

Electrical Characteristics ($\mathrm{T}_{\mathbf{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
STATIC PARAMETERS						
$\mathrm{BV}_{\text {DSS }}$	Drain-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-30			V
loss	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			-1	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{J}}=55^{\circ} \mathrm{C}$			-5	
$\mathrm{I}_{\text {GSS }}$	Gate-Body leakage current	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	Gate Threshold Voltage	$V_{D S}=V_{G S}, l_{D}=-250 \mu \mathrm{~A}$	-1.2	-1.7	-2.2	V
$\mathrm{R}_{\text {DS(ON) }}$	Static Drain-Source On-Resistance	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-4.3 \mathrm{~A}$		37	45	$\mathrm{m} \Omega$
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		52	64	
				52	65	$\mathrm{m} \Omega$
g_{FS}	Forward Transconductance	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-3.5 \mathrm{~A} \\ \hline \mathrm{~V}_{\mathrm{DS}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-4.3 \mathrm{~A} \end{array}$		13		S
$\mathrm{V}_{\text {SD }}$	Diode Forward Voltage	$\mathrm{I}_{\mathrm{s}}=-1 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		0.8	1	V
I_{5}	Maximum Body-Diode Continuous Current				2	A
DYNAMIC PARAMETERS						
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		720		pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance			80		pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			70		pF
R_{g}	Gate resistance	$\mathrm{f}=1 \mathrm{MHz}$		15	25	Ω
SWITCHING PARAMETERS						
$\begin{array}{\|l\|} \hline \mathrm{Q}_{\mathrm{g}}(10 \mathrm{~V}) \\ \hline \mathrm{Q}_{\mathrm{g}}(4.5 \mathrm{~V}) \\ \hline \end{array}$	Total Gate Charge	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-4.3 \mathrm{~A}$		12.5	23	nC
	Total Gate Charge			6	12	nC
Q_{gs}	Gate Source Charge			1.6		nC
Q_{gd}				3		nC
$\mathrm{t}_{\text {(on) }}$	Turn-On DelayTime	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-15 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=3.488 \Omega, \mathrm{R}_{\mathrm{GEN}}=3 \Omega \end{aligned}$		8.5		ns
t_{r}	Turn-On Rise Time			5		ns
$t_{\text {(off) }}$				39		ns
t_{f}	Turn-Off Fall Time			14.5		ns
$\mathrm{t}_{\text {r }}$	Body Diode Reverse Recovery Time	$\mathrm{I}_{\mathrm{F}}=-4.3 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=500 \mathrm{~A} / \mu \mathrm{s}$		10		ns
$\mathrm{Q}_{\text {rI }}$	Body Diode Reverse Recovery Charge	$\mathrm{I}_{\mathrm{F}}=-4.3 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=500 \mathrm{~A} / \mu \mathrm{s}$		13		nC

A. The value of $R_{\theta A A}$ is measured with the device mounted on 1 in ${ }^{2}$ FR-4 board with $20 z$. Copper, in a still air environment with $T_{A}=25^{\circ} \mathrm{C}$. The value in any given application depends on the user's specific board design.
B. The power dissipation P_{D} is based on $T_{J(\text { MAX })}=150^{\circ} \quad \mathrm{C}$, using $\leqslant 10$ s junction-to-ambient thermal resistance.
C. Repetitive rating, pulse width limited by junction temperature $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}=150^{\circ}$ C. Ratings are based on low frequency and duty cycles to keep initialT ${ }_{j}=25^{\circ} \mathrm{C}$.
D. The $R_{\theta J \mathrm{~A}}$ is the sum of the thermal impedance from junction to lead $\mathrm{R}_{\text {өJL }}$ and lead to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using $<300 \mu$ s pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-ambient thermal impedance which is measured with the device mounted on $1 \mathrm{in}^{2}$ FR-4 board with

2oz. Copper, assuming a maximum junction temperature of $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}=150^{\circ} \mathrm{C}$. The SOA curve provides a single pulse rating.

APPLICATIONS OR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1: On-Region Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 6: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 10: Single Pulse Power Rating Junction-toAmbient (Note F)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

Gate Charge Test Circuit \& Waveform

Resistive Switching Test Circuit \& Waveforms

Diode Recovery Test Circuit \& Waveforms

SOT-23 PACKAGE MARKING DESCRIPTION

Green product

```
NOTE:
P - Package and product type
N - Last digital of product number
W - Week code
A - Assembly location code
L&T - Assembly lot code
```

PART NO.	DESCRIPTION	CODE (PN)
AO3481C	Green product	N7

Document No.	PO-00001
Version	L

SOT23 PACKAGE OUTLINE

RECOMMENDED LAND PATTERN

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A	0.85	---	1.25	0.033	---	0.049
A 1	0.00	---	0.13	0.000	---	0.005
A 2	0.70	1.00	1.15	0.028	0.039	0.045
b	0.30	0.40	0.50	0.012	0.016	0.020
c	0.08	0.13	0.20	0.003	0.005	0.008
D	2.80	2.90	3.10	0.110	0.114	0.122
E	2.60	2.80	3.00	0.102	0.110	0.118
E 1	1.40	1.60	1.80	0.055	0.063	0.071
e	0.95 BSC			0.037 BSC		
e 1	1.90 BSC			0.075 BSC		
L	0.30	---	0.60	0.012	---	0.024
$\theta 1$	0°	5°	8°	0°	5°	8°

UNIT: mm

NOTE

1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH OR GATE BURRS.

MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 5 MILS EACH.
2. TOLERANCE $\pm 0.100 \mathrm{~mm}$ (4 mil) UNLESS OTHERWISE SPECIFIED.
3. DIMENSION L IS MEASURED IN GAUGE PLANE.
4. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS

ARE NOT NECESSARILY EXACT.
5. ALL DIMENSIONS ARE IN MILLIMETERS.

SOT23-3L Carrier Tape

UNIT: MM

PACKAGE	A0	B0	K0	D0	D1	W	$E 1$	F	$P 0$	$P 1$	P2	T	A2	B2
SOT23-3L (8 mm)	$3.05-3.40$	$3.00-3.38$	$1.20-1.47$	1.55 ± 0.05	1.00 ± 0.25	8.00 ± 0.30	1.75 ± 0.10	3.50 ± 0.05	4.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.05	$0.18-0.25$	$0.84-1.24$	$2.29-2.69$

$\underline{\text { SOT23-3L Reel }}$

$\rightarrow 1-1-w$

TAPE SIZE	REEL SIZE	M	N	W	W1	H	K	S	G	R	V
8 mm	Ф178	$\begin{gathered} \not \subset 178.00 \\ \pm 1.00 \end{gathered}$	$\begin{gathered} \varnothing 54.00 \\ \pm 0.50 \end{gathered}$	$\begin{gathered} 9.00 \\ \pm 0.30 \end{gathered}$	$\begin{aligned} & 11.40 \\ & \pm 1.00 \end{aligned}$	ф13.00 $+0.50$ -0.20	10.60	$\begin{gathered} 2.00 \\ \pm 0.50 \end{gathered}$	¢9.00	5.00	18.00

SOT23-3L Tape
Leader / Trailer \& Orientation

Unit Per Reel: 3000pcs

AOS Semiconductor Product Reliability Report

AO3481C,

Plastic Encapsulated Device

4
This AOS product reliability report summarizes the qualification result for AO3481C. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AO3481C passes AOS quality and reliability requirements. The released product will be categorized by the process family and be routine monitored for continuously improving the product quality.

I. Reliability Stress Test Summary and Results

Test Item	Test Condition	Time Point	Total Sample Size	Number of Failures	Reference Standard
HTGB	$\begin{gathered} \text { Temp }=150^{\circ} \mathrm{C}, \\ \text { Vgs }=100 \% \text { of Vgsmax } \end{gathered}$	$\begin{aligned} & 168 / 500 / \\ & 1000 \text { hours } \end{aligned}$	462 pcs	0	JESD22-A108
HTRB	$\begin{gathered} \text { Temp }=150^{\circ} \mathrm{C}, \\ \text { Vds }=100 \% \text { of Vdsmax } \end{gathered}$	$\begin{aligned} & 168 / 500 / \\ & 1000 \text { hours } \end{aligned}$	462 pcs	0	JESD22-A108
Precondition (Note A)	$168 \mathrm{hr} 85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}+$ 3 cycle reflow@260ㅇ (MSL 1)	-	4620 pcs	0	JESD22-A113
HAST	$\begin{gathered} 130^{\circ} \mathrm{C}, 85 \% \mathrm{RH}, \\ 33.3 \text { psia, } \\ \text { Vds }=80 \% \text { of Vdsmax } \end{gathered}$	96 hours	693 pcs	0	JESD22-A110
H3TRB	$\begin{gathered} 85^{\circ} \mathrm{C}, 85 \% \mathrm{RH}, \\ \text { Vds }=80 \% \text { of Vdsmax } \end{gathered}$	1000 hours	693 pcs	0	JESD22-A101
Autoclave	$\begin{gathered} 121^{\circ} \mathrm{C}, 29.7 \text { psia, } \\ \mathrm{RH}=100 \% \\ \hline \end{gathered}$	96 hours	924 pcs	0	JESD22-A102
Temperature Cycle	$\begin{gathered} -65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C}, \\ \text { air to air, } \end{gathered}$	1000cycles	924 pcs	0	JESD22-A104
HTSL	Temp $=150^{\circ} \mathrm{C}$	1000 hours	693 pcs	0	JESD22-A103
IOL	$\Delta \mathrm{Tj}=100^{\circ} \mathrm{C}$	15000 cycles	693 pcs	0	$\begin{aligned} & \text { MIL-STD-750 } \\ & \text { Method } 1037 \end{aligned}$

Note: The reliability data presents total of available generic data up to the published date.
Note A: MSL (Moisture Sensitivity Level) 1 based on J-STD-020

II. Reliability Evaluation

FIT rate (per billion): 3.82
 MTTF = 29919 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size. Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate $=\mathrm{Chi}^{2} \times 10^{9} /[2(\mathrm{~N})(\mathrm{H})(\mathrm{Af})]=3.82$
MTTF $=10^{9} /$ FIT $=29919$ years
$\mathbf{C h i}^{2}=$ Chi Squared Distribution, determined by the number of failures and confidence interval
$\mathbf{N}=$ Total Number of units from burn-in tests
$\mathbf{H}=$ Duration of burn-in testing
$\mathbf{A f}=$ Acceleration Factor from Test to Use Conditions ($\mathrm{Ea}=0.7 \mathrm{eV}$ and $\mathrm{Tuse}=55^{\circ} \mathrm{C}$)
Acceleration Factor [Af] $=\operatorname{Exp}[E a / \mathbf{k}(1 / \mathrm{T} \mathrm{j} u-1 / \mathrm{T} \mathrm{j})]$
Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	259	87	32	13	5.64	2.59	1

Tj s = Stressed junction temperature in degree (Kelvin), K = C +273.16
Tj $\mathbf{u}=$ The use junction temperature in degree (Kelvin), $\mathrm{K}=\mathrm{C}+273.16$
$\mathbf{k}=$ Boltzmann's constant, $8.617164 \times 10^{-5} \mathrm{eV} / \mathrm{K}$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by Alpha \& Omega manufacturer:

Other Similar products are found below :
614233C 648584F MCH3443-TL-E MCH6422-TL-E NTNS3A92PZT5G IRFD120 IRFF430 JANTX2N5237 2N7000 AOD464 2SK2267(Q) 2SK2545(Q,T) 405094E 423220D MIC4420CM-TR VN1206L 614234A 715780A SSM6J414TU,LF(T 751625C IPS70R2K0CEAKMA1 BSF024N03LT3 G PSMN4R2-30MLD TK31J60W5,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE2384 NTE2969 NTE6400A DMC2700UDMQ-7 DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO-7B IPS60R3K4CEAKMA1 DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 IRF40H233XTMA1 IPSA70R950CEAKMA1 IPSA70R2K0CEAKMA1 STU5N65M6 C3M0021120D DMN6022SSD-13

