000$	MHz
Aker Approved P/N: CXA-012000-3F4D40		
Aker MPN	$:$ CXA-012000-3F4D40	
Rev.	$: 1$	
ISSUE DATE	$:$ Jul.16.2019	

APPROVED	CHECKED	PREPARED	
Le~	Sandy		
APPROVED BY CUSTOMER			

AKER TECHNOLOGY CO., LTD.

ADDRESS : NO 11-3, Jianguo Rd., T.E.P.Z ,Tanzi Dist., Taichung City 427, Taiwan.

TEL: 886-4-25335978 FAX : 886-4-25336011

Web: www.aker.com.tw

Rev.	Date	Reviser	Revise contents
1	$2019 / 7 / 16$	Sandy	Initial Released

SMD CRYSTAL SPECIFICATION

1. ELECTRICAL CHARACTERISTICS

■ Standard atmospheric conditions
Unless otherwise specified, the standard range of atmospheric conditions for making measurement and tests are as follow :

Ambient temperature : $25 \pm 5^{\circ} \mathrm{C}$
Relative humidity : 40\%~70\%

If there is any doubt about the results, measurement shall be made within the following limits :
Ambient temperature : $25 \pm 3{ }^{\circ} \mathrm{C}$
Relative humidity : 40\%~70\%

■ AKER Model : CXA-321
■ Oscillation Model : Fundamental
■ Cutting Model : AT CUT
■ Measurement Equipment : 350A(Measured FL)
■ Insulation Resistance : More than 500M ohms at DC 100 V

Parameters	Symbol	Electrical Spec				Notes
		Min.	Typ.	Max.	Units.	
Nominal Frequency	FL	12.000000			MHz	
Frequency Tolerance		± 10			ppm	at $25^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$
Frequency Stability		± 20			ppm	Operating Temp (Refer $25^{\circ} \mathrm{C}$)
Load Capacitance	CL	20			pF	
Aging		± 3			ppm	First Year
Operating Temperature		-40	\sim	85	${ }^{\circ} \mathrm{C}$	
Storage Temperature Range		-55	\sim	125	${ }^{\circ} \mathrm{C}$	
Drive Level	DL			100	uW	
Effective Resistance Rr	Rr			100	Ω	
Shunt Capacitance	C0			5	pF	

[^0]| | CUST. P/N: \quad Aker Approved P/N : CXA-012000-3F4D40 | | |
| :---: | :---: | :---: | :---: |
| | | | |
| | APPROVED | Xtal | SHEET : 3 of 9 |
| | PREPARED | : Sandy | REV . : 1 |

2.MARKING:

AKER LOGO. \longrightarrow Production line code

NOTE 1 :

CODE	CL	CODE	CL	CODE	CL	CODE	CL
0	OpF	9	14. ${ }^{\text {F }}$	K	9.5pF	U	8.5.5
1	160F	A	32 pF	L	19.5p	V	24. F
2	22 FF	B	27 pF	M	2.55 p	W	4 p F
3	1.5.F	C	8 p F	N	33pF	X	39pF
4	200.F	D	37 FF	P	$7{ }_{7} \mathrm{~F}$	Y	26 pF
5	30 pF	E	25 pF	Q	15.5.5F	2	7.2 pF
6	18\% F	F	35p	R	12.5.5	a	17\%F
7	12p F	G	13.FF	S	$11 . \mathrm{p}$	b	9.85p ${ }^{\text {F }}$
8	10pF	H	9pF	T	60^{2}	d	5 pF

3. DIMENSION :

Year	2007	2008	2009	2010
	2011	2012	2013	2014
	2015	2016	2017	2018
	2019	2020	2021	2022
	2023	2024	2025	2026
JAN	A	N	a	n
FEB	B	P	b	p
MAR	C	Q	c	q
APR	D	R	d	r
MAY	E	S	e	s
JUN	F	T	f	t
JUL	G	U	g	u
AUG	H	V	h	v
SEP	J	W	j	w
OCT	K	X	k	x
NOV	L	Y	l	y
DEC	M	Z	m	z

(Unit : mm)

<BOTTOM $>$

<SIDE>

<SUGGESTED LA YOUT>

Accurate Kinetic Energy	CUST. P/N		
	Aker Approved P/N	CXA-012000-3F4D40	
	APPROVED	Xtal	SHEET : 4 of 9
	PREPARED	Sandy	REV .

4. STRUCTURE ILLUSTRATION

COMPONENTS		MATERIALS	COMPONENTS		MATERIALS
A	Base (Package)	Ceramic($\left.\mathrm{Al}_{2} \mathrm{O}_{3}\right)+\mathrm{Kovar}(\mathrm{Fe} / \mathrm{Co} / \mathrm{Ni})$	D	Electrode	$\mathrm{Cr} / \mathrm{Ag}$
B	Conductive adhesive	$\mathrm{Ag} /$ Silicon resin	E	Lid	$\mathrm{Fe} / \mathrm{Co} / \mathrm{Ni}$
C	Crystal blank	SiO_{2}			

	CUST. P/N :			
	APPROVED	Xtal	SHEE	of 9
	PREPARED	Sandy	REV	

5. PACKING:

TAPE SPECIFICATION
(Unit : mm)

OUTLINE DIMENSION
(Unit : mm)

	CUST. P/N Aker Approved P/N : CXA-012000-3F4D40		
	APPROVED	Xtal	SHEET : 6 of 9
	PREPARED	Sandy	REV

6. COVER TAPE ADHESION STRENGTH :

*** In the case, the cover tape is pulled off under the above conditions, the cover tape adhesi on strength should be $10.2 \mathrm{~g} \sim 71.4 \mathrm{~g}$ Plastic tape: $10.2 \mathrm{~g} \sim 71.4 \mathrm{~g}$
(Cover tape adhesi on strength)

7. SOLDERING REFLOW PROFILE

CUST. P/N		
Aker Approved P/N	CXA-012000-3F4D40	
APPROVED	Xtal	SHEET : 7 of 9
PREPARED	Sandy	REV .

8. PACKING :

$$
\text { BOX = } 3000 \text { PCS / REEL(MAX) }
$$

SMD product packs 32 BOX=The outside box packs (3000 PCS $* 32$ BOX $=96000 \mathrm{PCS}$)(MAX)

Accurate Kinetic Energy		CUST. P/N	
		Aker Approved P/N : CXA-	12000-3F4D40
		APPROVED : Xtal	SHEET : 8 of 9
		PREPARED : Sandy	REV .
9. MECHANICAL PERFORMANCE			
TEST ITEMS	TEST METHODS AND TEST CONDITION		PERFORMANCE
9.1 Drop Test	The specimen is measured for its frequency and resistance before the test. It is then dropped from a hight of 100 cm or more as a free fall object onto a hard wooden plate of 30 mm or more in thickness. (in accordance with JIS-C0044)		To satisfy the electrical performance .
9.2 Vibration Test	The specimen is measured for its frequency and resistance before the test. Most them into X, Y and Z axes, respectively, for the vibration test. Vibration condition: Frequency range ; 20~2000HZ Peak to peak amplitude : 1.52 mm Peak acceleration : 20G Sweep time : 20 minute / axis Pendicular total test time : 4 hours (in accordance with MIL-STD-883F: 2007.3)		
9.3 Resistance to Soldering Test	The specimen is measured for its frequency and resistance before the test. Place the specimen on the belt of the converynace and let it pass through the reflow with the presetted temperature condition. After passing twice the reflow place,the specimen under the referee condition for $-\sim 2$ hours and then measure its electrical performance. Temperature Condition of IR Simulation: The temperature range of the preheated section is setted at $150 \sim 180^{\circ} \mathrm{C}$ for $60 \sim 120 \mathrm{sec}$. For the next section the temperature range is setted at $217 \sim 260^{\circ} \mathrm{C}$ for $45 \sim 90 \mathrm{sec}$. and within this time range the specimen should be able to sustain at the peak temperature, $260+/-3^{\circ} \mathrm{C}$, for 10 sec long. (in accordance with JESD22-B106-B)		
9.4 Fine Leak Test	Place the specimen in a pressurized container and pressurize it with the detection gas (mixed gas consisting of 95% or more helium) for at least 2 hours. Complete the measurement of the concentration of helium within 30 min after taking it out from the pressurized container. (in accordance with MIL-STD-883F : 1014.11)		Less than $1.0 * 10^{-8} \mathrm{~atm} . c . c . / \mathrm{sec}$, Helium
The referee condition.Temperature $25 \pm 2{ }^{\circ} \mathrm{C}$Humidity $\quad 44 \sim 55 \%$Pressure $\quad 86 \sim 106 \mathrm{kPa}$(in accordance with MIL-STD-883E : 1014.9)			

		CUST. P/N	
		Aker Approved P/N : CXA-012	0-3F4D40
		APPROVED : Xtal	SHEET : 9 of 9
Accurate	etic Energy	PREPARED : Sandy	REV . : 1
10. CLIMA	C RESIST	CE	
TEST ITEMS	TEST METHOD	AND TEST CONDITION	PERFORMANCE
10.1 Low Temp Exposure Test	The specimen is resistance before Place the specime at the temperatur Take the specime and measure itsel leaving $1 \sim 2$ hou (in accordance	easured for its frequency and he test . in the chamber and kept it of $-40 \pm 3^{\circ} \mathrm{C}$ for 168 ± 6 hours . out of the chamber trical performance after under the referee condition. with JIS-C0020)	
10.2 Aging Test	The specimen is resistance before Place the specime at the temperatur And then take the measure its electric for 1 ~ 2 hours (in accordance	easured for its frequency and e test . in the testing chamber and keep it of $+125 \pm 3^{\circ} \mathrm{C}$ for 720 ± 48 hours. specimen out of the chamber and al performance after leaving der the referee condition. with JIS-C0021)	satisfy the electrical formance .
10.3 High Temperature \& High Humidty	The specimen is and resistance be Place the specime kept it at the tem humidity of $85 \pm$ then take the spe electrical perform hours under the r (in accordance	easured for its frequency re the test . in the testing chamber and rature of $+85 \pm 5^{\circ} \mathrm{C}$ and $\%$ for 168 ± 6 hours.and men out and measure its nce after leaving for $1 \sim 2$ eree condition. with MIL-STD-883F : 1004.7)	
10.4 Temperature Cycle Test	The specimen is and resistance be Subject the speci temperature rang Measure its elect for 1 ~ 2 hours (in accordance	asured for its frequency re the test . en to the 100 cycles of stated below . $125 \pm 3^{\circ} \mathrm{C}(15 \pm 3 \mathrm{~min})$. 2~3 min. Low temp. $-55 \pm 3{ }^{\circ} \mathrm{C}(15 \pm 3 \mathrm{~min})$. al performance after leaving it nder the referee condition . with MIL-STD-883F : 1010.8)	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Crystals category:

Click to view products by Aker manufacturer:

Other Similar products are found below :
CS325S24000000ABJT 718-13.2-1 MC405 32.0000K-R3:PURE SN FC-135R 32.7680KF-A3 7A-40.000MAAE-T 7B-27.000MBBK-T FL2000085 9B-15.360MBBK-B 9C-7.680MBBK-T ASH7K-32.768KHZ AT-41.600MAGQ-T BTD1062E05A-513 LFXTAL066198Cutt 9C-14.31818MBBK-T FA-238 50.0000MB30X-K3 FC-12M 32.7680KA-AC3 SSPT7F-9PF20-R FX325BS-38.88EEM1201 LFXTAL065253Cutt LFXTAL066431Cutt XT9S20ANA14M7456 XT9SNLANA16M 646G-24-2 7A-24.576MBBK-T 7B-30.000MBBK-T WX26-32.768K-6PF 9B-14.31818MBBK-B CD1AM 7B-25.000MAAE-T 7A-14.31818MBBK-T 6504-202-1501 6526-202-1501 FA-118T 27.1200MB50P-K0 FC-135R 32.7680KA-A3 ABM12-104-37.400MHZT ABLS-10.000MHZ-D3W-T BTJ112E01E-513 BTJ722K01C-7067 BTL-20-513 TSX-3225 24.0000MF15X-AC TSX-3225 16.0000MF18X-AC BTJ120E02C BTL-12-513 7A-10.000MBBK-T 7A-11.0592MBBK-T ABM12-103-24.000MHZT CS325S25000000ABJT ABM3B-25.000MHZ-B2-X-T FC-135 32.7680KA-A5 FX0800015

[^0]: *Please kindly be noted that AKER DO NOT guarantee parts quality which involves human security application.*

