

ALL SENSORS®

DLC - Compact High Resolution Pressure Sensors Series

Table of Contents

reatures & Applications
Pressure Sensor Maximum Ratings2
Environmental Specifications
Equivalent Circuit
Standard Pressure Ranges
Performance Characteristics4
Soldering Recommendations4
<u>12C Electrical Parameters</u> 5
Operation Overview6-7
Digital Interface Command & Data Formats 7-8
<u>l²C Interface</u> 8-10
How to Order Guide11
Standard Part Number Configurations11
Product Identification Guide12
Dimensional Package Drawings
Differential SMT, SML and SOIC13-14
Gage DIP and SMT15
Absolute SMT16
Packing Options16
Pressure Tubing Recommendations17
Suggested Pad Layouts17

Introduction

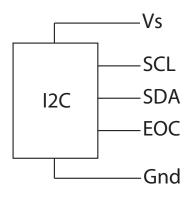
The DLC Series Compact High Resolution Sensor is based on All Sensors' CoBeam^{2 TM} Technology. This reduces package stress susceptibility, resulting in improved overall long term stability. This technology breakthrough advances the state of the art for piezoresistive pressure sensors beyond what has been achieved for low pressure sensing using silicon based strain technology. Design engineers will find exceptional space savings with optimal performance for various compact applications.

The low supply voltage allows for integration of the sensors into a wide range of process control and measurement systems, as well as direct connection to I2C serial communications channels. The DLC series offers 16 bit digital resolution. The digital interface options ease integration of the sensors into a wide range of process control and measurement systems, allowing direct connection to serial communications channels. For battery-powered systems, the sensors can enter very low-power modes between readings to minimize load on the power supply.

These calibrated and compensated sensors provide accurate, stable output over a wide temperature range. This series is intended for use with non-corrosive, non-ionic working fluids such as air and dry gases.

DLC — COMPACT HIGH-RESOLUTION PRESSURE SENSORS

Features


- Pressure Ranges from 1 inH2O to 150 psi
- High Resolution 16 bit Output
- Digital I2C Interface
- 1.8V to 3.6V Supply Voltage Range
- Compact Package Sizes As Small As 7mm x 7mm

Applications

- Medical Breathing
- Industrial Controls
- HVAC
- Environmental Controls
- Portable Equipment

Pressure Sensor Maxir	num Ratings	Environmenta	l Specifications
Supply Voltage (Vs) Common Mode Pressure	3.63 Vdc 10 psig	Temperature Ranges Compensated	-25°C to 85 °C
		Operating Storage Humidity Limits (non con	-40°C to 85 °C -40°C to 125 °C densing) 0 to 95% RH

Equivalent Circuit

See package drawings for pinouts

ALL SENSORS

DS-0365 REV A

Standard Pressure Ranges

Low Pressure Products						
Device	Operating I	Range ^A	Proof P	ressure	Burst P	ressure
DLC-L01D	± 1 inH2O	248.84 Pa	100 inH2O	24.88 kPa	300 inH2O	74.65 kPa
DLC-L02D	± 2 inH2O	497.68 Pa	100 inH2O	24.88 kPa	300 inH2O	74.65 kPa
DLC-L05D	± 5 inH2O	1,244.20 Pa	200 inH2O	49.77 kPa	300 inH2O	74.65 kPa
DLC-L10D	± 10 inH2O	2,488.40 Pa	200 inH2O	49.77 kPa	300 inH2O	74.65 kPa
DLC-L20D	± 20 inH2O	4,976.80 Pa	200 inH2O	49.77 kPa	500 inH2O	124.42 kPa
DLC-L30D	± 30 inH2O	7,465.20 Pa	200 inH2O	49.77 kPa	500 inH2O	124.42 kPa
DLC-L60D	± 60 inH2O	14,930.4 Pa	200 inH2O	49.77 kPa	800 inH2O	199.01 kPa
DLC-L01G	0 to 1 inH2O	248.84 Pa	100 inH2O	24.88 kPa	300 inH2O	74.65 kPa
DLC-L02G	0 to 2 inH2O	497.68 Pa	100 inH2O	24.88 kPa	300 inH2O	74.65 kPa
DLC-L05G	0 to 5 inH2O	1,244.20 Pa	200 inH2O	49.77 kPa	300 inH2O	74.65 kPa
DLC-L10G	0 to 10 inH2O	2,488.40 Pa	200 inH2O	49.77 kPa	300 inH2O	74.65 kPa
DLC-L20G	0 to 20 inH2O	4,976.80 Pa	200 inH2O	49.77 kPa	500 inH2O	124.42 kPa
DLC-L30G	0 to 30 inH2O	7,465.20 Pa	200 inH2O	49.77 kPa	500 inH2O	124.42 kPa
DLC-L60G	0 to 60 inH2O	14,930.4 Pa	200 inH2O	49.77 kPa	800 inH2O	199.01 kPa

	High Pressure Products						
Device	Operating Range A Proof Pressure Burst Pressure						
DLC-005D	± 5 psi	34.47 kPa	10 psi	68.95 kPa	15 psi	103.42 kPa	
DLC-015D	± 15 psi	103.42 kPa	30 psi	206.84 kPa	45 psi	310.26 kPa	
DLC-030D	± 30 psi	206.84 kPa	60 psi	413.69 kPa	90 psi	620.53 kPa	
DLC-100D	± 100 psi	689.48 kPa	200 psi	1,378.95 kPa	225 psi	1,551.32 kPa	
DLC-150D	± 150 psi	1,034.20 kPa	225 psi	1,551.32 kPa	225 psi	1,551.32 kPa	
DLC-005G	0 to 5 psi	34.47 kPa	10 psi	68.95 kPa	15 psi	103.42 kPa	
DLC-015G	0 to 15 psi	103.42 kPa	30 psi	206.84 kPa	45 psi	310.26 kPa	
DLC-030G	0 to 30 psi	206.84 kPa	60 psi	413.69 kPa	90 psi	620.53 kPa	
DLC-100G	0 to 100 psi	689.48 kPa	200 psi	1,378.95 kPa	225 psi	1,551.32 kPa	
DLC-150G	0 to 150 psi	1,034.20 kPa	225 psi	1,551.32 kPa	225 psi	1,551.32 kPa	
DLC-015A	0 to 15 psia	1.03 barA	30 psi	2.06 barA	45 psi	3.10 barA	
DLC-030A	0 to 30 psia	2.06 barA	60 psi	4.14 barA	90 psi	6.20 barA	
DLC-100A	0 to 100 psia	6.89 barA	200 psi	13.79 barA	225 psi	15.51 barA	
DLC-150A	0 to 150 psia	10.34 barA	225 psi	15.51 barA	225 psi	15.51 barA	

Note A: Operating range in Pa is expressed as an approximate value.

Performance Characteristics for DLC Series

All parameters are measured at $3.3V \pm 5\%$ excitation and 25C unless otherwise specified (Note 6). Pressure measurements are with positive PRESSURE APPLIED TO PORT B.

Parameter	Minimum	Typical	Maximum	Units	Specification Notes
Output Span (FSS)					1
LxxD (All Packages)	-	$\pm 0.4 * 2^{24}$	-	Dec Counts	
LxxG (U2 Package)	-	$0.4 * 2^{24}$	-	Dec Counts	
LxxG (All Other Packages)	-	$0.8 * 2^{24}$	-	Dec Counts	
0xxD (All Packages)	-	$\pm 0.4 * 2^{24}$	-	Dec Counts	
0xxG (All Packages)	-	$0.8 * 2^{24}$	-	Dec Counts	
0xxA (U5 Package)	-	$0.8 * 2^{24}$	-	Dec Counts	
Offset Output @ Zero Diff. Pressure (Osdig)					-
LxxD (All Packages)	-	$0.5 * 2^{24}$	-	Dec Counts	
LxxG (U2 Package)	-	$0.5 * 2^{24}$	-	Dec Counts	
LxxG (All Other Packages)	-	$0.1*2^{24}$	-	Dec Counts	
0xxD (All Packages)	-	$0.5 * 2^{24}$	-	Dec Counts	
0xxG (All Packages)	-	$0.1*2^{24}$	-	Dec Counts	
0xxA (U5 Package)	-	$0.1 * 2^{24}$	-	Dec Counts	
Total Error Band					2
L01G	-	-	±3.00	%FSS	
L01D, L02G	-	-	±2.00	%FSS	
L02D, L05G, L05D, L10G, L10D, L20G	-	-	±1.25	%FSS	
L20D, L30G, L30D, L60G, L60D	-	-	±1.00	%FSS	
All Higher Pressure	-	-	±1.00	%FSS	
Pressure Digital Resolution - No Missing Codes					-
16-bit Option	15.3	15.5	-	bit	
Temperature Output					-
Resolution	-	16	-	bit	
Overall Accuracy	-	2	-	°C	
Supply Current Requirement					3, 4, 5
During Active State (ICC _{Active})	-	2.0	2.5	mA	
During Idle State (ICC _{Idle})	-	100	250	nA	
Power On Delay	-	-	2.5	ms	3
Data Update time (t _{DU})	(s	ee table belo	w)	ms	3, 4

Calibrated					Measu	rement Cor	nmand				
Resolution	Single Average2 Average4 Average8 Average16					age16	Units				
Resolution	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Ullits
16 bit	3.70	4.1	7.20	8.0	14.20	15.7	28.20	31.1	56.20	61.9	ms

Soldering Recommendations

- 1) Solder parts as a second operation only.
- 2) Post reflow, wait for 48 hrs before performing any calibration operations.
- 3) Perform spot cleaning as necessary only by hand. **DO NOT** wash or submerge device in cleaning liquid.

12C Electrical Parameters for DLC Series

Parameter	Symbol	Min	Тур	Max	Units	Notes
Input High Level	-	80.0	-	100	% of Vs	5
Input Low Level	-	0	-	20.0	% of Vs	5
Output Low Level	-	-	-	10.0	% of Vs	5
I2C Pull-up Resistor	-	1000	-	-	Ω	5
12C Load Capacitance on SDA, @ 400 kHz	Csda	-	-	200	рF	5
I2C Input Capacitance (each pin)	C12C_IN	-	-	10.0	рF	5
12C Address			41		decimal	

Pressure Output Transfer Function

$$Pressure(inH_2O) = 1.25 \times \left(\frac{Pout_{dig} - OS_{dig}}{2^{24}}\right) \times FSS(inH_2O)$$

Where:

 $Pout_{dig}$ Is the sensor 24-bit digital output.

 OS_{dig} Is the specified digital offset output.

(see Performance Characteristics Table)

 $FSS(inH_2O)$ The sensor Full Scale Span in inches H_2O

For Gage Operating Range sensors: Full Scale Pressure

For Differential Operating Range sensors: 2 x Full Scale Pressure.

Temperature Output Transfer Function

Temperature (°C) =
$$\left(\frac{Tout_{dig} * 150}{2^{24}}\right) - 40$$

Where:

 $Tout_{dig}$ The sensor 24-bit digital temperature output.

(Note that only the upper 16 bits are significant)

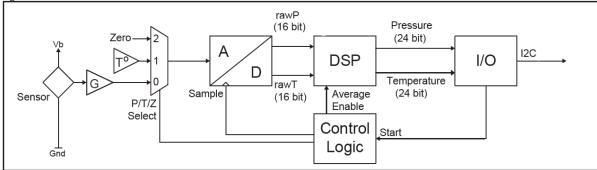
Specification Notes

- NOTE 1: THE SPAN IS THE ALGEBRAIC DIFFERENCE BETWEEN FULL SCALE DECIMAL COUNTS AND THE OFFSET DECIMAL COUNTS. THE FULL SCALE PRESSURE IS THE MAXIMUM POSITIVE CALIBRATED PRESSURE.
- NOTE 2: TOTAL ERROR BAND CONSISTS OF OFFSET AND SPAN TEMPERATURE AND CALIBRATION ERRORS, LINEARITY AND PRESSURE HYSTERESIS ERRORS, OFFSET WARM-UP SHIFT AND OFFSET POSITION SENSITIVITY ERRORS.
- NOTE 3: PARAMETER IS CHARACTERIZED AND NOT 100% TESTED.
- NOTE 4: DATA UPDATE TIME IS EXCLUSIVE OF COMMUNICATIONS, FROM COMMAND RECEIVED TO END OF BUSY STATUS. THIS CAN BE OBSERVED AS EOC PIN LOW- STATE DURATION.
- NOTE 5: AVERAGE CURRENT CAN BE ESTIMATED AS : ICC_{Idle} + ((t_{DU} / Reading Interval) * ICCACTIVE)). REFER TO FIGURE 2 FOR ACTIVE AND IDLE CONDITIONS OF THE SENSOR (THE ACTIVE STATE IS WHILE EOC PIN IS LOW).
- NOTE 6: THE SENSOR IS CALIBRATED WITH A 3.3V SUPPLY HOWEVER, AN INTERNAL REGULATOR ALLOWS A SUPPLY VOLTAGE OF 1.8V TO 3.6V TO BE USED WITH-OUT AFFECTING THE OVERALL SPECIFICATIONS. THIS ALLOWS DIRECT OPERATION FROM A BATTERY SUPPLY.
- Note 7: CALIBRATED WITH CONTINOUS READS.

É

Device Ordering Options

Output Resolution


Calibrated output resolution of 16 bits.

See the Data Update Time in the Performance Characteristics table.

Operation Overview

The DLC is a digital sensor with a signal path that includes a sensing element, a variable- bit analog to digital converter, a DSP and an IO block that supports an I2C interface (see Figure 1 below). The sensor also includes an internal temperature reference and associated control logic to support the configured operating mode. Since there is a single ADC, there is also a multiplexer at the front end of the ADC that selects the signal source for the ADC.

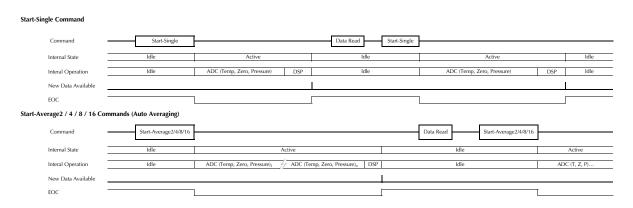
Figure 1 - DLC Essential Model

The ADC performs conversions on the raw sensor signal (P), the temperature reference (T) and a zero reference (Z) during the ADC measurement cycle.

The DSP receives the converted pressure and temperature information and applies a multi-order transfer function to compensate the pressure output. This transfer function includes compensation for span, offset, temperature effects on span, temperature effects on offset and second order temperature effects on both span and offset. There is also linearity compensation for gage devices and front to back linearity compensation for differential devices.

Sensor Commands: Five Measurement commands are supported, returning values of either a single pressure / temperature reading or an average of 2, 4, 8, or 16 readings. Each of these commands wakes the sensor from Idle state into Active state, and starts a measurement cycle. For the Start-Average commands, this cycle is repeated the appropriate numper of times, while the Start-Single command performs a single iteration. When the DSP has completed calculations and the new values have been made available to the I/O block, the sensor returns to Idle state. The sensor remains in this low-power state until another Measurement command is received.

After completion of the measurement, the result may then be read using the Data Read command. The ADC and DSP remain in Idle state, and the I/O block returns the 7 bytes of status and measurement data. See Figure 2, following. At any time, the host may request current device status with the Status Read command. See Table 1 for a summary of all commands.


For optimum sensor performance, All Sensors recommends that Measurement commands be issued at a fixed interval by the host system. Irregular request intervals may increase overall noise on the output.

Furthermore, if reading intervals are much slower than the Device Update Time, using the Averaging commands is suggested to reduce offset shift. This shift is constant with respect to time interval, and may be removed by the appli-

cation. For longer fixed reading intervals, this shift may be removed by the factory on special request.

Operation Overview

Figure 2 - DLC Communication Model

Digital Interface Command Formats

When requesting sensor status over I2C, the host simply performs a 1-byte read transfer. When reading sensor data over I2C, the host simply performs a 7-byte read transfer.

See Table 1 below for Measurement Commands, Sensor Data read and Sensor Status read details.

Table 1 - DLC Sensor Command Set

Measurement Commands				
Description	I2C			
Start-Single	0xAA			
Start-Average2	0xAC			
Start-Average4	0xAD			
Start-Average8	0xAE			
Start-Average16	0xAF			

	Read Sensor Data
I2C	Read of 7 bytes from device

	Read Sensor Status
I2C	Read of 1 byte from device.

Digital Interface Data Format

For either type of digital interface, the format of data returned from the sensor is the same. The first byte consists of the Status Byte followed by a 24-bit unsigned pressure value and a 24-bit unsigned temperature value. Unused bits beyond the calibrated bit width are undefined, and may have any value. See the Pressure Output Transfer Function and Temperature Output Transfer Function definitions on page 3 for converting to pressure and temperature. Refer to Table 2 for the overall data format of the sensor. Table 3 shows the Status Byte definition. Note that a completed reading without error will return status 0x40.

Table 2 - Output Data Format

S[7:0]	P[23:16]	P[15:8]	P[7:0]	T[23:16]	T[15:8]	T[7:0]
Status	Pressure	Pressure	Pressure	Temperature	Temperature	Temperature
Byte	MSB	Byte 1	LSB	MSB	Byte 1	LSB

Table 3- Status Byte Definition

Bit	Description
Bit 7 [MSB]	[Always = 0]
6	Power : [1 = Power On]
5	Busy: [1 = Processing Command, 0 = Ready]
4:3	Mode: [00 = Normal Operation]
2	Memory Error [1 = EEPROM Checksum Fail]
1	Sensor Configuration [always = 0]
Bit 0 [LSB]	ALU Error [1 = Error]

I2C Interface

12C Command Sequence

The part enters Idle state after power-up, and waits for a command from the bus master. Any of the five Measurement commands may be sent, as shown in Table 1. Following receipt of one of these commands, the EOC pin is set to Low level, and the sensor Busy bit is set in the Status Byte. After completion of measurement and calculation in the Active state, compensated data is written to the output registers, the EOC pin is set high, and the processing core goes back to Idle state. The host processor can then perform the Data Read operation, which for I2C is simply a 7-byte Device Read.

If the EOC pin is not monitored, the host can poll the Status Byte by repeating the Status Read command, which for I2C is a one-byte Device Read. When the Busy bit in the Status byte is zero, this indicate that valid data is ready, and a full Data Read of all 7 bytes may be performed.

12C Interface (Cont'd)

12C Bus Communications Overview

The I2C interface uses a set of signal sequences for communication. The following is a description of the supported sequences and their associated mnemonics. Refer to Figure 3 for the associated usage of the following signal sequences.

Bus not Busy (I): During idle periods both data line (SDA) and clock line (SCL) remain HIGH.

<u>START condition (ST):</u> A HIGH to LOW transition of SDA line while the clock (SCL) is HIGH is interpreted as START condition. START conditions are always set by the master. Each initial request for a pressure value has to begin with a START condition.

Slave address (An): The I C-bus requires a unique address for each device. The DLC sensor has a preconfigured slave address (see specification table on Page 3). After setting a START condition the master sends the address byte containing the 7 bit sensor address followed by a data direction bit (R/W). A "0" indicates a transmission from master to slave (WRITE), a "1" indicates a device-to master request (READ).

Acknowledge (A or N): Data is transferred in units of 8 bits (1 byte) at a time, MSB first. Each data-receiving device, whether master or slave, is required to pull the data line LOW to acknowledge receipt of the data. The Master must generate an extra clock pulse for this purpose. If the receiver does not pull the data line down, a NACK condition exists, and the slave transmitter becomes inactive. The master determines whether to send the last command again or to set the STOP condition, ending the transfer.

<u>DATA valid (Dn):</u> State of data line represents valid data when, after a START condition, data line is stable for duration of HIGH period of clock signal. Data on line must be changed during LOW period of clock signal. There is one clock pulse per data bit.

<u>STOP condition (P):</u> LOW to HIGH transition of the SDA line while clock (SCL) is HIGH indicates a STOP condition. STOP conditions are always generated by the master.

urement Commands: Start-Single (to start reading of single sample) C7...C0: 0xAA C7...C0: 0xAC Start-Single Start-Average2 Start-Average4 C7...C0: 0xAD Start-Average8 C7...C0: 0xAE Start-Average16 C7...C0: 0xAF Set by bus master I ST A6 A5 A4 A3 A2 A1 A0 W Set by sensor: 2. Status Read: I ST A6 A5 A4 A3 A2 A1 A0 R Set by bus master: Set by sensor: Set by bus master: I ST A6 A5 A4 A3 A2 A1 A0 R

Data bits

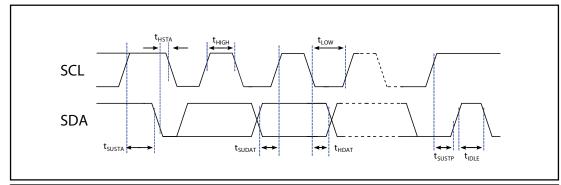
Temperature data:

Status:

Α0

Figure 3 - I2C Communication Diagram

Idle

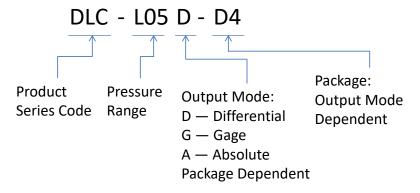

Stop

Ack: Nack: "Read" bit (1): ST

R

Interface Timing Diagram

Figure 4 - I2C Timing Diagram


PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS
SCL frequency	fscl	100	-	400	KHz
SCL low width	tlow	1.3	-	ı	us
SCL high width	thigh	0.6	ı	Ī	us
Start condition setup	tsusta	0.6	ı	ı	us
Start condition hold	thsta	0.6	-	ı	us
Data setup to clock	tsudat	0.1	-	ı	us
Data hold to clock	thdat	0	-	ı	us
Stop condition setup	tsustp	0.6	-	ı	us
Bus idle time	tidle	2.0	-	-	us

How to Order

Refer to Table 5 for standard part numbers offered which includes the pressure range and package.

Example P/N with options: DLC-L05D-D4

Table 4 - Part Numbering Scheme:

Where:

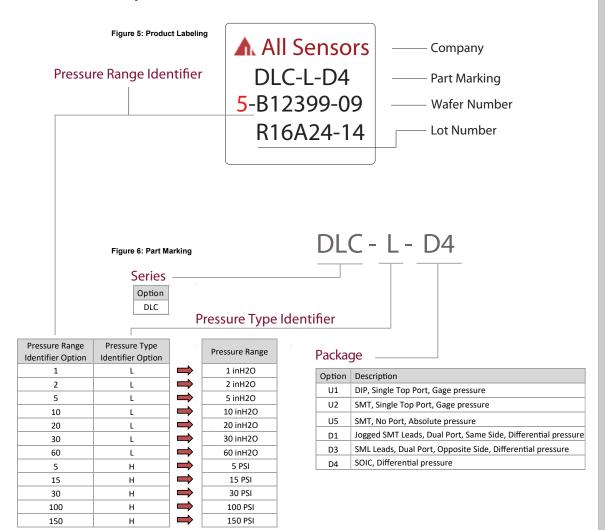
Pressure Range (D1, D3, D4 Package): All Differential Pressure Ranges

Pressure Range (U1, U2 Package): All Gage Pressure Ranges Pressure Range (U5 Package): All Absolute Pressure Ranges

Table 5 - Standard Part Number Configurations

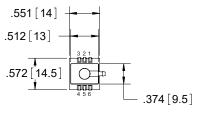
kages		DLC - L01 D - D1	DLC - L01 D - D3	DLC - L01 D - D4
	<u> </u>	DLC - L02 D - D1	DLC - L02 D - D3	DLC - L02 D - D4
	w Pressu Products	DLC - L05 D - D1	DLC - L05 D - D3	DLC - L05 D - D4
"	Pre odu	DLC - L10 D - D1	DLC - L10 D - D3	DLC - L10 D - D4
ges	N P	DLC - L20 D - D1	DLC - L20 D - D3	DLC - L20 D - D4
, K a	<u>_</u> ا	DLC - L30 D - D1	DLC - L30 D - D3	DLC - L30 D - D4
D Packages		DLC - L60 D - D1	DLC - L60 D - D3	DLC - L60 D - D4
D	41.40	DLC - 005 D - D1	DLC - 005 D - D3	DLC - 005 D - D4
	High Pressure Products	DLC - 015 D - D1	DLC - 015 D - D3	DLC - 015 D - D4
	High essu oduc	DLC - 030 D - D1	DLC - 030 D - D3	DLC - 030 D - D4
	Pre Pre	DLC - 100 D - D1	DLC - 100 D - D3	DLC - 100 D - D4
		DLC - 150 D - D1	DLC - 150 D - D3	DLC - 150 D - D4
	1	I = 1 = 1 :		
		DLC - L01 G - U1	DLC - L01 G - U2	
	Low Pressure Products	DLC - L02 G - U1	DLC - L02 G - U2	
	w Pressu Products	DLC - L05 G - U1	DLC - L05 G - U2	
v	Pre	DLC - L10 G - U1	DLC - L10 G - U2	
ge	ĕ g	DLC - L20 G - U1	DLC - L20 G - U2	
8	Ľ	DLC - L30 G - U1 DLC - L60 G - U1	DLC - L30 G - U2 DLC - L60 G - U2	
U Packages				
U High	High Pressure Products	DLC - 005 G - U1	DLC - 005 G - U2	DLC - 015 A - U5
		DLC - 015 G - U1	DLC - 015 G - U2	DLC - 030 A - U5
	ابار Se se po	DLC - 030 G - U1	DLC - 030 G - U2	DLC - 100 A - U5
	_ 2 2	DLC - 100 G - U1 DLC - 150 G - U1	DLC - 100 G - U2 DLC - 150 G - U2	DLC - 150 A - U5

É

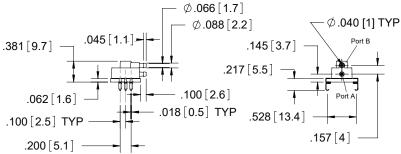

Product Identification on backside of device

All products are labeled via laser marking as seen in Figure 5.

Figure 6 details how to interpret the part marking code. Low pressure ranges from 1 to 60 inH2O are specified with code "L" and 5 to 150 psi high pressure products with code "H".


The pressure range will be indicated on the same line as the wafer number before the starting character "B".

Example: DLC-L05D-D4

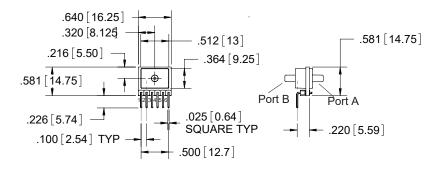


Package Drawings

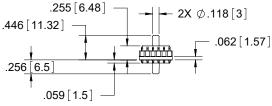
D1 Package

Pin	Definition
1	N/C
2	SCL
3	SDA
4	EOC
5	VDD
6	VSS

All Sensors


D-Series Package

A D1 Package

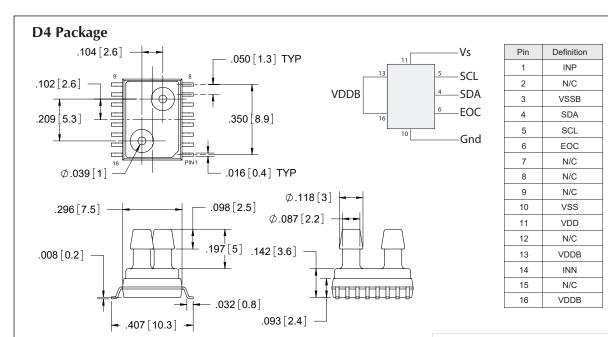

NOTES

- 1) Dimensions are in inches [mm].
- 2) For suggested pad layout, see drawing: PAD-20.

D3 Package

Pin	Definition
1	N/C
2	SCL
3	SDA
4	EOC
5	VDD
6	VSS

All Sensors


D-Series Package

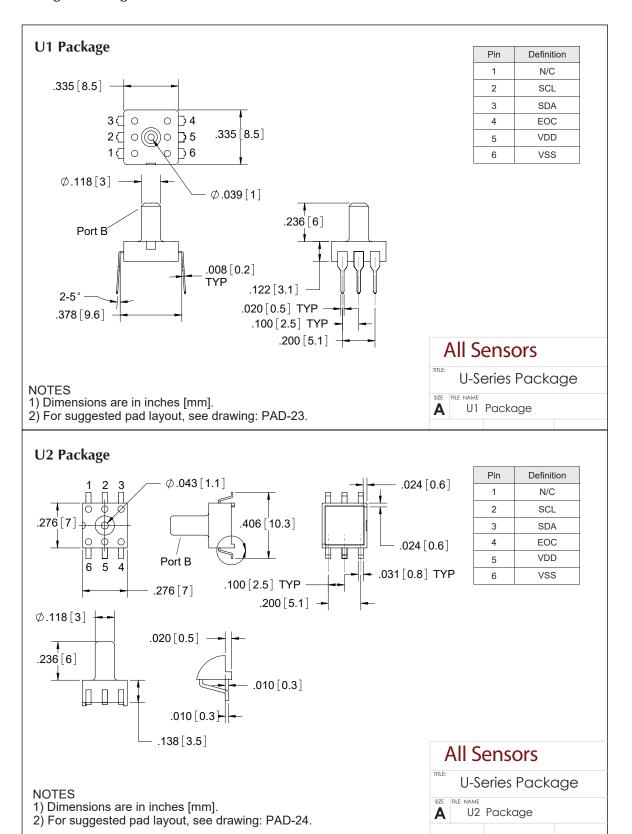
A D3 Package

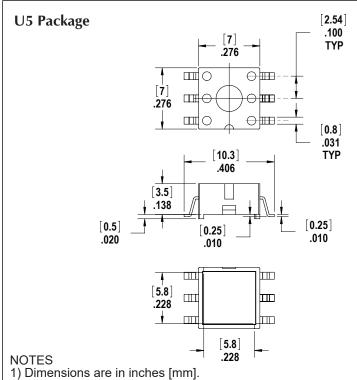
NOTES

- 1) Dimensions are in inches [mm].
- 2) For suggested pad layout, see drawing: PAD-21.

Package Drawings (Cont'd)

NOTES


- 1) Dimensions are in inches [mm].
- 2) For suggested pad layout, see drawing: PAD-22
- 3) Sensors in this package require handling in accordance with MSL3.
- 4) Do not connect any signal to Pins 1, 3 & 14.
- 5) PCB must connect Pin 13 to Pin 16.


D-Series Package

A D4 Package

Package Drawings (Cont'd)

Package Drawings (Cont'd)

Pin	Definition
1	N/C
2	SCL
3	SDA
4	EOC
5	VDD
6	VSS

All Sensors

U-Series Package

A U5 Package

- 2) For suggested pad layout, see drawing: PAD-24.
- 3) Absolute pressure only.

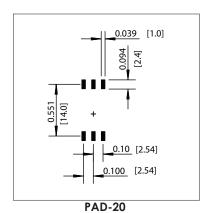
Packing Options

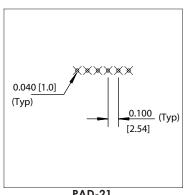
ALL PRODUCTS FOUND IN THIS DATASHEET ARE PACKAGED IN TUBES.

(Consult with factory for the option to ship in trays)

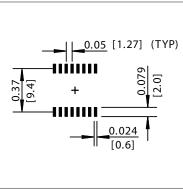
ALL SENSORS

DS-0365 REV A

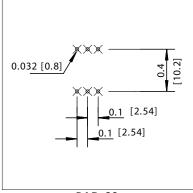


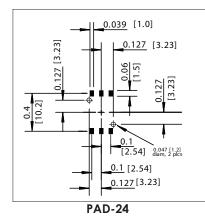

Pressure Tubing Recommendations

Tubing Number	Recommended Tubing Sizes
1	1/16" I.D. x 1/8" O.D. x 1/32" Wall
2	3/32" I.D. x 5/32" O.D. x 1/32" Wall


Package	Tubing Number
D1	1
D3	2
D4	2
U1	2
U2	2
U5	N/A

Suggested Pad Layouts




PAD-21

PAD-22

PAD-23

Dimensions are in inches [mm].

All Sensors reserves the right to make changes to any products herein. All Sensors does not assume any liability arising out of the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Board Mount Pressure Sensors category:

Click to view products by Amphenol manufacturer:

Other Similar products are found below:

6407-249V-17343P 6407-250V-09273P 80527-25.0H2-05 80541-B00000150-01 80541-B00000200-05 80554-00700100-05 8056800300050-01 93.631.4253.0 93.731.4353.0 93.932.4553.0 136PC150G2 136PC15A1 142PC95AW71 142PC05DW70 15PSI-G-4V 180501A-L0N-B 26PCBKT 26PCCFA6D26 26PCCFS2G 26PCCVA6D 93.632.7353.0 93.731.3653.0 93.931.4853.0 93.932.4853.0 SCDA120XSC05DC 185PC30DH 20INCH-G-MV-MINI 26PCAFJ3G 26PCCEP5G24 26PCDFA3G 26PCJEU5G19 ASCX15AN-90
TSCSAAN001PDUCV DCAL401DN DCAL401GN XZ202798SSC XZ203676HSC 6407-249V-09343P 6407-250V-17343P SP370-25-1160 81794-B00001200-01 HSCDLNN100PGAA5 82681-B00000100-01 81618-B00000040-05 SSCDJNN015PAAA5 TSCDLNN100MDUCV
TSCSAAN100PDUCV NBPDANN015PGUNV NBPLLNS150PGUNV 142PC100D