General Description

The AOZ1361DI is a high-side load switch intended for applications that require circuit protection. The device operates from voltages between 4.5 V and 28 V , and can handle a continuous current up to 3 A . The internal current limiting circuit protects the input supply voltage from large load current. The current limit can be set with an external resistor. The AOZ1361DI provides thermal protection function that limits excessive power dissipation. An open-drain fault indicator pulls low when an over-current or thermal shutdown event occurs. The device employs internal soft-start circuitry to control inrush current due to highly capacitive loads associated with hot-plug events. It features low quiescent current of $220 \mu \mathrm{~A}$ and the supply current reduces to less than $1 \mu \mathrm{~A}$ in shutdown.

The AOZ1361DI is available in a $10-$ pin 4×4 DFN package and can operate over $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Features

- $35 \mathrm{~m} \Omega$ maximum on resistance
- 2A minimum continuous current
- Programmable current limit
- 4.5 V to 28 V operating input voltage
- Low quiescent current
- Under-voltage lockout
- Thermal shutdown protection
- Open-drain fault indicator with delay
- Small 4x4 DFN package
- 2.5 kV ESD rating

Applications

- Notebook PCs
- Hot swap supplies

Typical Application

Ordering Information

Part Number	Feature	Package	Temperature Range	Environmental
AOZ1361DI-01	Auto-restart	DFN 4×410	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	RoHS Compliant Green Product
AOZ1361DI-02	Latch-off			

AOS Green Products use reduced levels of Halogens, and are also RoHS compliant.
Please visit www.aosmd.com/web/quality/rohs_compliant.jsp for additional information.

Pin Configuration

DFN 4×410

Pin Description

Pin Number	Pin Name	Pin Function
1,2	IN	P-channel MOSFET source. Connect a 1μ F capacitor from IN to GND.
3	FLTB	Fault output pin. This is an open drain output that is internally pulled low to indicate a fault condition. Connect to 5V thru a pull up resistor.
4	GND	Ground.
5	SS	Soft-Start Pin. Connect a capacitor from SS to GND to set the soft-start time.
6	EN	Enable Input.
7	SET	Current Limit Set Pin. Connect a resistor from SET to GND to set the switch current limit.
8	TFLT	Fault Delay pin. Connect a capacitor from TFLT to GND to set the Fault delay time.
9,10	OUT	P-channel MOSFET Drain. Connect a 0.1 μ F capacitor from OUT to GND.

Absolute Maximum Ratings

Exceeding the Absolute Maximum ratings may damage the device.

Parameter	Rating
IN to GND	-0.3 V to +30 V
EN, OUT to GND	-0.3 V to $\mathrm{V}_{\text {IN }}+0.3 \mathrm{~V}$
FLTB, TFLT, SS, SET	-0.3 V to +6 V
Maximum Continuous Current	3 A
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$	$+150^{\circ} \mathrm{C}$
ESD Rating (HBM)	2.5 kV

Recommend Operating Ratings

The device is not guaranteed to operate beyond the Maximum Operating Ratings.

Parameter	Rating
Thermal Resistance (DFN 4×4)	$63^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise stated.

Symbol	Parameter	Conditions	Min.	Typ.	Max	Units
$\mathrm{V}_{\text {IN }}$	Input Supply Voltage		4.5		28	V
$\mathrm{V}_{\text {UVLO }}$	Undervoltage Lockout Threshold	IN rising		3.9	4.4	V
$\mathrm{V}_{\text {UVHYS }}$	Undervoltage Lockout Hysteresis			200		mV
$\mathrm{I}_{\text {IN_ON }}$	Input Quiescent Current	EN = IN, no load		300	500	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IN_OFF }}$	Input Shutdown Current	EN = GND, no load			1	$\mu \mathrm{A}$
leak	Output Leakage Current	EN = GND, no load			1	$\mu \mathrm{A}$
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	Switch On Resistance	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$		22	35	$\mathrm{m} \Omega$
		$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$		33	43	
ILIM	Current Limit	$\mathrm{R}_{\text {SET }}=74.5 \mathrm{k} \Omega$	2	2.7	3.4	A
$\mathrm{V}_{\text {EN_H }}$	Enable Input Low Voltage				0.8	V
$\mathrm{V}_{\text {EN_L }}$	Enable Input High Voltage		2.0			V
$\mathrm{V}_{\text {EN_HYS }}$	Enable Input Hysteresis			100		mV
IEN_BIAS	Enable Input Bias Current				1	$\mu \mathrm{A}$
Td_on	Turn-On Delay Time EN_50\% to OUT_10\%	$R_{L}=120 \Omega, C_{L}=1 \mu F, S S=$ Floated. Measure from 50\% of EN voltage to 10% of OUT voltage		280		$\mu \mathrm{s}$
t_{ON}	Turn-On Rise Time OUT_10\% to 90\%	$R_{L}=120 \Omega, C_{L}=1 \mu F, S S=$ Floated. Measure from 10% of OUT voltage to 90% of OUT voltage		220		$\mu \mathrm{s}$
		$\mathrm{R}_{\mathrm{L}}=120 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{SS}}=1 \mathrm{nF}$		360		$\mu \mathrm{s}$
$\mathrm{t}_{\text {OFF }}$	Turn-Off Fall Time	$\mathrm{R}_{\mathrm{L}}=120 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \mathrm{SS}=$ Floated		280		$\mu \mathrm{s}$
$\mathrm{R}_{\text {DS(FLTB) }}$	On-Resistance at FLTB	Sink current $=4 \mathrm{~mA}$			100	Ω
l LEAK_FLT	FLT Output Leakage				1	$\mu \mathrm{A}$
TFLT	FLT Delay Period	$\mathrm{C}_{\mathrm{TLT}}=1 \mathrm{nF}$		600		$\mu \mathrm{s}$
$\mathrm{T}_{\text {SD }}$	Thermal Shutdown Threshold			130		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SD_HYS }}$	Thermal Shutdown Hysteresis			30		${ }^{\circ} \mathrm{C}$

Timing Diagram

Figure 1. AOZ1361DI Timing

Functional Block Diagram

Figure 2. AOZ1361DI Functional Block Diagram

Functional Characteristics

Turn-Off

Current Limit Response Thermal Shutdown AOZ1361DI-02: Latch-off Version $\left(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}\right)$

Typical Operating Characteristics

Typical Operating Characteristics (Continued)

Enable Input Threshold (Rising) vs Temperature

Enable Input Threshold (Falling) vs. Temperature

Detailed Description

Introduction

The AOZ1361DI is a $35 \mathrm{~m} \Omega$ P-channel high-side load switch with adjustable soft-start slew-rate control, programmable current limit and thermal shutdown. It operates with an input voltage range from 4.5 V to 28 V and can handle a continuous current of 2.7A.

Enable

The EN pin is the ON/OFF control for the output switch. It is an active-high input. The EN pin is active after VIN is above the UVLO threshold of 4 V . Conversely, the Enable will be de-activated if the Vin falls below the UVLO of 4 V . The EN pin must be driven to a logic high or logic low state to guarantee operation. While disabled, the AOZ1361DI only draws about $1 \mu \mathrm{~A}$ supply current. The EN is a high impedance input with an ESD protection diode to ground and should not be forced below ground. This input level is compatible with most microcontroller outputs and other logic families.

Under-Voltage Lockout (UVLO)

The under-voltage lockout (UVLO) circuit of AOZ1361DI monitors the input voltage and prevents the output MOSFET from turning on until Vin exceeds 4V.

Adjustable Soft-Start Slew-Rate Control

When the EN pin is asserted high, the slew rate control circuitry applies voltage on the gate of the PMOS switch in a manner such that the output voltage and current is ramped up linearly until it reaches the steady-state load current level. The slew rate can be adjusted by an external capacitor connected to the SS pin to ground. The slew rate rise time, Ton, can be set using the following equation:

$$
T o n=\frac{C s s \times V_{I N}}{30 \mu A}
$$

Programmable Current Limit

The current limit is programmed by an external resistor connected to the SET pin to ground. This sets a reference voltage to the current limit error amplifier that compares it to a sensed voltage that is generated by passing a small portion of the load current through an internal amplifier. When the sensed load current exceeds the set current limit, the load current is then clamped at
the set limit and the Vout drops to whatever voltage necessary to clamp the load current. The AOZ1361DI will stay in this condition until the load current no longer exceeds the current limit or if the thermal shutdown protection is engaged. To set the current limit use Figure 3 on the following page.

Thermal Shut-down Protection

The thermal overload protection of AOZ1361DI is engaged to protect the device from damage should the die temperature exceeds safe margins due to a short circuit, extreme loading or heating from external sources.

1. AOZ1361DI-01 (Auto-restart version): During current limit or short circuit conditions, the PMOS resistance is increased to clamp the load current. This increases the power dissipation in the chip causing the die temperature to rise. When the die temperature reaches $130^{\circ} \mathrm{C}$ the thermal shutdown circuitry will shutdown the device. There is a $30^{\circ} \mathrm{C}$ hysterisis after which the device will turn back on and go thru soft start. The thermal shutdown will cycle repeatedly until the short circuit condition disappears or the enable pin is pulled LOW by an external monitor.
2. AOZ1361DI-02 (Latch-off version): Thermal shut-down protection sets a fault latch and shuts off the internal MOSFET and asserts the FLT output if the junction temperature exceeds $+130^{\circ} \mathrm{C}$. The AOZ1361DI can be re-enabled by toggling EN pin or cycling the input supply after the die temperature drops below $+100^{\circ} \mathrm{C}$.

FLTB

The FLTB pin is an open drain output that is asserted low when either an over-current, short-circuit or thermal overload condition occurs. To prevent false alarm, the AOZ1361DI implements a 600 μ s fault delay time for OT, over-current and short-circuit fault conditions. The FLTB pin becomes high impedance when the fault conditions are removed. A $100 \mathrm{k} \Omega$ pull-up resistor must be connected between FLTB to 5 V to provide a logic signal.

TFLT

TFLT is a fault delay pin, and its delay time is adjustable by a capacitor connected from TFLT to GND.

Applications Information

Input Capacitor Selection

The input capacitor prevents large voltage transients from appearing at the input, and provides the instantaneous current needed each time the switch turns on and to limit input voltage drop. Also it is to prevent high-frequency noise on the power line from passing through the output of the power side. The choice of the input capacitor is based on its ripple current and voltage ratings rather than its capacitor value. The input capacitor should be located as close to the VIN pin as possible. A $1 \mu \mathrm{~F}$ ceramic cap is recommended. However, higher capacitor values further reduce the voltage drop at the input.

Output Capacitor Selection

The output capacitor acts in a similar way. A small $0.1 \mu \mathrm{~F}$ capacitor prevents high-frequency noise from going into the system. Also, the output capacitor has to supply enough current for a large load that it may encounter during system transients. This bulk capacitor must be large enough to supply fast transient load in order to prevent the output from dropping.

Current Limit Setting

The current limit is program by using external resistor connected to the SET pin. To set the current limit, use the Figure 3 below.

AOZ1361 RSET VS ILIM

Figure 3. Current Limit vs. RSET $\left(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}\right)$

Slew Rate Setting

Slew rate is set by changing the capacitor value on the Slew pin of the device. A capacitor connected between this SS pin and ground will reduce the output slew-rate. The capacitive range is $0.001 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$. See Figure 4 for Output Slew Rate Adjustment vs. Capacitance.

Figure 4. Output Slew Rate Adjustment vs. Capacitance

Power Dissipation Calculation

Calculate the power dissipation for normal load condition using the following equation:
$\mathrm{P}_{\mathrm{D}}=\mathrm{R}_{\mathrm{ON}} \times\left(\mathrm{l}_{\mathrm{OUT}}\right)^{2}$
The worst case power dissipation occurs when the load current hits the current limit due to over-current or short circuit faults. The power dissipation under these conditions can be calculated using the following equation:
$P_{D}=\left(V_{I N}-V_{\text {OUT }}\right) \times I_{\text {LIMIT }}$

Layout Guidelines

Good PCB layout is important for improving the thermal and overall performance of AOZ1361. To optimize the switch response time to output short-circuit conditions keep all traces as short as possible to reduce the effect of unwanted parasitic inductance. Place the input and output bypass capacitors as close as possible to the IN and OUT pins. The input and output PCB traces should be as wide as possible for the given PCB space. Use a ground plane to enhance the power dissipation capability of the device.

Package Dimensions, DFN 4x4

6 TOP VIEW

BOTTOM VIEW

1. All dimensions are in millimeters.
2. The dimensions with * are just for reference.
3. The location of the terminal \#1 identifier and terminal numbering convention conforms to JEDEC publication 95 SPP-002.
. Dimension b applies to metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip. If the terminal has the optional radius on the other end of the terminal, then dimension b should not be measured in that radius area.

Coplanarity applies to the terminals and all other bottom surface metallization.Drawings shown are for illustration only.

Tape and Reel Dimensions, DFN 4x4

Carrier Tape

UNIT: MM

Package	A0	B0	K0	D0	D1	E	E1	E2	P0	P1	P2	T
DFN 4x4	4.35	4.35	1.10	1.50	1.50	12.0	1.75	5.50	8.00	4.00	2.00	0.30
$(12 \mathrm{~mm})$	0.10	0.10	0.10	Min.	$+0.1 /-0.0$	0.3	0.10	0.05	0.10	0.10	0.05	0.05

Reel

$\rightarrow-W$
UNIT: MM

Tape Size	Reel Size	\mathbf{M}	\mathbf{N}	\mathbf{W}	$\mathbf{W} 1$	\mathbf{H}	\mathbf{K}	\mathbf{S}	\mathbf{G}	\mathbf{R}	\mathbf{V}
12 mm	$\varnothing 330$	$\varnothing 330.0$	$\varnothing 79.0$	12.4	17.0	$\varnothing 13.0$	10.5	2.0	-	-	-
		2.0	1.0	$+2.0 /-0.0$	$+2.6 /-0.0$	0.5	0.2	0.5			

Leader/Trailer and Orientation

Package Marking

DFN 4x4

Alpha \& Omega Semiconductor reserves the right to make changes at any time without notice.

LIFE SUPPORT POLICY

ALPHA \& OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.
As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Alpha \& Omega manufacturer:

Other Similar products are found below :
AP22652AW6-7 MAPDCC0001 L9349TR-LF MAPDCC0005 NCP45520IMNTWG-L VND5050K-E MP6205DD-LF-P MC15XS3400DHFKR2 FPF1015 FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G L9781TR NCP45520IMNTWG-H MC17XS6500BEK SP2526A-1EN-L/TR SP2526A-2EN-L/TR MAX4999ETJ+T MC22XS4200BEK MAX14575BETA+T VN1160C-1-E VN750PEP-E TLE7244SL BTS50060-1EGA MAX1693HEUB+T MC07XSG517EK TLE7237SL MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 MP6513LGJ-P NCP3902FCCTBG AP22811BW5-7 SLG5NT1437VTR SZNCP3712ASNT1G NCV330MUTBG DML1008LDS-7 MAX4987AEETA+T KTS1670EDA-TR MAX1694EUB+T KTS1640QGDV-TR KTS1641QGDV-TR IPS160HTR BTS500251TADATMA2 NCV451AMNWTBG MC07XS6517BEKR2 SIP43101DQ-T1-E3 DML10M8LDS-13 MAX1922ESA+C71073

