## General Description

The AOZ1342 power-distribution switches is intended for applications where heavy capacitive loads and short-circuits are likely to be encountered. This device incorporates N -channel MOSFET power switches for power-distribution systems that require multiple power switches in a single package. Each switch is controlled by a logic enable input. Gate drive is provided by an internal charge pump designed to control the power-switch rise times and fall times to minimize current surges during switching. The charge pump requires no external components and allows operation from supplies as low as 2.7 V .

The AOZ1342 offers 1.5 A of maximum continuous current.

The AOZ1342 is available in an Exposed Pad SO-8 package and is rated over a $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ambient temperature range.

## Features

- Typical $70 \mathrm{~m} \Omega$ (NFET)
- 1.5 A maximum continuous current
- Two enable options: EN or EN
- Vin range: 2.7 V to 5.5 V
- Open Drain Fault Flag
- Fault Flag deglitched (blanking time)
- Thermal shutdown
- Reverse current blocking
- Exposed pad SO-8 package


## Applications

- Notebook Computers
- Desktop Computers


## Typical Application



## Ordering Information

| Part Number | Maximum <br> Continuous Current |  | Typical Short-circuit Current Limit |  | Enable Setting | Package | Output Discharge | Environmental |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Channel 1 | Channel 2 | Channel 1 | Channel 2 |  |  |  |  |
| AOZ1341AI | 1 A | 1A | 1.5 A | 1.5 A | Active Low | SO-8 | No | Green Product RoHS Compliant |
| AOZ1341EI |  |  |  |  |  | EPAD MSOP-8 |  |  |
| AOZ1341AI-1 |  |  |  |  | Active High | SO-8 |  |  |
| AOZ1341EI-1 |  |  |  |  |  | EPAD MSOP-8 |  |  |
| AOZ1342PI | 1.5 A | 1.5A | 2 A | 2 A | Active Low | EPAD SO-8 |  |  |
| AOZ1342PI-1 |  |  |  |  | Active High | EPAD SO-8 |  |  |
| AOZ1343AI* | 1.5 A | 0.5A | 2 A | 0.75 A | Active Low | SO-8 |  |  |
| AOZ1343EI* |  |  |  |  |  | EPAD MSOP-8 |  |  |
| AOZ1343AI-1* |  |  |  |  |  | SO-8 |  |  |
| AOZ1343EI-1* |  |  |  |  | Active Hign | EPAD MSOP-8 |  |  |
| AOZ1312AI-1 | 1.5 A | None | 2 A | None | Active High | SO-8 |  |  |
| AOZ1312EI-1 |  |  |  |  |  | EPAD MSOP-8 |  |  |
| AOZ1310Cl-1 | 0.5 A | None | 0.75 A | None | Active High | SOT23-5 |  |  |

*Contact factory for availability
AOS Green Products use reduced levels of Halogens, and are also RoHS compliant.
Please visit www.aosmd.com/web/quality/rohs_compliant.jsp for additional information.

## Pin Configuration



## Pin Description

| Pin Name | Pin Number |  |
| :---: | :---: | :--- |
| GND | 1 | Ground |
| IN | 2 | Input voltage |
| EN1/EN1 | 3 | Enable input, logic high/logic low turns on power switch IN-OUT1 |
| EN2/EN2 | 4 | Enable input, logic high/logic low turns on power switch IN-OUT2 |
| $\overline{\text { OC2 }}$ | 5 | Overcurrent, open-drain output, active low, IN-OUT1 |
| OUT2 | 6 | Power-switch output, IN-OUT1 |
| OUT1 | 7 | Power-switch output, IN-OUT2 |
| $\overline{\text { OC1 }}$ | 8 | Overcurrent, open-drain output, active low, IN-OUT2 |

## Absolute Maximum Ratings

Exceeding the Absolute Maximum Ratings may damage the device.

| Parameter | Rating |
| :--- | ---: |
| Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ | 6 V |
| Enable Voltage $\left(\mathrm{V}_{\mathrm{EN}}\right)$ | 6 V |
| Storage Temperature $\left(\mathrm{T}_{\mathrm{S}}\right)$ | $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Maximum Continuous Current | 1.5 A |
| ESD Rating ${ }^{(1)}$ | 2 kV |

## Note:

1. Devices are inherently ESD sensitive, handling precautions are required. Human body model is a 100 pF capacitor discharging through a $1.5 \mathrm{k} \Omega$ resistor.

## Recommended Operating Conditions

The device is not guaranteed to operate beyond the Recommended Operating Conditions.

| Parameter | Rating |
| :--- | ---: |
| Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ | +2.7 V to +5.5 V |
| Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Package Thermal Resistance <br> Exposed Pad SO-8 $\left(\Theta_{\mathrm{JA}}\right)$ |  |

## Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{EN}}=5.5 \mathrm{~V}$, unless otherwise specified.


## Electrical Characteristics (Continued)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{EN}}=5.5 \mathrm{~V}$, unless otherwise specified.

| Symbol | Parameter | Conditions | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNDERVOLTAGE LOCKOUT |  |  |  |  |  |  |
|  | Low-level voltage, IN |  | 2.0 |  | 2.5 | V |
|  | Hysteresis, IN |  |  | 200 |  | mV |
| OVERCURRENT $\overline{\text { OC1 AND }} \overline{\text { OC2 }}$ |  |  |  |  |  |  |
|  | Output Low Voltage $V_{\mathrm{OL}(\mathrm{OCx})}$ | $\mathrm{I}_{\mathrm{O}(\mathrm{OCx})}=5 \mathrm{~mA}$ |  |  | 0.4 | V |
|  | Off-state Current | $\mathrm{V}_{\mathrm{O}(\mathrm{OCx})}=5 \mathrm{~V}$ or 3.3 V |  |  | 1 | $\mu \mathrm{A}$ |
|  | OC_L Deglitch | OCx assertion or deassertion | 4 | 8 | 15 | ms |
| THERMAL SHUTDOWN |  |  |  |  |  |  |
|  | Thermal Shutdown Threshold |  | 135 |  |  | ${ }^{\circ} \mathrm{C}$ |
|  | Recovery from Thermal Shutdown |  | 105 |  |  | ${ }^{\circ} \mathrm{C}$ |
|  | Hysteresis |  |  | 30 |  | ${ }^{\circ} \mathrm{C}$ |

## Note:

2. Parameters are guaranteed by design only and not production tested.

## Functional Block Diagram



## Functional Characteristics

Figure 1. Turn-On Delay and Rise Time with $1 \mu \mathrm{~F}$ Load (Active High)


Figure 3. Turn-On Delay and Rise Time with $\mathbf{1 0 0 \mu} \mathrm{F}$ Load (Active High)


Figure 5. Short-circuit Current, Device Enable to Short (Active High)


Figure 2. Turn-Off Delay and Fall Time with $1 \mu \mathrm{~F}$ Load (Active High)


Figure 4. Turn-Off Delay and Fall Time with $100 \mu \mathrm{~F}$ Load (Active High)


Figure 6. $0.6 \Omega$ Load Connected to Enable to Device (Active High)


## Typical Characteristics

Figure 7. Supply Current, Output Enabled


Figure 9. Rds(on) vs. Ambient Temperature


Figure 8. Supply Current, Output Disabled
vs. Junction Temperature


Figure 10. UVLO Threshold vs. Junction Temperature


## Detailed Description

The AOZ1342 family of power-distribution switches are intended for applications where heavy capacitive loads and short-circuits are likely to be encountered. This device incorporates $70 \mathrm{~m} \Omega \mathrm{~N}$-channel MOSFET power switches for power-distribution systems that require multiple power switches in a single package. Each switch is controlled by a logic enable input. Gate drive is provided by an internal charge pump designed to control the power-switch rise times and fall times to minimize current surges during switching. The charge pump requires no external components and allows operation from supplies as low as 2.7 V .

## Thermal Shut-down Protection

When the output load exceeds the current-limit threshold or a short is present, the device limits the output current to a safe level by switching into a constant-current mode, pulling the overcurrent (OC) logic output low.

During current limit or short circuit conditions, the increasing power dissipation in the chip causes the die temperature to rise. When the die temperature reaches a certain level, the thermal shutdown circuitry will shutdown the device. The thermal shutdown will cycle repeatedly until the short circuit condition is resolved.

## Applications Information

## Input Capacitor Selection

The input capacitor prevents large voltage transients from appearing at the input, and provides the instantaneous current needed each time the switch turns on and to also limit input voltage drop. The input capacitor also prevents high-frequency noise on the power line from passing through the output of the power side. The choice of input capacitor is based on its ripple current and voltage ratings rather than its capacitor value. The input capacitor should be located as close as possible to the VIN pin. A $0.1 \mu \mathrm{~F}$ ceramic cap is recommended. However, a higher value capacitor will reduce the voltage drop at the input.

## Output Capacitor Selection

The output capacitor acts in a similar way. A small $0.1 \mu \mathrm{~F}$ capacitor prevents high-frequency noise from going into the system. Also, the output capacitor has to supply enough current for the large load that it may encounter during system transients. This bulk capacitor must be large enough to supply a fast transient load in order to prevent the output from dropping.

## Power Dissipation Calculation

Calculate the power dissipation for normal load condition using the following equation:
$\mathrm{P}_{\mathrm{D}}=\mathrm{R}_{\mathrm{ON}} \times\left(\mathrm{l}_{\mathrm{OUT}}\right)^{2}$
The worst case power dissipation occurs when the load current hits the current limit due to over-current or short circuit faults. The power dissipation under these conditions can be calculated using the following equation:
$P_{\mathrm{D}}=\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \times \mathrm{I}_{\text {LIMIT }}$

## Layout Guidelines

Good PCB layout is important for improving the thermal and overall performance of AOZ1342. To optimize the switch response time to output short-circuit conditions, keep all traces as short as possible to reduce the effect of unwanted parasitic inductance. Place the input and output bypass capacitors as close as possible to the IN and OUT pins. The input and output PCB traces should be as wide as possible for the given PCB space. Use a ground plane to enhance the power dissipation capability of the device.

## USB Power Distribution Application



Figure 11. Typical Six-Port USB Host/Self-Powered Hub Applications Circuitry

## Package Dimensions, Exposed Pad SO-8



Dimensions in millimeters

| Symbols | Min. | Nom. | Max. |
| :---: | :---: | :---: | :---: |
| A | 1.40 | 1.55 | 1.70 |
| A1 | 0.00 | 0.05 | 0.10 |
| A2 | 1.40 | 1.50 | 1.60 |
| B | 0.31 | 0.406 | 0.51 |
| C | 0.17 | - | 0.25 |
| D | 4.80 | 4.96 | 5.00 |
| D0 | 3.20 | 3.40 | 3.60 |
| D1 | 3.10 | 3.30 | 3.50 |
| E | 5.80 | 6.00 | 6.20 |
| e | - | 1.27 | - |
| E1 | 3.80 | 3.90 | 4.00 |
| E2 | 2.21 | 2.41 | 2.61 |
| E3 | 0.40 REF |  |  |
| L | 0.40 | 0.95 | 1.27 |
| y | - | - | 0.10 |
| $\theta$ | $0^{\circ}$ | $3^{\circ}$ | $8^{\circ}$ |
| \| L1-L1' | | - | 0.04 | 0.12 |
| L1 | 1.04 REF |  |  |

Dimensions in inches

| Symbols | Min. | Nom. | Max. |
| :---: | :---: | :---: | :---: |
| A | 0.055 | 0.061 | 0.067 |
| A1 | 0.000 | 0.002 | 0.004 |
| A2 | 0.055 | 0.059 | 0.063 |
| B | 0.012 | 0.016 | 0.020 |
| C | 0.007 | - | 0.010 |
| D | 0.189 | 0.195 | 0.197 |
| D0 | 0.126 | 0.134 | 0.142 |
| D1 | 0.122 | 0.130 | 0.138 |
| E | 0.228 | 0.236 | 0.244 |
| e | - | 0.050 | - |
| E1 | 0.150 | 0.153 | 0.157 |
| E2 | 0.087 | 0.095 | 0.103 |
| E3 | 0.016 REF |  |  |
| L | 0.016 | 0.037 | 0.050 |
| y | - | - | 0.004 |
| $\theta$ | $0^{\circ}$ | $3^{\circ}$ | $8^{\circ}$ |
| L1-L1' $\mid x$ | - | 0.002 | 0.005 |
| L1 | 0.041 REF |  |  |

## Notes:

1. Package body sizes exclude mold flash and gate burrs.
2. Dimension $L$ is measured in gauge plane.
3. Tolerance 0.10 mm unless otherwise specified.
4. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.
5. Die pad exposure size is according to lead frame design.
6. Followed from JEDEC MS-012

## Tape and Reel Dimensions, Exposed Pad SO-8

Carrier Tape


UNIT: mm

| Package | A0 | B0 | K0 | D0 | D1 | E | E1 | E2 | P0 | P1 | P2 | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SO- 8 | 6.40 | 5.20 | 2.10 | 1.60 | 1.50 | 12.00 | 1.75 | 5.50 | 8.00 | 4.00 | 2.00 | 0.25 |
| $(12 \mathrm{~mm})$ | $\pm 0.10$ |

## Reel



UNIT: mm

| Tape Size | Reel Size | $\mathbf{M}$ | $\mathbf{N}$ | $\mathbf{W}$ | $\mathbf{W 1}$ | $\mathbf{H}$ | $\mathbf{K}$ | $\mathbf{S}$ | $\mathbf{G}$ | $\mathbf{R}$ | $\mathbf{V}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 mm | $\varnothing 330$ | $\varnothing 330.00$ | $\varnothing 97.00$ | 13.00 | 17.40 | $\varnothing 13.00$ | 10.60 | 2.00 | - | - | - |
|  |  | $\pm 0.50$ | $\pm 0.10$ | $\pm 0.30$ | $\pm 1.00$ | $+0.50 /-0.20$ |  | $\pm 0.50$ |  |  |  |

## Leader/Trailer and Orientation



## Part Marking



## AOZ1342PI-1

(Exposed Pad SO-8)


This datasheet contains preliminary data; supplementary data may be published at a later date.
Alpha \& Omega Semiconductor reserves the right to make changes at any time without notice.

## LIFE SUPPORT POLICY

## ALPHA \& OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Alpha \& Omega manufacturer:
Other Similar products are found below :
$\underline{A O 3160}$ AO3160E AO3162 AO3401A AO3402 AO3403 AO3404A AO3406 AO3407A AO3409 AO3413 AO3414 AO3415 AO3415A AO3416 AO3418 AO3419 AO3420 AO3421E AO3422 AO3423 AO3424 AO3434A AO3442 AO3480 AO3481 AO4262E AO4264E AO4266E AO4286 AO4292E AO4294 AO4294A AO4306 AO4354 AO4402 AO4402G AO4403 AO4404B AO4406A AO4406AL AO4407A AO4407C AO4411 AO4419 AO4421 AO4425 AO4430 AO4435 AO4441

